Writing Efficient Code in C++

Petr Rockai



Organisation

e theory: ~20 minutes every week

e coding: all the remaining time

e passing the subject: collect 10 points

e most points come from assignments

e attendance is optional (but worth .1 point/seminar)

Writing Efficient Code in C++ 1/86 December 2, 2017



Assignments

e one assignment every 2 weeks, 5 in total

e you can get 3 points per assignment

e on my desk (in your repo) by 8am on Monday in 2 weeks
e you can be arbitrarily late, but will get 1 point less

Writing Efficient Code in C++ 2/86 December 2, 2017



Assignments (cont’d)

you can use git, mercurial or darcs

put everything that you want me to see on master
write a simple Makefile (no cmake, autotools, ...)
each homework gets a target (make hwl through hw5)
use the same repo for in-seminar work (make ex1 ...)

Writing Efficient Code in C++ 3/86 December 2, 2017



Competition

we will hold a few (3 or 4) competitions in the seminar
you'll have 40 minutes to do your best on a small problem
the winner gets 1 point, second place gets .5 point

all other working programs get .2 points

we’ll dissect the winning program together

Writing Efficient Code in C++ 4/86 December 2, 2017



Preliminary Plan

2.10. cancelled (conference, sorry!)
9.10. microbenchmarking & statistics hw01 due
16.10. the memory hierarchy

23.10. using callgrind hw02 due
30.10. tuning for the compiler/optimiser

6.11. competition 1 hw03 due
13.11. understanding the CPU
20.11. exploiting parallelism hw04 due
27.11. using perf + competition 2

4.12. Q&A, homework recap hwO05 due

11.12. semester recap + competition 3

Writing Efficient Code in C++ 5/86 December 2, 2017



Part 1: Introduction & Tools

Writing Efficient Code in C++ 6/86 December 2, 2017



Efficient Code

e computational complexity

e the memory hierarchy

e tuning for the compiler & optimiser
e understanding the CPU

e exploiting parallelism

Writing Efficient Code in C++ 7/86 December 2, 2017



Understanding Performance

writing and evaluating benchmarks
profiling with callgrind

profiling with perf

the law of diminishing returns

premature optimisation is the root of all evil
(but when is the right time?)

Writing Efficient Code in C++ 8/86

December 2, 2017



Tools

e (++14 & a matching compiler (clang 3.7+, g++ 5+)

e ona POSIX operating system (preferably not in a VM)
e perf (Linux-only, sorry)

e callgrind (partofthe valgrind suite)

e kcachegrind (for visualisation of callgrind logs)

e gnuplot for plotting performance data

e Dbrick-benchmark for micro-benchmarks in C++

Writing Efficient Code in C++ 9/86 December 2, 2017



Part 2: Computational Complexity

Writing Efficient Code in C++ 10/86 December 2, 2017



Complexity and Efficiency

this class is not about asymptotic behaviour
but: you need to understand complexity to write good code
performance and security implications

what is your expected input size?
complexity vs constants vs memory use

Writing Efficient Code in C++ 11/86 December 2, 2017



Quiz
e what's the asymptotic complexity of:
— abubble sort? (standard) quick sort?
— inserting an element into a RB tree?
— inserting an element into a hash table?
— inserting an element into a sorted vector?
e what are the amortised complexities?
e how about expected (average)?
e what if the hash function is really bad?

Writing Efficient Code in C++ 12/86 December 2, 2017



Worst-Case Complexity Matters

e (CVE-2011-4815, 4838, 4885, 2012-0880, ...

e appscan become unusable with too many pictures/songs/ ...
e usea better algorithm if you can (or must)

e but: simplicity of code is worth a lot, too

e also take memory complexity and constants into account

Writing Efficient Code in C++ 13/86 December 2, 2017



Constants Matter

e nopsifeachtakes 1 second
e nlogn ops if each takes .1 second
e n” ops if each takes .01 second

Picking the Right Approach

e where are the crossover points?

e whatis my typical input size?

e isitworth picking an approach dynamically?
 what happens in pathological cases?

Writing Efficient Code in C++ 14/86

December 2, 2017



Exercise 1

e setup your repository and a Makefile
e implementa bounded priority buffer
— holds at most n items
— holds at most one copy of a given item
— forgets the smallest item if full
— fetch/remove the largest item
— API: insert, top and remove
e two versions: sorted std::vectorvsstd: :set

Writing Efficient Code in C++ 15/86 December 2, 2017



Exercise 1 (cont'd)

e write a few unit tests

e write a benchmark that inserts (~107) random values
e the benchmark can use clock(3) or time(1)

e compare the approaches forn = 5,10,10000

e what are the theoretical complexities?
e whatare your expectations on performance?
e can you think of a better overall solution?

Writing Efficient Code in C++ 16/86 December 2, 2017



Homework 1

implement hash tables with insert and find

— with linked-list buckets [1pt]

— with linear probing and rehashing [1pt]

compare with std: :set and std: :unordered set [1pt]
bonus: beat std: :unordered set by >10 % [.5pt]

stick to crude measurement methods: time(1)/clock(3)
use a number of elements suitable for this measurement style

Writing Efficient Code in C++ 17/86 December 2, 2017



Intermezzo 1: Assignment 1

Writing Efficient Code in C++ 18/86 December 2, 2017



please write aMakefileifyoudidn’t (not CMakelLists. txt)
please ensure optimisation are enabled (at least -02)
make hwl should create a binary called hw1l

— this also means you can’t use hwl as a directory name
— try hwl.src or such instead

$(CC) is the C compiler, not C++

— use $(CXX) orjust c++

— same for CFLAGS vs CXXFLAGS

if you want C++17, please use -std=c++1z

— -std=c++17 does not work on clang 4.0 or older

none of the above will incur the -1pt penalty for being late
— but please do fix those issues ASAP

— next time these issues will no longer get an exception

Writing Efficient Code in C++ 19/86 December 2, 2017



Part 3: Micro-Benchmarking and Statistics

Writing Efficient Code in C++ 20/86 December 2, 2017



Motivation

e there’s a gap between high-level code and actual execution
e the gap has widened over time

higher-level languages & more abstraction
more powerful optimisation procedures
more complex machinery inside the CPU
complicated cache effects

e itisvery hard to predict actual performance

Writing Efficient Code in C++ 21/86 December 2, 2017



Challenges

e performance is very deterministic in theory
e thisis not the case in practice
— time-sharing operating systems
— cache content and/or swapping
— power management, CPU frequency scaling
— virtual machines
e both micro (unit) and system benchmarks are affected

Writing Efficient Code in C++ 22/86 December 2, 2017



Unit vs System Benchmarking

e abenchmark only gives you one number

e itishard to find causes of poor performance

e unit benchmarks are like unit tests
— easier to tie causes to effects
— faster to run (minutes or hours vs hours or days)
— easier to make parametric

Writing Efficient Code in C++ 23/86 December 2, 2017



[solation vs Statistics

e there are many sources of measurement errors
e some are systematic, others are random (noise)
e noise is best fought with statistics

e but statistics can’t fix systematic errors

e benchmark data is not normally distributed

Writing Efficient Code in C++ 24/86 December 2, 2017



Bootstrap

e usual statistical tools are distribution-dependent

e benchmark data is distributed rather oddly

e idea: take many random re-samplings of the data

e take the 5th and 95th percentiles as the confidence interval
e thisis a very robust (if stochastic) approach

Writing Efficient Code in C++ 25/86 December 2, 2017



Using brick-benchmark

implements fork-based benchmark isolation

uses bootstrapping to correctly quantify noise

uses clock gettime to get precise timings

adaptive - if the CI is reasonably tight, stop iterating
simple registration API

example use — look for SelfTestinbrick-benchmark

Writing Efficient Code in C++ 26/86 December 2, 2017



Exercise 2

e compare 3 stack implementations

std::vector,std: :deque and std: : list

parametrise the benchmark by number of items inserted
and by the maximum size of the stack

randomise whether to remove or insert

insert needs to have a higher probability

e same for queues, butonly std: :deque and std: :list
e (optional) implement radix sort for integral types

compare with std: :sort on different sequence sizes

Writing Efficient Code in C++ 27/86 December 2, 2017



Homework 2

e implementerase() for both your hash tables [1pt]
e write micro-benchmarks for your hash tables [1pt]
— alsoinclude std: :set and std: :unordered set
— plot time-per-insert vs number of inserts for each
— come up with a benchmark for erase
e implement a generator of random graphs (of a given size)
e implementBFS usingthe besthash table and best queue [1pt]

Writing Efficient Code in C++ 28/86 December 2, 2017



Part 4: The Memory Hierarchy

Writing Efficient Code in C++ 29/86 December 2, 2017



e many levels of ever bigger, ever slower memories

e CPU registers: very few, very fast (no latency)

e L1 cache: small (100s of KiB), plenty fast (~4 cycles)
e L2 cache: still small, medium fast (~12 cycles)

e L3 cache: ~2-32 MiB, slow-ish (~36 cycles)

e L4 cache: (only some CPUs) ~100 MiB (~90 cycles)
« DRAM: many gigabytes, pretty slow (~200 cycles)

e NVMe: ~10k cycles

e SSD: ~20k cycles

e spinning rust: ~30M cycles
e RTT to US: ~450M cycles

Writing Efficient Code in C++ 30/86 December 2, 2017



Paging vs Caches

page tables live in slow RAM

address translations are very frequent

and extremely timing-sensitive

TLB small, very fast address translation cache

process switch TLB flush

but: Tagged TLB, software-managed TLB
typical size: 12 - 4k entries

miss penalties up to 100 cycles

Writing Efficient Code in C++ 31/86

December 2, 2017



Additional Effects

e some caches are shared, some are core-private

e outof order execution to avoid waits

e automatic or manual (compiler-assisted) prefetch
e speculative memory access

e ties in with branch prediction

Writing Efficient Code in C++ 32/86 December 2, 2017



Some Tips

e use compact data structures (vector > list)
e think about locality of reference

e think about the size of your working set

e code size, not just speed, also matters

Writing Efficient Code in C++ 33/86 December 2, 2017



See Also

e cpumemory.pdf in study materials
— somewhat advanced and somewhat long
— also very useful (the title is not wrong)
— don’t forget to add 10 years
— oprofile is now perf

e http://www.7-cpu.comCPU latency data

Writing Efficient Code in C++ 34/86 December 2, 2017



Exercise 3

e write benchmarks that measure cache effects

Some Ideas

e walkarandom section ofalong std::list

e measure time per item in relation to list size

e same butwithastd: :vector

e same but access randomly chosen elements (vector only)

Writing Efficient Code in C++ 35/86 December 2, 2017



Some Issues

uniform int distribution has odd timing behaviour
but we don’t really care about uniformity

you may need to fight the optimiser a bit
especially make sure to avoid undefined behaviour

indexing vs iteration have wildly different behaviour
shuffling your code slightly can affect the results a lot

Writing Efficient Code in C++ 36/86 December 2, 2017



Part 5: Profiling I, cal lgrind

Writing Efficient Code in C++ 37/86 December 2, 2017



Why profiling?

e it's not always obvious what is the bottleneck

e benchmarks don’t work so well with complex systems
e performance is not quite composable

e theequivalent of printf debugging isn’t too nice

Writing Efficient Code in C++ 38/86 December 2, 2017



Workflow

1. use a profiler to identify expensive code
— the more time program spent doing X,
— the more sense it makes to optimise X
2. improve the affected section of code
— re-run the profiler, compare the two profiles
— if satisfied with the improvement, goto 1
— else goto 2

Writing Efficient Code in C++ 39/86 December 2, 2017



What to Optimise

e imagine the program spends 50 % time doing X
— optimise X to run in half the time
— the overall runtime is reduced by 25 %
— good return on investment
e law of diminishing returns
— now only 33 % of time is spent on X
— cutting X in half again only gives 17 % of total
— and so on, until it makes no sense to optimise X

Writing Efficient Code in C++ 40/86 December 2, 2017



Flat vs Structured Profiles

e flat profiles are easier to obtain
e butalso harder to use
— just a list of functions and cost
— the context & structure is missing
e call stack data is a lot harder to obtain
— endows the profile with very rich structure
— reflects the actual control flow

Writing Efficient Code in C++ 41/86 December 2, 2017



cachegrind

part of the valgrind tool suite

dynamic translation and instrumentation
based on simulating CPU timings

— instruction fetch and decode

— somewhat abstract cost model

can optionally simulate caches

originally only flat profiles

Writing Efficient Code in C++ 42/86

December 2, 2017



callgrind

e records entire call stacks
e can reconstruct call graphs
e very useful for analysis of complex programs

kcachegrind

e graphical browser for callgrind data
e demo

Writing Efficient Code in C++ 43/86

December 2, 2017



Exercise 4

e there’s a simple BFS implementation in study materials

e you can also use/compare your own BFS implementation
e don’tforgettouse -02 -g or such when compiling

e generate a profile with cachegrind

e Joaditupinto kcachegrind

e generate another, using cal Lgrind this time & compare

Writing Efficient Code in C++ 44/86 December 2, 2017



Exercise 4 (cont’d)

e add cache simulation options &c.

e explore the knobs in kcachegrind

e experiment with the size of the generated graph

e optimise the BFS implementation based on profile data

Writing Efficient Code in C++ 45/86 December 2, 2017



Homework 3

e implement a real-valued matrix data structure [1pt]
e implement 2 matrix multiplication algorithms [1pt]
— natural order
— cache-efficient order
e compare the implementations using benchmarks [1pt]
e the output should be again gnuplot sources on stdout

Writing Efficient Code in C++ 46/86 December 2, 2017



Part 6: Tuning for the Compiler

Writing Efficient Code in C++ 47/86 December 2, 2017



Goals

e write high-level code
e with good performance

What We Need to Know

 which costs are easily eliminated by the compiler?
e how to make best use of the optimiser (with minimal cost)?

Writing Efficient Code in C++ 48/86 December 2, 2017



How Compilers Work

e read and process the source text

e generate low-level intermediate representation
e run [IR-level optimisation passes

e generate native code for a given target

Writing Efficient Code in C++ 49/86 December 2, 2017



Intermediate Representation

e for C++ compilers typically a (partial) SSA
e reflects CPU design / instruction sets

e symbolic addresses (like assembly)

e explicit control and data flow

Writing Efficient Code in C++ 50/86 December 2, 2017



IR-Level Optimiser

common sub-expression elimination
loop-invariant code motion

loop strength reduction

loop unswitching

sparse conditional constant propagation
(regular) constant propagation

dead code elimination

Writing Efficient Code in C++ 51/86

December 2, 2017



Common Sub-expression Elimination

e identify redundant (& side-effect free) computation
e compute the result only once & re-use the value
e notas powerful as equational reasoning

Writing Efficient Code in C++ 52/86 December 2, 2017



Loop-Invariant Code Motion

e identify code that is independent of the loop variable
e and also free of side effects

e hoist the code out of the loop

e Dbasically aloop-enabled variant of CSE

Writing Efficient Code in C++ 53/86 December 2, 2017



The Cost of Calls

e prevents CSE (due to possible side effects)
e prevents all kinds of constant propagation

Inlining

e removes the cost of calls

e improves all intra-procedural analyses

e inflates code size

e only possible if the IR-level definition is available

See also: link-time optimisation

Writing Efficient Code in C++ 54/86 December 2, 2017



The Cost of Abstraction: Encapsulation

e APIor ABI level?
e API: cost quickly eliminated by the inliner

e ABI: not even LTO can fix this
e ABI-compatible setter is a call instead of a single store

Writing Efficient Code in C++ 55/86 December 2, 2017



The Cost of Abstraction: Late Dispatch

e used for virtual methods in C++

e indirect calls (through a vtable)

e also applies to C-based approaches (gobject)
e prevents (naive) inlining

e compilers (try to) devirtualise calls

Writing Efficient Code in C++ 56/86 December 2, 2017



Exercise 5

e startwith bfs.cpp from study materials

 make a version where edges () is in a separate C++ file
e youwillneedtousestd::function

e tryacompromise using a visitor pattern

e compare all three approaches using benchmarks

Writing Efficient Code in C++ 57/86 December 2, 2017



Intermezzo 2: Competition & Homework

Writing Efficient Code in C++ 58/86 December 2, 2017



Competition

e download competitionl.tar.gz from study materials
e runmake personalize I=xx where xx is your initials
e in xx.hpp,implementa setof char

— must support insert, erase and count

— operator & (for intersection of two sets)

— operator | (for union of two sets)
e make check torun unit tests
e make bench to run benchmarks

Writing Efficient Code in C++ 59/86 December 2, 2017



Homework 4

e implementasetofuintl6 t using a bitvector [1pt]
— with insert, erase, union and intersection
e the same using a nibble-trie [1pt]
— atrie with out-degree 16 (4 bits)
— should have a maximum depth of 4
— implement insert and union
e compare the two implementations [1pt]

Writing Efficient Code in C++ 60/86 December 2, 2017



Part 7: Understanding the CPU

Writing Efficient Code in C++ 61/86 December 2, 2017



The Simplest CPU

e in-order, one instruction per cycle

e sources of inefficiency
— most circuitry is idle most of the time
— not very good use of silicon

e Dbutitisreasonably simple

Writing Efficient Code in C++ 62/86 December 2, 2017



Design Motivation

silicon (die) area is expensive
switching speed is limited

heat dissipation is limited

transistors cannot be arbitrarily shrunk
“wires” are not free either

Writing Efficient Code in C++ 63/86

December 2, 2017



The Classic RISC Pipeline

fetch — get instruction from memory
decode - figure out what to do

execute - do the thing

memory - read /write to memory

write back - store results in the register file

Writing Efficient Code in C++ 64/86

December 2, 2017



Instruction Fetch

e pull the instruction from cache, into the CPU

e the address of the instruction is stored in PC

e traditionally does branch “prediction”
— in simple RISC CPUs always predicts not taken
— this is typically not a very good prediction
— loops usually favour taken heavily

Writing Efficient Code in C++ 65/86 December 2, 2017



Instruction Decode

e not much actual decoding in RISC ISAs

e butitdoes register reads

e and also branch resolution
— might need a big comparator circuit
— depending on ISA (what conditional branches exist)
— updates the PC

Writing Efficient Code in C++ 66/86 December 2, 2017



Execute

e thisis basically the ALU
— ALU = arithmetic and logic unit
e computes bitwise and shift/rotate operations
e integer addition and subtraction
e integer multiplication and division (multi-cycle)

Writing Efficient Code in C++ 67/86 December 2, 2017



Memory

e dedicated memory instructions in RISC
— load and store
— pass through execute without effect
e can take a few cycles
e moves values between memory and registers

Write Back

e write data back into registers
e so thatlater instructions can use the results

Writing Efficient Code in C++ 68/86 December 2, 2017



Pipeline Problems

e data hazards (result required before written)
e control hazards (branch misprediction)
e different approaches possible
— pipeline stalls (bubbles)
— delayed branching
e structural hazards
— multiple instructions try to use a single block
— only relevant on more complex architectures

Writing Efficient Code in C++ 69/86 December 2, 2017



Superscalar Architectures

more parallelism than a scalar pipeline

can retire more than one instruction per cycle
extracted from sequential instruction stream
dynamically established data dependencies
some units are replicated (e.g. 2 ALUs)

Writing Efficient Code in C++ 70/86 December 2, 2017



Out-of-order execution

e tries to fill in pipeline stalls/bubbles

e same principle as super-scalar execution
— extracts dependencies during execution
— execute if all data ready
— even if not next in the program

Writing Efficient Code in C++ 71/86 December 2, 2017



Speculative Execution

sometimes it’s not yet clear what comes next

let’s decode, compute etc. something anyway

fills in more bubbles in the pipeline

but not always with actual useful work

depends on the performance of branch prediction

Writing Efficient Code in C++ 72/86

December 2, 2017



Take-Away

e the CPU is very good at utilising circuitry
e itis somewhat hard to write “locally” inefficient code
e you should probably concentrate on non-local effects
— non-local with respect to instruction stream
— like locality of reference
— and organisation of data in memory in general
— also higher-level algorithm structure

Writing Efficient Code in C++ 73/86 December 2, 2017



Exercise 6

e implement a brainfuck interpreter
e try to make it as fast as possible
e see wikipedia for some example programs

Bonus Homework

e write a brainfuck amdé64 compiler
e 2 points for emitting symbolic assembly
e 1 extra for emitting binary code

Writing Efficient Code in C++ 74/86

December 2, 2017



Part 8: Exploiting Parallelism

Writing Efficient Code in C++ 75/86 December 2, 2017



Hardware vs Software

e hardware is naturally parallel
e software is naturally sequential
e something has to give
— depends on the throughput you need
— eventually, your software needs to go parallel

Writing Efficient Code in C++ 76/86 December 2, 2017



Algorithms

e some algorithms are inherently sequential

— typically for P-complete problems

— for instance DFS post-order
e which algorithm do you really need though?

— topological sort is much easier than post-order
e some tasks are trivially concurrent

— think map-reduce

Writing Efficient Code in C++ 77/86 December 2, 2017



Task Granularity

e how big are the tasks you can run in parallel?
— big tasks = little task-switching overhead
— small tasks = easier to balance out

e how much data do they need to share?
— shared memory vs message passing

Writing Efficient Code in C++ 78/86 December 2, 2017



Distributed Memory

e comparatively big sub-tasks
e not much data structure sharing (small results)
e scales extremely well (millions of cores)

Shared Memory

e small, tightly intertwined tasks
e sharing a lot of data
e scales quite poorly (hundreds of cores)

Writing Efficient Code in C++ 79/86

December 2, 2017



Caches vs Parallelism

o different CPUs are connected to different caches

e caches are normally transparent to the program

e what if multiple CPUs hold the same value in cache
— they could see different versions at the same time
— need cache coherence protocols

Writing Efficient Code in C++ 80/86 December 2, 2017



Cache Coherence

e many different protocols exist

e acommon one is MESI (4 cache line states)
— modified, exclusive, shared, invalid
— snoops on the bus to keep up to date

e cheap until two cores hit the same cache line
— required for communication
— also happens accidentally

Writing Efficient Code in C++ 81/86 December 2, 2017



Locality of Reference

e comes with a twist in shared memory

e compact data is still good, but
— different cores may use different pieces of data
— if they are too close, this becomes costly
— also known as false sharing

Writing Efficient Code in C++ 82/86 December 2, 2017



Distribution of Work

e want to communicate as little as possible

e also want to distribute work evenly

e randomised, spread-out data often works well
— think hash tables

e structures with a single active point are bad
— think stacks, queues, counters &c.

Writing Efficient Code in C++ 83/86 December 2, 2017



Shared-Memory Parallelism in C++

e std:
e std:
e std:
e std:

:thread - create threads

: future - delayed (concurrent) values
ratomic - atomic (thread-safe) values
:mutex and std: : lock guard

Writing Efficient Code in C++ 84/86

December 2, 2017



Exercise 7

e implement shared-memory map-reduce in C++

 make the number of threads a runtime parameter

e check how this scales (wall time vs number of cores)

e use this for summing up a (big) array of numbers

e can you improve on this by hand-rolling the summing loop?

Writing Efficient Code in C++ 85/86 December 2, 2017



Homework 5

e implement parallel matrix multiplication [2pt]
e compare to your sequential versions [1pt]
— try with 2 and 4 threads in your benchmarks

Writing Efficient Code in C++ 86/86 December 2, 2017



