
Writing Efϐicient Code in C++

Petr Ročkai



WriƟng Efficient Code in C++ 1/86 December 2, 2017

Organisation

• theory: ~20 minutes every week

• coding: all the remaining time

• passing the subject: collect 10 points

• most points come from assignments

• attendance is optional (but worth .1 point/seminar)



WriƟng Efficient Code in C++ 2/86 December 2, 2017

Assignments

• one assignment every 2 weeks, 5 in total

• you can get 3 points per assignment

• on my desk (in your repo) by 8am on Monday in 2 weeks

• you can be arbitrarily late, but will get 1 point less



WriƟng Efficient Code in C++ 3/86 December 2, 2017

Assignments (cont’d)

• you can use git, mercurial or darcs

• put everything that you want me to see on master

• write a simple Makefile (no cmake, autotools,…)

• each homework gets a target (make hw1 through hw5)

• use the same repo for in-seminar work (make ex1…)



WriƟng Efficient Code in C++ 4/86 December 2, 2017

Competition

• we will hold a few (3 or 4) competitions in the seminar

• you’ll have 40 minutes to do your best on a small problem

• the winner gets 1 point, second place gets .5 point

• all other working programs get .2 points

• we’ll dissect the winning program together



WriƟng Efficient Code in C++ 5/86 December 2, 2017

Preliminary Plan

2.10. cancelled (conference, sorry!)

9.10. microbenchmarking & statistics hw01 due

16.10. the memory hierarchy

23.10. using callgrind hw02 due

30.10. tuning for the compiler/optimiser

6.11. competition 1 hw03 due

13.11. understanding the CPU

20.11. exploiting parallelism hw04 due

27.11. using perf + competition 2

4.12. Q&A, homework recap hw05 due

11.12. semester recap + competition 3



WriƟng Efficient Code in C++ 6/86 December 2, 2017

Part 1: Introduction & Tools



WriƟng Efficient Code in C++ 7/86 December 2, 2017

Efϐicient Code

• computational complexity

• the memory hierarchy

• tuning for the compiler & optimiser

• understanding the CPU

• exploiting parallelism



WriƟng Efficient Code in C++ 8/86 December 2, 2017

Understanding Performance

• writing and evaluating benchmarks

• proϐiling with callgrind

• proϐiling with perf

• the law of diminishing returns

• premature optimisation is the root of all evil

• (but when is the right time?)



WriƟng Efficient Code in C++ 9/86 December 2, 2017

Tools

• C++14 & a matching compiler (clang 3.7+, g++ 5+)

• on a POSIX operating system (preferably not in a VM)

• perf (Linux-only, sorry)

• callgrind (part of the valgrind suite)

• kcachegrind (for visualisation of callgrind logs)

• gnuplot for plotting performance data

• brick-benchmark for micro-benchmarks in C++



WriƟng Efficient Code in C++ 10/86 December 2, 2017

Part 2: Computational Complexity



WriƟng Efficient Code in C++ 11/86 December 2, 2017

Complexity and Efϐiciency

• this class is not about asymptotic behaviour

• but: you need to understand complexity to write good code

• performance and security implications

• what is your expected input size?

• complexity vs constants vs memory use



WriƟng Efficient Code in C++ 12/86 December 2, 2017

Quiz

• what’s the asymptotic complexity of:

− a bubble sort? (standard) quick sort?

− inserting an element into a RB tree?

− inserting an element into a hash table?

− inserting an element into a sorted vector?

• what are the amortised complexities?

• how about expected (average)?

• what if the hash function is really bad?



WriƟng Efficient Code in C++ 13/86 December 2, 2017

Worst-Case Complexity Matters

• CVE-2011-4815, 4838, 4885, 2012-0880,…

• apps can become unusablewith toomany pictures/songs/…

• use a better algorithm if you can (or must)

• but: simplicity of code is worth a lot, too

• also take memory complexity and constants into account



WriƟng Efficient Code in C++ 14/86 December 2, 2017

Constants Matter

• 𝑛 ops if each takes 1 second

• 𝑛 log 𝑛 ops if each takes .1 second

• 𝑛ଶ ops if each takes .01 second

Picking the Right Approach

• where are the crossover points?

• what is my typical input size?

• is it worth picking an approach dynamically?

• what happens in pathological cases?



WriƟng Efficient Code in C++ 15/86 December 2, 2017

Exercise 1

• set up your repository and a Makefile

• implement a bounded priority buffer

− holds at most 𝑛 items

− holds at most one copy of a given item

− forgets the smallest item if full

− fetch/remove the largest item

− API: insert, top and remove

• two versions: sorted std::vector vs std::set



WriƟng Efficient Code in C++ 16/86 December 2, 2017

Exercise 1 (cont’d)

• write a few unit tests

• write a benchmark that inserts (~10଻) random values

• the benchmark can use clock(3) or time(1)

• compare the approaches for 𝑛 = 5, 10, 10000

• what are the theoretical complexities?

• what are your expectations on performance?

• can you think of a better overall solution?



WriƟng Efficient Code in C++ 17/86 December 2, 2017

Homework 1

• implement hash tables with insert and ϐind

− with linked-list buckets [1pt]

− with linear probing and rehashing [1pt]

• compare with std::set and std::unordered_set [1pt]

• bonus: beat std::unordered_set by >10 % [.5pt]

• stick to crude measurement methods: time(1)/clock(3)

• useanumberof elements suitable for thismeasurement style



WriƟng Efficient Code in C++ 18/86 December 2, 2017

Intermezzo 1: Assignment 1



WriƟng Efficient Code in C++ 19/86 December 2, 2017

• pleasewrite a Makefile if you didn’t (not CMakeLists.txt)

• please ensure optimisation are enabled (at least -O2)

• make hw1 should create a binary called hw1

− this also means you can’t use hw1 as a directory name

− try hw1.src or such instead

• $(CC) is the C compiler, not C++

− use $(CXX) or just c++

− same for CFLAGS vs CXXFLAGS

• if you want C++17, please use -std=c++1z

− -std=c++17 does not work on clang 4.0 or older

• none of the above will incur the -1pt penalty for being late

− but please do ϐix those issues ASAP

− next time these issues will no longer get an exception



WriƟng Efficient Code in C++ 20/86 December 2, 2017

Part 3: Micro-Benchmarking and Statistics



WriƟng Efficient Code in C++ 21/86 December 2, 2017

Motivation

• there’s a gap between high-level code and actual execution

• the gap has widened over time

− higher-level languages & more abstraction

− more powerful optimisation procedures

− more complex machinery inside the CPU

− complicated cache effects

• it is very hard to predict actual performance



WriƟng Efficient Code in C++ 22/86 December 2, 2017

Challenges

• performance is very deterministic in theory

• this is not the case in practice

− time-sharing operating systems

− cache content and/or swapping

− power management, CPU frequency scaling

− virtual machines

• both micro (unit) and system benchmarks are affected



WriƟng Efficient Code in C++ 23/86 December 2, 2017

Unit vs System Benchmarking

• a benchmark only gives you one number

• it is hard to ϐind causes of poor performance

• unit benchmarks are like unit tests

− easier to tie causes to effects

− faster to run (minutes or hours vs hours or days)

− easier to make parametric



WriƟng Efficient Code in C++ 24/86 December 2, 2017

Isolation vs Statistics

• there are many sources of measurement errors

• some are systematic, others are random (noise)

• noise is best fought with statistics

• but statistics can’t ϐix systematic errors

• benchmark data is not normally distributed



WriƟng Efficient Code in C++ 25/86 December 2, 2017

Bootstrap

• usual statistical tools are distribution-dependent

• benchmark data is distributed rather oddly

• idea: take many random re-samplings of the data

• take the 5th and 95th percentiles as the conϐidence interval

• this is a very robust (if stochastic) approach



WriƟng Efficient Code in C++ 26/86 December 2, 2017

Using brick-benchmark

• implements fork-based benchmark isolation

• uses bootstrapping to correctly quantify noise

• uses clock_gettime to get precise timings

• adaptive – if the CI is reasonably tight, stop iterating

• simple registration API

• example use – look for SelfTest in brick-benchmark



WriƟng Efficient Code in C++ 27/86 December 2, 2017

Exercise 2

• compare 3 stack implementations

− std::vector, std::deque and std::list

− parametrise the benchmark by number of items inserted

− and by the maximum size of the stack

− randomise whether to remove or insert

− insert needs to have a higher probability

• same for queues, but only std::deque and std::list

• (optional) implement radix sort for integral types

− compare with std::sort on different sequence sizes



WriƟng Efficient Code in C++ 28/86 December 2, 2017

Homework 2

• implement erase() for both your hash tables [1pt]

• write micro-benchmarks for your hash tables [1pt]

− also include std::set and std::unordered_set

− plot time-per-insert vs number of inserts for each

− come up with a benchmark for erase

• implement a generator of random graphs (of a given size)

• implementBFSusing thebest hash table andbest queue [1pt]



WriƟng Efficient Code in C++ 29/86 December 2, 2017

Part 4: The Memory Hierarchy



WriƟng Efficient Code in C++ 30/86 December 2, 2017

• many levels of ever bigger, ever slower memories

• CPU registers: very few, very fast (no latency)

• L1 cache: small (100s of KiB), plenty fast (~4 cycles)

• L2 cache: still small, medium fast (~12 cycles)

• L3 cache: ~2-32 MiB, slow-ish (~36 cycles)

• L4 cache: (only some CPUs) ~100 MiB (~90 cycles)

• DRAM: many gigabytes, pretty slow (~200 cycles)

• NVMe: ~10k cycles

• SSD: ~20k cycles

• spinning rust: ~30M cycles

• RTT to US: ~450M cycles



WriƟng Efficient Code in C++ 31/86 December 2, 2017

Paging vs Caches

• page tables live in slow RAM

• address translations are very frequent

• and extremely timing-sensitive

• TLB small, very fast address translation cache

• process switch TLB ϐlush

• but: Tagged TLB, software-managed TLB

• typical size: 12 - 4k entries

• miss penalties up to 100 cycles



WriƟng Efficient Code in C++ 32/86 December 2, 2017

Additional Effects

• some caches are shared, some are core-private

• out of order execution to avoid waits

• automatic or manual (compiler-assisted) prefetch

• speculative memory access

• ties in with branch prediction



WriƟng Efficient Code in C++ 33/86 December 2, 2017

Some Tips

• use compact data structures (vector > list)

• think about locality of reference

• think about the size of your working set

• code size, not just speed, also matters



WriƟng Efficient Code in C++ 34/86 December 2, 2017

See Also

• cpumemory.pdf in study materials

− somewhat advanced and somewhat long

− also very useful (the title is not wrong)

− don’t forget to add 10 years

− oproϐile is now perf

• http://www.7-cpu.com CPU latency data



WriƟng Efficient Code in C++ 35/86 December 2, 2017

Exercise 3

• write benchmarks that measure cache effects

Some Ideas

• walk a random section of a long std::list

• measure time per item in relation to list size

• same but with a std::vector

• same but access randomly chosen elements (vector only)



WriƟng Efficient Code in C++ 36/86 December 2, 2017

Some Issues

• uniform_int_distribution has odd timing behaviour

• but we don’t really care about uniformity

• you may need to ϐight the optimiser a bit

• especially make sure to avoid undeϐined behaviour

• indexing vs iteration have wildly different behaviour

• shufϐling your code slightly can affect the results a lot



WriƟng Efficient Code in C++ 37/86 December 2, 2017

Part 5: Proϐiling I, callgrind



WriƟng Efficient Code in C++ 38/86 December 2, 2017

Why proϐiling?

• it’s not always obvious what is the bottleneck

• benchmarks don’t work so well with complex systems

• performance is not quite composable

• the equivalent of printf debugging isn’t too nice



WriƟng Efficient Code in C++ 39/86 December 2, 2017

Workϐlow

1. use a proϐiler to identify expensive code

− the more time program spent doing X,

− the more sense it makes to optimise X

2. improve the affected section of code

− re-run the proϐiler, compare the two proϐiles

− if satisϐied with the improvement, goto 1

− else goto 2



WriƟng Efficient Code in C++ 40/86 December 2, 2017

What to Optimise

• imagine the program spends 50 % time doing X

− optimise X to run in half the time

− the overall runtime is reduced by 25 %

− good return on investment

• law of diminishing returns

− now only 33 % of time is spent on X

− cutting X in half again only gives 17 % of total

− and so on, until it makes no sense to optimise X



WriƟng Efficient Code in C++ 41/86 December 2, 2017

Flat vs Structured Proϐiles

• ϐlat proϐiles are easier to obtain

• but also harder to use

− just a list of functions and cost

− the context & structure is missing

• call stack data is a lot harder to obtain

− endows the proϐile with very rich structure

− reϐlects the actual control ϐlow



WriƟng Efficient Code in C++ 42/86 December 2, 2017

cachegrind

• part of the valgrind tool suite

• dynamic translation and instrumentation

• based on simulating CPU timings

− instruction fetch and decode

− somewhat abstract cost model

• can optionally simulate caches

• originally only ϐlat proϐiles



WriƟng Efficient Code in C++ 43/86 December 2, 2017

callgrind

• records entire call stacks

• can reconstruct call graphs

• very useful for analysis of complex programs

kcachegrind

• graphical browser for callgrind data

• demo



WriƟng Efficient Code in C++ 44/86 December 2, 2017

Exercise 4

• there’s a simple BFS implementation in study materials

• you can also use/compare your own BFS implementation

• don’t forget to use -O2 -g or such when compiling

• generate a proϐile with cachegrind

• load it up into kcachegrind

• generate another, using callgrind this time & compare



WriƟng Efficient Code in C++ 45/86 December 2, 2017

Exercise 4 (cont’d)

• add cache simulation options &c.

• explore the knobs in kcachegrind

• experiment with the size of the generated graph

• optimise the BFS implementation based on proϐile data



WriƟng Efficient Code in C++ 46/86 December 2, 2017

Homework 3

• implement a real-valued matrix data structure [1pt]

• implement 2 matrix multiplication algorithms [1pt]

− natural order

− cache-efϐicient order

• compare the implementations using benchmarks [1pt]

• the output should be again gnuplot sources on stdout



WriƟng Efficient Code in C++ 47/86 December 2, 2017

Part 6: Tuning for the Compiler



WriƟng Efficient Code in C++ 48/86 December 2, 2017

Goals

• write high-level code

• with good performance

What We Need to Know

• which costs are easily eliminated by the compiler?

• how to make best use of the optimiser (with minimal cost)?



WriƟng Efficient Code in C++ 49/86 December 2, 2017

How Compilers Work

• read and process the source text

• generate low-level intermediate representation

• run IR-level optimisation passes

• generate native code for a given target



WriƟng Efficient Code in C++ 50/86 December 2, 2017

Intermediate Representation

• for C++ compilers typically a (partial) SSA

• reϐlects CPU design / instruction sets

• symbolic addresses (like assembly)

• explicit control and data ϐlow



WriƟng Efficient Code in C++ 51/86 December 2, 2017

IR-Level Optimiser

• common sub-expression elimination

• loop-invariant code motion

• loop strength reduction

• loop unswitching

• sparse conditional constant propagation

• (regular) constant propagation

• dead code elimination



WriƟng Efficient Code in C++ 52/86 December 2, 2017

Common Sub-expression Elimination

• identify redundant (& side-effect free) computation

• compute the result only once & re-use the value

• not as powerful as equational reasoning



WriƟng Efficient Code in C++ 53/86 December 2, 2017

Loop-Invariant Code Motion

• identify code that is independent of the loop variable

• and also free of side effects

• hoist the code out of the loop

• basically a loop-enabled variant of CSE



WriƟng Efficient Code in C++ 54/86 December 2, 2017

The Cost of Calls

• prevents CSE (due to possible side effects)

• prevents all kinds of constant propagation

Inlining

• removes the cost of calls

• improves all intra-procedural analyses

• inϐlates code size

• only possible if the IR-level deϐinition is available

See also: link-time optimisation



WriƟng Efficient Code in C++ 55/86 December 2, 2017

The Cost of Abstraction: Encapsulation

• API or ABI level?

• API: cost quickly eliminated by the inliner

• ABI: not even LTO can ϐix this

• ABI-compatible setter is a call instead of a single store



WriƟng Efficient Code in C++ 56/86 December 2, 2017

The Cost of Abstraction: Late Dispatch

• used for virtualmethods in C++

• indirect calls (through a vtable)

• also applies to C-based approaches (gobject)

• prevents (naive) inlining

• compilers (try to) devirtualise calls



WriƟng Efficient Code in C++ 57/86 December 2, 2017

Exercise 5

• start with bfs.cpp from study materials

• make a version where edges() is in a separate C++ ϐile

• you will need to use std::function

• try a compromise using a visitor pattern

• compare all three approaches using benchmarks



WriƟng Efficient Code in C++ 58/86 December 2, 2017

Intermezzo 2: Competition & Homework



WriƟng Efficient Code in C++ 59/86 December 2, 2017

Competition

• download competition1.tar.gz from study materials

• run make personalize I=xxwhere xx is your initials

• in xx.hpp, implement a set of char

− must support insert, erase and count

− operator & (for intersection of two sets)

− operator | (for union of two sets)

• make check to run unit tests

• make bench to run benchmarks



WriƟng Efficient Code in C++ 60/86 December 2, 2017

Homework 4

• implement a set of uint16_t using a bitvector [1pt]

− with insert, erase, union and intersection

• the same using a nibble-trie [1pt]

− a trie with out-degree 16 (4 bits)

− should have a maximum depth of 4

− implement insert and union

• compare the two implementations [1pt]



WriƟng Efficient Code in C++ 61/86 December 2, 2017

Part 7: Understanding the CPU



WriƟng Efficient Code in C++ 62/86 December 2, 2017

The Simplest CPU

• in-order, one instruction per cycle

• sources of inefϐiciency

− most circuitry is idle most of the time

− not very good use of silicon

• but it is reasonably simple



WriƟng Efficient Code in C++ 63/86 December 2, 2017

Design Motivation

• silicon (die) area is expensive

• switching speed is limited

• heat dissipation is limited

• transistors cannot be arbitrarily shrunk

• “wires” are not free either



WriƟng Efficient Code in C++ 64/86 December 2, 2017

The Classic RISC Pipeline

• fetch – get instruction frommemory

• decode – ϐigure out what to do

• execute – do the thing

• memory – read/write to memory

• write back – store results in the register ϐile



WriƟng Efficient Code in C++ 65/86 December 2, 2017

Instruction Fetch

• pull the instruction from cache, into the CPU

• the address of the instruction is stored in PC

• traditionally does branch “prediction”

− in simple RISC CPUs always predicts not taken

− this is typically not a very good prediction

− loops usually favour taken heavily



WriƟng Efficient Code in C++ 66/86 December 2, 2017

Instruction Decode

• not much actual decoding in RISC ISAs

• but it does register reads

• and also branch resolution

− might need a big comparator circuit

− depending on ISA (what conditional branches exist)

− updates the PC



WriƟng Efficient Code in C++ 67/86 December 2, 2017

Execute

• this is basically the ALU

− ALU = arithmetic and logic unit

• computes bitwise and shift/rotate operations

• integer addition and subtraction

• integer multiplication and division (multi-cycle)



WriƟng Efficient Code in C++ 68/86 December 2, 2017

Memory

• dedicated memory instructions in RISC

− load and store

− pass through execute without effect

• can take a few cycles

• moves values between memory and registers

Write Back

• write data back into registers

• so that later instructions can use the results



WriƟng Efficient Code in C++ 69/86 December 2, 2017

Pipeline Problems

• data hazards (result required before written)

• control hazards (branch misprediction)

• different approaches possible

− pipeline stalls (bubbles)

− delayed branching

• structural hazards

− multiple instructions try to use a single block

− only relevant on more complex architectures



WriƟng Efficient Code in C++ 70/86 December 2, 2017

Superscalar Architectures

• more parallelism than a scalar pipeline

• can retire more than one instruction per cycle

• extracted from sequential instruction stream

• dynamically established data dependencies

• some units are replicated (e.g. 2 ALUs)



WriƟng Efficient Code in C++ 71/86 December 2, 2017

Out-of-order execution

• tries to ϐill in pipeline stalls/bubbles

• same principle as super-scalar execution

− extracts dependencies during execution

− execute if all data ready

− even if not next in the program



WriƟng Efficient Code in C++ 72/86 December 2, 2017

Speculative Execution

• sometimes it’s not yet clear what comes next

• let’s decode, compute etc. something anyway

• ϐills in more bubbles in the pipeline

• but not always with actual useful work

• depends on the performance of branch prediction



WriƟng Efficient Code in C++ 73/86 December 2, 2017

Take-Away

• the CPU is very good at utilising circuitry

• it is somewhat hard to write “locally” inefϐicient code

• you should probably concentrate on non-local effects

− non-local with respect to instruction stream

− like locality of reference

− and organisation of data in memory in general

− also higher-level algorithm structure



WriƟng Efficient Code in C++ 74/86 December 2, 2017

Exercise 6

• implement a brainfuck interpreter

• try to make it as fast as possible

• see wikipedia for some example programs

Bonus Homework

• write a brainfuck amd64 compiler

• 2 points for emitting symbolic assembly

• 1 extra for emitting binary code



WriƟng Efficient Code in C++ 75/86 December 2, 2017

Part 8: Exploiting Parallelism



WriƟng Efficient Code in C++ 76/86 December 2, 2017

Hardware vs Software

• hardware is naturally parallel

• software is naturally sequential

• something has to give

− depends on the throughput you need

− eventually, your software needs to go parallel



WriƟng Efficient Code in C++ 77/86 December 2, 2017

Algorithms

• some algorithms are inherently sequential

− typically for P-complete problems

− for instance DFS post-order

• which algorithm do you really need though?

− topological sort is much easier than post-order

• some tasks are trivially concurrent

− think map-reduce



WriƟng Efficient Code in C++ 78/86 December 2, 2017

Task Granularity

• how big are the tasks you can run in parallel?

− big tasks = little task-switching overhead

− small tasks = easier to balance out

• howmuch data do they need to share?

− shared memory vs message passing



WriƟng Efficient Code in C++ 79/86 December 2, 2017

Distributed Memory

• comparatively big sub-tasks

• not much data structure sharing (small results)

• scales extremely well (millions of cores)

Shared Memory

• small, tightly intertwined tasks

• sharing a lot of data

• scales quite poorly (hundreds of cores)



WriƟng Efficient Code in C++ 80/86 December 2, 2017

Caches vs Parallelism

• different CPUs are connected to different caches

• caches are normally transparent to the program

• what if multiple CPUs hold the same value in cache

− they could see different versions at the same time

− need cache coherence protocols



WriƟng Efficient Code in C++ 81/86 December 2, 2017

Cache Coherence

• many different protocols exist

• a common one is MESI (4 cache line states)

− modiϐied, exclusive, shared, invalid

− snoops on the bus to keep up to date

• cheap until two cores hit the same cache line

− required for communication

− also happens accidentally



WriƟng Efficient Code in C++ 82/86 December 2, 2017

Locality of Reference

• comes with a twist in shared memory

• compact data is still good, but

− different cores may use different pieces of data

− if they are too close, this becomes costly

− also known as false sharing



WriƟng Efficient Code in C++ 83/86 December 2, 2017

Distribution of Work

• want to communicate as little as possible

• also want to distribute work evenly

• randomised, spread-out data often works well

− think hash tables

• structures with a single active point are bad

− think stacks, queues, counters &c.



WriƟng Efficient Code in C++ 84/86 December 2, 2017

Shared-Memory Parallelism in C++

• std::thread – create threads

• std::future – delayed (concurrent) values

• std::atomic – atomic (thread-safe) values

• std::mutex and std::lock_guard



WriƟng Efficient Code in C++ 85/86 December 2, 2017

Exercise 7

• implement shared-memory map-reduce in C++

• make the number of threads a runtime parameter

• check how this scales (wall time vs number of cores)

• use this for summing up a (big) array of numbers

• can you improve on this by hand-rolling the summing loop?



WriƟng Efficient Code in C++ 86/86 December 2, 2017

Homework 5

• implement parallel matrix multiplication [2pt]

• compare to your sequential versions [1pt]

− try with 2 and 4 threads in your benchmarks


