PV021: Neural networks

Tomáš Brázdil

Course materials:

- **Main:** The lecture
- \triangleright Neural Networks and Deep Learning by Michael Nielsen <http://neuralnetworksanddeeplearning.com/> (Extremely well written modern online textbook.)
- \triangleright Deep learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville

<http://www.deeplearningbook.org/>

(A very good overview of the state-of-the-art in neural networks.)

Course organization

Evaluation:

- \blacktriangleright Project
	- \rightarrow teams of two students
	- \rightarrow implementation of a selected model + analysis of given data
	- \triangleright implementation either in C, C₊₊, or in Java without use of **any specialized libraries for data analysis and machine learning**
	- \triangleright need to get over a given accuracy threshold (a gentle one, just to eliminate non-functional implementations)

Course organization

Evaluation:

- \blacktriangleright Project
	- \triangleright teams of two students
	- \rightarrow implementation of a selected model + analysis of given data
	- \triangleright implementation either in C, C₊₊, or in Java without use of **any specialized libraries for data analysis and machine learning**
	- \triangleright need to get over a given accuracy threshold (a gentle one, just to eliminate non-functional implementations)
- \triangleright Oral exam
	- ^I I may ask about anything from the lecture **including some proofs that occur only on the whiteboard!**

Course organization

Evaluation:

- \blacktriangleright Project
	- \rightarrow teams of two students
	- \rightarrow implementation of a selected model + analysis of given data
	- \triangleright implementation either in C, C₊₊, or in Java without use of **any specialized libraries for data analysis and machine learning**
	- \triangleright need to get over a given accuracy threshold (a gentle one, just to eliminate non-functional implementations)
- \triangleright Oral exam
	- ^I I may ask about anything from the lecture **including some proofs that occur only on the whiteboard!**
- \triangleright Application of any deep learning toolset on given (difficult) data. We prefer TensorFlow but you may use another library (CNTK, Caffe, DeepLearning4j, ...) The goal is to get the best results on increasingly more difficult datasets.

The team with the best result on the hardest dataset will automatically get $>$ F at the exam.

A: Couple of reasons. First, all resources about modern neural nets are in English, it is rather cumbersome to translate everything to Czech (combination of Czech and English is ugly). Second, to attract non-Czech speaking students to the course.

- **A:** Couple of reasons. First, all resources about modern neural nets are in English, it is rather cumbersome to translate everything to Czech (combination of Czech and English is ugly). Second, to attract non-Czech speaking students to the course.
- **Q:** Why we cannot use specialized libraries in projects?

- **A:** Couple of reasons. First, all resources about modern neural nets are in English, it is rather cumbersome to translate everything to Czech (combination of Czech and English is ugly). Second, to attract non-Czech speaking students to the course.
- **Q:** Why we cannot use specialized libraries in projects?
- **A:** In order to "touch" the low level implementation details of the algorithms. You should not even use libraries for linear algebra and numerical methods, so that you will be confronted with rounding errors and numerical instabilities.

- \triangleright Machine learning = construction of systems that may learn their functionality from data
	- (... and thus do not need to be programmed.)

- \blacktriangleright Machine learning = construction of systems that may learn their functionality from data
	- (... and thus do not need to be programmed.)
		- \triangleright spam filter
			- \blacktriangleright learns to recognize spam from a database of "labelled" emails
			- \triangleright consequently is able to distinguish spam from ham

- \triangleright Machine learning = construction of systems that may learn their functionality from data
	- (... and thus do not need to be programmed.)
		- \triangleright spam filter
			- \blacktriangleright learns to recognize spam from a database of "labelled" emails
			- \triangleright consequently is able to distinguish spam from ham
		- \blacktriangleright handwritten text reader
			- \blacktriangleright learns from a database of handwritten letters (or text) labelled by their correct meaning
			- \triangleright consequently is able to recognize text

- \triangleright Machine learning = construction of systems that may learn their functionality from data
	- (... and thus do not need to be programmed.)
		- \triangleright spam filter
			- \blacktriangleright learns to recognize spam from a database of "labelled" emails
			- \triangleright consequently is able to distinguish spam from ham
		- \blacktriangleright handwritten text reader
			- \blacktriangleright learns from a database of handwritten letters (or text) labelled by their correct meaning

- \triangleright consequently is able to recognize text
- **.** . .
- \triangleright and lots of much much more sophisticated applications ...

- \triangleright Machine learning = construction of systems that may learn their functionality from data
	- (... and thus do not need to be programmed.)
		- \triangleright spam filter
			- \blacktriangleright learns to recognize spam from a database of "labelled" emails
			- \triangleright consequently is able to distinguish spam from ham
		- \blacktriangleright handwritten text reader
			- \blacktriangleright learns from a database of handwritten letters (or text) labelled by their correct meaning

- \triangleright consequently is able to recognize text
- \blacksquare
- \triangleright and lots of much much more sophisticated applications ...
- \triangleright Basic attributes of learning algorithms:
	- \triangleright **representation**: ability to capture the inner structure of training data
	- **generalization**: ability to work properly on new data

Machine learning algorithms typically construct mathematical models of given data. The models may be subsequently applied to fresh data.

Machine learning algorithms typically construct mathematical models of given data. The models may be subsequently applied to fresh data.

There are many types of models:

- \blacktriangleright decision trees
- \blacktriangleright support vector machines
- \blacktriangleright hidden Markov models
- \triangleright Bayes networks and other graphical models
- **EXPLORER IN PROPERTY**

I · · ·

Neural networks, based on models of a (human) brain, form a natural basis for learning algorithms!

Artificial neural networks

- **Artificial neuron** is a rough mathematical approximation of a biological neuron.
- **(Aritificial) neural network (NN)** consists of a number of interconnected artificial neurons. "Behavior" of the network is encoded in connections between neurons.

Modelling of biological neural networks (computational neuroscience).

- \triangleright simplified mathematical models help to identify important mechanisms
	- \blacktriangleright How a brain receives information?
	- \blacktriangleright How the information is stored?
	- \blacktriangleright How a brain develops?
	- ^I · · ·

Modelling of biological neural networks (computational neuroscience).

- \triangleright simplified mathematical models help to identify important mechanisms
	- \blacktriangleright How a brain receives information?
	- \blacktriangleright How the information is stored?
	- \blacktriangleright How a brain develops?
	- \blacksquare
- \triangleright neuroscience is strongly multidisciplinary; precise mathematical descriptions help in communication among experts and in design of new experiments.

I will not spend much time on this area!

Why artificial neural networks?

Neural networks in machine learning.

 \triangleright Typically primitive models, far from their biological counterparts (but often inspired by biology).

Why artificial neural networks?

Neural networks in machine learning.

- \triangleright Typically primitive models, far from their biological counterparts (but often inspired by biology).
- \triangleright Strongly oriented towards concrete application domains:
	- \triangleright decision making and control autonomous vehicles, manufacturing processes, control of natural resources
	- ▶ games backgammon, poker, GO
	- \blacktriangleright finance stock prices, risk analysis
	- \triangleright medicine diagnosis, signal processing (EKG, EEG, ...), image processing (MRI, roentgen, ...)
	- \triangleright text and speech processing automatic translation, text generation, speech recognition
	- \triangleright other signal processing filtering, radar tracking, noise reduction

^I · · ·

I will concentrate on this area!

- \blacktriangleright Massive parallelism
	- \triangleright many slow (and "dumb") computational elements work in parallel on several levels of abstraction

- \blacktriangleright Massive parallelism
	- \triangleright many slow (and "dumb") computational elements work in parallel on several levels of abstraction
- \blacktriangleright Learning
	- \triangleright a kid learns to recognize a rabbit after seeing several rabbits

- \blacktriangleright Massive parallelism
	- \triangleright many slow (and "dumb") computational elements work in parallel on several levels of abstraction
- \blacktriangleright Learning
	- \triangleright a kid learns to recognize a rabbit after seeing several rabbits
- \blacktriangleright Generalization
	- \triangleright a kid is able to recognize a new rabbit after seeing several (old) rabbits

- \blacktriangleright Massive parallelism
	- \triangleright many slow (and "dumb") computational elements work in parallel on several levels of abstraction
- \blacktriangleright Learning
	- \triangleright a kid learns to recognize a rabbit after seeing several rabbits
- \blacktriangleright Generalization
	- \rightarrow a kid is able to recognize a new rabbit after seeing several (old) rabbits
- \blacktriangleright Robustness
	- \triangleright a blurred photo of a rabbit may still be classified as a picture of a rabbit

- \blacktriangleright Massive parallelism
	- \triangleright many slow (and "dumb") computational elements work in parallel on several levels of abstraction
- \blacktriangleright Learning
	- \triangleright a kid learns to recognize a rabbit after seeing several rabbits
- \blacktriangleright Generalization
	- \rightarrow a kid is able to recognize a new rabbit after seeing several (old) rabbits
- \blacktriangleright Robustness
	- \triangleright a blurred photo of a rabbit may still be classified as a picture of a rabbit
- \blacktriangleright Graceful degradation
	- Experiments have shown that damaged neural network is still able to work quite well
	- \triangleright Damaged network may re-adapt, remaining neurons may take on functionality of the damaged ones

- \triangleright We will concentrate on
	- \triangleright basic techniques and principles of neural networks,
	- \triangleright fundamental models of neural networks and their applications.
- \blacktriangleright You should learn
	- \triangleright basic models

- \triangleright We will concentrate on
	- \triangleright basic techniques and principles of neural networks,
	- \triangleright fundamental models of neural networks and their applications.
- \blacktriangleright You should learn
	- \triangleright basic models

(multilayer perceptron, convolutional networks, recurent network (LSTM), Hopfield and Boltzmann machines and their use in pre-training of deep nets)

 \triangleright Standard applications of these models (image processing, speech and text processing)

- \triangleright We will concentrate on
	- \triangleright basic techniques and principles of neural networks,
	- \triangleright fundamental models of neural networks and their applications.
- \blacktriangleright You should learn
	- \triangleright basic models

- \triangleright Standard applications of these models (image processing, speech and text processing)
- \triangleright Basic learning algorithms (gradient descent & backpropagation, Hebb's rule)

- \triangleright We will concentrate on
	- \triangleright basic techniques and principles of neural networks,
	- \triangleright fundamental models of neural networks and their applications.
- \blacktriangleright You should learn
	- \triangleright basic models

- \triangleright Standard applications of these models (image processing, speech and text processing)
- \triangleright Basic learning algorithms (gradient descent & backpropagation, Hebb's rule)
- \triangleright Basic practical training techniques (data preparation, setting various parameters, control of learning)

- \triangleright We will concentrate on
	- \triangleright basic techniques and principles of neural networks,
	- \triangleright fundamental models of neural networks and their applications.
- \blacktriangleright You should learn
	- \triangleright basic models

- \triangleright Standard applications of these models (image processing, speech and text processing)
- \triangleright Basic learning algorithms (gradient descent & backpropagation, Hebb's rule)
- \triangleright Basic practical training techniques (data preparation, setting various parameters, control of learning)
- \triangleright Basic information about current implementations (TensorFlow, CNTK)

- Human neural network consists of approximately 10^{11} (100 billion on the short scale) neurons; a single cubic centimeter of a human brain contains almost 50 million neurons.
- Each neuron is connected with approx. $10⁴$ neurons.
- \triangleright Neurons themselves are very complex systems.

- Human neural network consists of approximately 10^{11} (100 billion on the short scale) neurons; a single cubic centimeter of a human brain contains almost 50 million neurons.
- Each neuron is connected with approx. $10⁴$ neurons.
- \triangleright Neurons themselves are very complex systems.
- Rough description of nervous system:
	- External stimulus is received by sensory receptors (e.g. eye cells).

- Human neural network consists of approximately 10^{11} (100 billion on the short scale) neurons; a single cubic centimeter of a human brain contains almost 50 million neurons.
- Each neuron is connected with approx. $10⁴$ neurons.
- \triangleright Neurons themselves are very complex systems.
- Rough description of nervous system:
	- External stimulus is received by sensory receptors (e.g. eye cells).
	- Information is futher transfered via peripheral nervous system (PNS) to the central nervous systems (CNS) where it is processed (integrated), and subseqently, an output signal is produced.

- Human neural network consists of approximately 10^{11} (100 billion on the short scale) neurons; a single cubic centimeter of a human brain contains almost 50 million neurons.
- Each neuron is connected with approx. $10⁴$ neurons.
- \triangleright Neurons themselves are very complex systems.

Rough description of nervous system:

- External stimulus is received by sensory receptors (e.g. eye cells).
- Information is futher transfered via peripheral nervous system (PNS) to the central nervous systems (CNS) where it is processed (integrated), and subseqently, an output signal is produced.
- \triangleright Afterwards, the output signal is transfered via PNS to effectors (e.g. muscle cells).

Biological neuron

Synaptic connections

Action potential

Summation

Figure 48.11(a), page 972, Campbell's Biology, 5th Edition

Biological and Mathematical neurons

- \blacktriangleright $x_1, \ldots, x_n \in \mathbb{R}$ are **inputs**
- \blacktriangleright $w_1, \ldots, w_n \in \mathbb{R}$ are weights

- $x_1, \ldots, x_n \in \mathbb{R}$ are **inputs**
- \blacktriangleright $w_1, \ldots, w_n \in \mathbb{R}$ are weights
- \blacktriangleright ξ is an **inner potential**; almost always $\xi = \sum_{i=1}^n w_i x_i$

- \blacktriangleright $x_1, \ldots, x_n \in \mathbb{R}$ are **inputs**
- \blacktriangleright $W_1, \ldots, W_n \in \mathbb{R}$ are weights
- \blacktriangleright ξ is an **inner potential**; almost always $\xi = \sum_{i=1}^n w_i x_i$
- **If** y is an **output** given by $y = \sigma(\xi)$ where σ is an **activation function**; e.g. a unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq h \\ 0 & \xi < h. \end{cases}
$$

where $h \in \mathbb{R}$ is a threshold.

 $x_0 = 1, x_1, \ldots, x_n \in \mathbb{R}$ are **inputs**

▶
$$
w_0, w_1, \ldots, w_n \in \mathbb{R}
$$
 are **weights**

- \blacktriangleright $x_0 = 1, x_1, \ldots, x_n \in \mathbb{R}$ are **inputs**
- \blacktriangleright $w_0, w_1, \ldots, w_n \in \mathbb{R}$ are weights
- \blacktriangleright ξ is an **inner potential**; almost always $\xi = w_0 + \sum_{i=1}^n w_i x_i$

- \blacktriangleright $x_0 = 1, x_1, \ldots, x_n \in \mathbb{R}$ are **inputs**
- \blacktriangleright $W_0, W_1, \ldots, W_n \in \mathbb{R}$ are weights
- \blacktriangleright ξ is an **inner potential**; almost always $\xi = w_0 + \sum_{i=1}^n w_i x_i$
- **If** y is an **output** given by $y = \sigma(\xi)$ where σ is an **activation function**;

e.g. a unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

(The threshold h has been substituted with the new input $x_0 = 1$ and the weight $w_0 = -h.$

Neuron and linear separation

 \blacktriangleright inner potential

$$
\xi = w_0 + \sum_{i=1}^n w_i x_i
$$

determines a separation hyperplane in the n-dimensional **input space**

- $\overline{}$ in 2d line
- \cdot in 3d plane
- ^I · · ·

Neuron and linear separation

 $n = 8 \cdot 8$, i.e. the number of pixels in the images. Inputs are binary vectors of dimension n (black pixel \approx 1, white pixel \approx 0).

Neuron and linear separation

- \triangleright Red line classifies incorrectly
- \triangleright Green line classifies correctly (may be a result of a correction by a learning algorithm)

Neuron and linear separation (XOR)

 \triangleright No line separates ones from zeros.

Neural network consists of formal neurons interconnected in such a way that the output of one neuron is an input of several other neurons.

In order to describe a particular type of neural networks we need to specify:

 \blacktriangleright Architecture

How the neurons are connected.

 \triangleright Activity

How the network transforms inputs to outputs.

 \blacktriangleright Learning

How the weights are changed during training.

Network architecture is given as a digraph whose nodes are neurons and edges are connections.

We distinguish several categories of neurons:

- \triangleright Output neurons
- \blacktriangleright Hidden neurons
- \blacktriangleright Input neurons

(In general, a neuron may be both input and output; a neuron is hidden if it is neither input, nor output.)

Architecture – Cycles

▶ A network is **cyclic** (recurrent) if its architecture contains a directed cycle.

Architecture – Cycles

▶ A network is **cyclic** (recurrent) if its architecture contains a directed cycle.

► Otherwise it is **acyclic** (feed-forward)

In Neurons partitioned into layers; one input layer, one output layer, possibly several hidden layers

- **Neurons partitioned into layers;** one input layer, one output layer, possibly several hidden layers
- layers numbered from 0; the input layer has number 0
	- \blacktriangleright E.g. three-layer network has two hidden layers and one output layer

- **Neurons partitioned into layers;** one input layer, one output layer, possibly several hidden layers
- layers numbered from 0; the input layer has number 0
	- \blacktriangleright E.g. three-layer network has two hidden layers and one output layer
- \blacktriangleright Neurons in the *i*-th layer are connected with all neurons in the $i + 1$ -st layer

- **Neurons partitioned into layers;** one input layer, one output layer, possibly several hidden layers
- layers numbered from 0; the input layer has number 0
	- \blacktriangleright E.g. three-layer network has two hidden layers and one output layer
- \blacktriangleright Neurons in the *i*-th layer are connected with all neurons in the $i + 1$ -st layer
- \triangleright Architecture of a MLP is typically described by numbers of neurons in individual layers (e.g. 2-4-3-2)

Consider a network with n neurons, k input and ℓ output.

Consider a network with n neurons, k input and ℓ output.

► State of a network is a vector of output values of all neurons.

(States of a network with n neurons are vectors of \mathbb{R}^n)

State-space of a network is a set of all states.

Consider a network with n neurons, k input and ℓ output.

► State of a network is a vector of output values of all neurons.

(States of a network with n neurons are vectors of \mathbb{R}^n)

- **State-space** of a network is a set of all states.
- \triangleright **Network input** is a vector of k real numbers, i.e. an element of \mathbb{R}^k .
- **Network input space** is a set of all network inputs. (sometimes we restrict ourselves to a proper subset of \mathbb{R}^k)

Consider a network with n neurons, k input and ℓ output.

► State of a network is a vector of output values of all neurons.

(States of a network with n neurons are vectors of \mathbb{R}^n)

- **State-space** of a network is a set of all states.
- \triangleright **Network input** is a vector of k real numbers, i.e. an element of \mathbb{R}^k .
- **Network input space** is a set of all network inputs. (sometimes we restrict ourselves to a proper subset of \mathbb{R}^k)

EXECUTE: Initial state

Input neurons set to values from the network input (each component of the network input corresponds to an input neuron)

Values of the remaining neurons set to 0.

Computation (typically) proceeds in discrete steps.

Computation (typically) proceeds in discrete steps. In every step the following happens:

- **Computation** (typically) proceeds in discrete steps. In every step the following happens:
	- **1.** A set of neurons is selected according to some rule.
	- **2.** The selected neurons change their states according to their inputs (they are simply evaluated).

(If a neuron does not have any inputs, its value remains constant.)

- **Computation** (typically) proceeds in discrete steps. In every step the following happens:
	- **1.** A set of neurons is selected according to some rule.
	- **2.** The selected neurons change their states according to their inputs (they are simply evaluated).

(If a neuron does not have any inputs, its value remains constant.) A computation is **finite** on a network input \vec{x} if the state changes only finitely many times (i.e. there is a moment in time after which the state of the network never changes). We also say that the network **stops on** \vec{x} .

- **Computation** (typically) proceeds in discrete steps. In every step the following happens:
	- **1.** A set of neurons is selected according to some rule.
	- **2.** The selected neurons change their states according to their inputs (they are simply evaluated).

(If a neuron does not have any inputs, its value remains constant.) A computation is **finite** on a network input \vec{x} if the state changes only finitely many times (i.e. there is a moment in time after which the state of the network never changes). We also say that the network **stops on** \vec{x} .

Network output is a vector of values of all output neurons in the network (i.e. an element of \mathbb{R}^{ℓ}). Note that the network output keeps changing throughout

the computation!

- **Computation** (typically) proceeds in discrete steps. In every step the following happens:
	- **1.** A set of neurons is selected according to some rule.
	- **2.** The selected neurons change their states according to their inputs (they are simply evaluated).

(If a neuron does not have any inputs, its value remains constant.) A computation is **finite** on a network input \vec{x} if the state changes only finitely many times (i.e. there is a moment in time after which the state of the network never changes). We also say that the network **stops on** \vec{x} .

Network output is a vector of values of all output neurons in the network (i.e. an element of \mathbb{R}^{ℓ}). Note that the network output keeps changing throughout the computation!

MLP uses the following selection rule:

In the *i*-th step evaluate all neurons in the *i*-th layer.

Definition

Consider a network with n neurons, k input, ℓ output. Let $A \subseteq \mathbb{R}^k$ and $B \subseteq \mathbb{R}^\ell$. Suppose that the network stops on every input of A.

Then we say that the network computes a function $F : A \rightarrow B$ if for every network input \vec{x} the vector $F(\vec{x}) \in B$ is the output of the network after the computation on \vec{x} stops.
Definition

Consider a network with n neurons, k input, ℓ output. Let $A \subseteq \mathbb{R}^k$ and $B \subseteq \mathbb{R}^\ell$. Suppose that the network stops on every input of A.

Then we say that the network computes a function $F : A \rightarrow B$ if for every network input \vec{x} the vector $F(\vec{x}) \in B$ is the output of the network after the computation on \vec{x} stops.

Definition

Consider a network with n neurons, k input, ℓ output. Let $A \subseteq \mathbb{R}^k$ and $B \subseteq \mathbb{R}^\ell$. Suppose that the network stops on every input of A.

Then we say that the network computes a function $F : A \rightarrow B$ if for every network input \vec{x} the vector $F(\vec{x}) \in B$ is the output of the network after the computation on \vec{x} stops.

Example 1

This network computes a function from \mathbb{R}^2 to \mathbb{R} .

In order to specify activity of the network, we need to specify how the inner potentials ξ are computed and what are the activation functions σ .

In order to specify activity of the network, we need to specify how the inner potentials ξ are computed and what are the activation functions σ .

We assume (unless otherwise specified) that

$$
\xi = w_0 + \sum_{i=1}^n w_i \cdot x_i
$$

here $\vec{x} = (x_1, \ldots, x_n)$ are inputs of the neuron and $\vec{w} = (w_1, \ldots, w_n)$ are weights.

In order to specify activity of the network, we need to specify how the inner potentials ξ are computed and what are the activation functions σ .

We assume (unless otherwise specified) that

$$
\xi = w_0 + \sum_{i=1}^n w_i \cdot x_i
$$

here $\vec{x} = (x_1, \ldots, x_n)$ are inputs of the neuron and $\vec{w} = (w_1, \ldots, w_n)$ are weights.

There are special types of neural network where the inner potential is computed differently, e.g. as a "distance" of an input from the weight vector:

$$
\xi = \left\| \vec{x} - \vec{w} \right\|
$$

here $\left\| \cdot \right\|$ is a vector norm, typically Euclidean.

There are many activation functions, typical examples:

 \blacktriangleright Unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0; \\ 0 & \xi < 0. \end{cases}
$$

There are many activation functions, typical examples:

 \blacktriangleright Unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0; \\ 0 & \xi < 0. \end{cases}
$$

 \blacktriangleright (Logistic) sigmoid

$$
\sigma(\xi) = \frac{1}{1 + e^{-\lambda \cdot \xi}}
$$
 here $\lambda \in \mathbb{R}$ is a *steepness* parameter.

 \blacktriangleright Hyperbolic tangens

$$
\sigma(\xi) = \frac{1 - e^{-\xi}}{1 + e^{-\xi}}
$$

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0 \\ 0 & \xi < 0. \end{cases}
$$

x_1	x_2	y
1	1	0
1	0	1
0	1	1
0	0	0

Activity – MLP and linear separation

- \blacktriangleright The line P_1 is given by $-1 + 2x_1 + 2x_2 = 0$
- \triangleright The line P_2 is given by $3 - 2x_1 - 2x_2 = 0$

The activation function is the unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \ge 0 \\ 0 & \xi < 0. \end{cases}
$$

The activation function is the unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \ge 0 \\ 0 & \xi < 0. \end{cases}
$$

The activation function is the unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \ge 0 \\ 0 & \xi < 0. \end{cases}
$$

The activation function is the unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \ge 0 \\ 0 & \xi < 0. \end{cases}
$$

The activation function is the unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \ge 0 \\ 0 & \xi < 0. \end{cases}
$$

Consider a network with n neurons, k input and ℓ output.

Consider a network with n neurons, k input and ℓ output.

► **Configuration** of a network is a vector of all values of weights.

(Configurations of a network with m connections are elements of \mathbb{R}^m)

• Weight-space of a network is a set of all configurations.

Consider a network with n neurons, k input and ℓ output.

Configuration of a network is a vector of all values of weights.

(Configurations of a network with m connections are elements of \mathbb{R}^m)

• Weight-space of a network is a set of all configurations.

\blacktriangleright **initial configuration**

weights can be initialized randomly or using some sophisticated algorithm

Learning algorithms

Learning rule for weight adaptation.

(the goal is to find a configuration in which the network computes a desired function)

Learning rule for weight adaptation.

(the goal is to find a configuration in which the network computes a desired function)

- \blacktriangleright Supervised learning
	- \triangleright The desired function is described using training examples that are pairs of the form (input, output).
	- \blacktriangleright Learning algorithm searches for a configuration which "corresponds" to the training examples, typically by minimizing an error function.

Learning rule for weight adaptation.

(the goal is to find a configuration in which the network computes a desired function)

- \blacktriangleright Supervised learning
	- \triangleright The desired function is described using training examples that are pairs of the form (input, output).
	- \blacktriangleright Learning algorithm searches for a configuration which "corresponds" to the training examples, typically by minimizing an error function.
- \blacktriangleright Unsupervised learning
	- \triangleright The training set contains only inputs.
	- \triangleright The goal is to determine distribution of the inputs (clustering, deep belief networks, etc.)

Supervised learning – illustration

 \blacktriangleright classification in the plane using a single neuron

Supervised learning – illustration

- \triangleright classification in the plane using a single neuron
- \blacktriangleright training examples are of the form (point, value) where the value is either 1, or 0 depending on whether the point is either A, or B

Supervised learning – illustration

- \triangleright classification in the plane using a single neuron
- \blacktriangleright training examples are of the form (point, value) where the value is either 1, or 0 depending on whether the point is either A, or B
- \blacktriangleright the algorithm considers examples one after another
- \blacktriangleright whenever an incorrectly classified point is considered, the learning algorithm turns the line in the direction of the point

Unsupervised learning – illustration

 \triangleright we search for two centres of clusters

Unsupervised learning – illustration

- \triangleright we search for two centres of clusters
- \triangleright red crosses correspond to potential centres before application of the learning algorithm, green ones after the application

Summary – Advantages of neural networks

- \blacktriangleright Massive parallelism
	- \triangleright neurons can be evaluated in parallel

Summary – Advantages of neural networks

- \blacktriangleright Massive parallelism
	- \triangleright neurons can be evaluated in parallel
- \blacktriangleright Learning
	- \triangleright many sophisticated learning algorithms used to "program" neural networks
Summary – Advantages of neural networks

- \blacktriangleright Massive parallelism
	- \triangleright neurons can be evaluated in parallel
- \blacktriangleright Learning
	- \triangleright many sophisticated learning algorithms used to "program" neural networks
- \triangleright generalization and robustness
	- \rightarrow information is encoded in a distributed manned in weights
	- \triangleright "close" inputs typicaly get similar values

Summary – Advantages of neural networks

- \blacktriangleright Massive parallelism
	- \triangleright neurons can be evaluated in parallel
- \blacktriangleright Learning
	- \triangleright many sophisticated learning algorithms used to "program" neural networks
- \triangleright generalization and robustness
	- \rightarrow information is encoded in a distributed manned in weights
	- \triangleright "close" inputs typicaly get similar values
- \blacktriangleright Graceful degradation
	- \triangleright damage typically causes only a decrease in precision of results

Formal neuron (with bias)

- \blacktriangleright $x_0 = 1, x_1, \ldots, x_n \in \mathbb{R}$ are **inputs**
- \blacktriangleright $w_0, w_1, \ldots, w_n \in \mathbb{R}$ are weights
- \blacktriangleright ξ is an **inner potential**; almost always $\xi = w_0 + \sum_{i=1}^n w_i x_i$
- **If** y is an **output** given by $y = \sigma(\xi)$ where σ is an **activation function**;

e.g. a unit step function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \ge 0 \\ 0 & \xi < 0. \end{cases}
$$

Activation function: *unit step function* $\sigma(\xi) =$ $\left\{ \right.$ $\overline{\mathcal{L}}$ 1 $\xi \ge 0$; $0 \xi < 0$.

Activation function: *unit step function* $\sigma(\xi) =$ $\left\{ \right.$ $\overline{\mathcal{L}}$ 1 $\xi \ge 0$; $0 \xi < 0$.

$$
y = NOT(x_1)
$$

$$
x_0 = 1 \xrightarrow{0} \underbrace{0}_{-1} \underbrace{1}_{x_1}
$$

Theorem

Let σ be the unit step function. Two layer MLPs, where each neuron has σ as the activation function, are able to compute all functions of the form $F : \{0, 1\}^n \rightarrow \{0, 1\}.$

Theorem

Let σ be the unit step function. Two layer MLPs, where each neuron has σ as the activation function, are able to compute all functions of the form $F : \{0, 1\}^n \rightarrow \{0, 1\}.$

Proof.

► Given a vector $\vec{v} = (v_1, \ldots, v_n) \in \{0, 1\}^n$, consider a neuron $N_{\vec{v}}$ whose output is 1 iff the input is \vec{v} :

 \blacktriangleright Now let us connect all outputs of all neurons $N_{\vec{v}}$ satisfying $F(\vec{v}) = 1$ using a neuron implementing OR.

- \triangleright Consider a three layer network; each neuron has the unit step activation function.
- \triangleright The network divides the input space in two subspaces according to the output (0 or 1).

- \triangleright Consider a three layer network; each neuron has the unit step activation function.
- \triangleright The network divides the input space in two subspaces according to the output (0 or 1).
	- \blacktriangleright The first (hidden) layer divides the input space into half-spaces.

- \triangleright Consider a three layer network; each neuron has the unit step activation function.
- \triangleright The network divides the input space in two subspaces according to the output (0 or 1).
	- \triangleright The first (hidden) layer divides the input space into half-spaces.
	- \triangleright The second layer may e.g. make intersections of the half-spaces \Rightarrow convex sets.

- \triangleright Consider a three layer network; each neuron has the unit step activation function.
- \triangleright The network divides the input space in two subspaces according to the output (0 or 1).
	- \triangleright The first (hidden) layer divides the input space into half-spaces.
	- \triangleright The second layer may e.g. make intersections of the half-spaces \Rightarrow convex sets.
	- \triangleright The third layer may e.g. make unions of some convex sets.

- \triangleright Consider three layer networks; each neuron has the unit step activation function.
- \triangleright Three layer nets are capable of "approximating" any "reasonable" subset A of the input space \mathbb{R}^k .

- \triangleright Consider three layer networks; each neuron has the unit step activation function.
- \triangleright Three layer nets are capable of "approximating" any "reasonable" subset A of the input space \mathbb{R}^k .
	- \triangleright Cover A with hypercubes (in 2D squares, in 3D cubes, ...)

- \triangleright Consider three layer networks; each neuron has the unit step activation function.
- \triangleright Three layer nets are capable of "approximating" any "reasonable" subset A of the input space \mathbb{R}^k .
	- \triangleright Cover A with hypercubes (in 2D squares, in 3D cubes, ...)
	- Each hypercube K can be separated using a two layer network N_K

(i.e. a function computed by N_K gives 1 for points in K and 0 for the rest).

- \triangleright Consider three layer networks; each neuron has the unit step activation function.
- \triangleright Three layer nets are capable of "approximating" any "reasonable" subset A of the input space \mathbb{R}^k .
	- \triangleright Cover A with hypercubes (in 2D squares, in 3D cubes, ...)
	- Each hypercube K can be separated using a two layer network N_K
		- (i.e. a function computed by N_K gives 1 for points in K and 0 for the rest).
	- Finally, connect outputs of the nets N_K satisfying $K \cap A \neq \emptyset$ using a neuron implementing OR.

Theorem (Cybenko 1989 - informal version)

Let σ be a continuous function which is sigmoidal, i.e. satisfies

$$
\sigma(x) = \begin{cases} 1 & \text{pro } x \to +\infty \\ 0 & \text{pro } x \to -\infty \end{cases}
$$

For every reasonable set $A \subseteq [0,1]^n$, there is a **two layer network** where each hidden neuron has the activation function σ (output neurons are linear), that satisfies the following: For most vectors $\vec{v} \in [0, 1]^n$ we have that $\vec{v} \in A$ iff the network output is > 0 for the input \vec{v} .

For mathematically oriented:

- \blacktriangleright "reasonable" means Lebesque measurable
- \blacktriangleright "most" means that the set of incorrectly classified vectors has the Lebesgue measure smaller than a given $\varepsilon > 0$

 \blacktriangleright ALVINN drives a car

- \triangleright ALVINN drives a car
- In The net has $30 \times 32 = 960$ inputs (the input space is thus \mathbb{R}^{960})

- \triangleright ALVINN drives a car
- In The net has $30 \times 32 = 960$ inputs (the input space is thus \mathbb{R}^{960})
- Input values correspond to shades of gray of pixels.

- \triangleright ALVINN drives a car
- In The net has $30 \times 32 = 960$ inputs (the input space is thus \mathbb{R}^{960})
- \blacktriangleright Input values correspond to shades of gray of pixels.
- \triangleright Output neurons "classify" images of the road based on their "curvature".

Zdroj obrázku: <http://jmvidal.cse.sc.edu/talks/ann/alvin.html> **48**

Let σ be a logistic sigmoid, i.e.

$$
\sigma(\xi)=\frac{1}{1+e^{-\xi}}
$$

For every continuous function $f:[0,1]^n \to [0,1]$ and $\varepsilon > 0$ there is a three-layer network computing a function $F:[0,1]^n\rightarrow [0,1]$ such that

 \triangleright there is a linear activation in the output layer, i.e. the value of the output neuron is its inner potential ξ ,

Let σ be a logistic sigmoid, i.e.

$$
\sigma(\xi)=\frac{1}{1+e^{-\xi}}
$$

For every continuous function $f:[0,1]^n \to [0,1]$ and $\varepsilon > 0$ there is a three-layer network computing a function $F:[0,1]^n\rightarrow [0,1]$ such that

- \triangleright there is a linear activation in the output layer, i.e. the value of the output neuron is its inner potential ξ ,
- In the remaining neurons have the logistic sigmoid σ as their activation,

Let σ be a logistic sigmoid, i.e.

$$
\sigma(\xi)=\frac{1}{1+e^{-\xi}}
$$

For every continuous function $f:[0,1]^n \to [0,1]$ and $\varepsilon > 0$ there is a three-layer network computing a function $F:[0,1]^n\rightarrow [0,1]$ such that

- \blacktriangleright there is a linear activation in the output layer, i.e. the value of the output neuron is its inner potential ξ ,
- In the remaining neurons have the logistic sigmoid σ as their activation,
- For every $\vec{v} \in [0, 1]^n$ we have that $|F(\vec{v}) f(\vec{v})| < \varepsilon$.

Function approximation – three layer networks

Theorem (Cybenko 1989)

Let σ be a continuous function which is sigmoidal, i.e. is increasing and satisfies

$$
\sigma(x) = \begin{cases} 1 & \text{pro } x \to +\infty \\ 0 & \text{pro } x \to -\infty \end{cases}
$$

For every continuous function f: $[0,1]^n \rightarrow [0,1]$ and every $\varepsilon > 0$ there is a function $F : [0,1]^n \rightarrow [0,1]$ computed by a two layer **network** where each hidden neuron has the activation function σ (output neurons are linear), that satisfies the following

 $|f(\vec{v}) - F(\vec{v})| < \varepsilon$ pro každé $\vec{v} \in [0, 1]^n$.

 \triangleright Consider recurrent networks (i.e. containing cycles)

- \triangleright Consider recurrent networks (i.e. containing cycles)
	- \triangleright with real weights (in general);

- \triangleright Consider recurrent networks (i.e. containing cycles)
	- \triangleright with real weights (in general);
	- \triangleright one input neuron and one output neuron (the network computes a function $F : A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ contains all inputs on which the network stops);

- \triangleright Consider recurrent networks (i.e. containing cycles)
	- \triangleright with real weights (in general);
	- \triangleright one input neuron and one output neuron (the network computes a function $F : A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ contains all inputs on which the network stops);
	- \triangleright parallel activity rule (output values of all neurons are recomputed in every step);

- \triangleright Consider recurrent networks (i.e. containing cycles)
	- \triangleright with real weights (in general);
	- \triangleright one input neuron and one output neuron (the network computes a function $F : A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ contains all inputs on which the network stops);
	- \triangleright parallel activity rule (output values of all neurons are recomputed in every step);
	- \blacktriangleright activation function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \ge 0; \\ \xi & 0 \le \xi \le 1; \\ 0 & \xi < 0. \end{cases}
$$

- \triangleright Consider recurrent networks (i.e. containing cycles)
	- \triangleright with real weights (in general);
	- \triangleright one input neuron and one output neuron (the network computes a function $F : A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ contains all inputs on which the network stops);
	- \triangleright parallel activity rule (output values of all neurons are recomputed in every step);
	- \blacktriangleright activation function

$$
\sigma(\xi) = \begin{cases} 1 & \xi \geq 0; \\ \xi & 0 \leq \xi \leq 1; \\ 0 & \xi < 0. \end{cases}
$$

► We encode words $\omega \in \{0, 1\}^+$ into numbers as follows:

$$
\delta(\omega)=\sum_{i=1}^{|\omega|}\frac{\omega(i)}{2^i}+\frac{1}{2^{|\omega|+1}}
$$

E.g. $\omega = 11001$ gives $\delta(\omega) = \frac{1}{2} + \frac{1}{2^2}$ $\frac{1}{2^2} + \frac{1}{2^5}$ $\frac{1}{2^5} + \frac{1}{2^6}$ 2 6 $(= 0.110011$ in binary form).

A network **recognizes** a language L ⊆ {0, 1} ⁺ if it computes a function $F: A \to \mathbb{R}$ ($A \subseteq \mathbb{R}$) such that

A network **recognizes** a language L ⊆ {0, 1} ⁺ if it computes a function $F : A \to \mathbb{R}$ ($A \subseteq \mathbb{R}$) such that

- \triangleright Recurrent networks with rational weights are equivalent to Turing machines
	- For every recursively enumerable language $L \subseteq \{0, 1\}^+$ there is a recurrent network with rational weights and less than 1000 neurons, which recognizes L.
	- \triangleright The halting problem is undecidable for networks with at least 25 neurons and rational weights.
	- \triangleright There is "universal" network (equivalent of the universal Turing machine)

A network **recognizes** a language L ⊆ {0, 1} ⁺ if it computes a function $F : A \to \mathbb{R}$ ($A \subseteq \mathbb{R}$) such that

- \triangleright Recurrent networks with rational weights are equivalent to Turing machines
	- For every recursively enumerable language $L \subseteq \{0, 1\}^+$ there is a recurrent network with rational weights and less than 1000 neurons, which recognizes L.
	- \triangleright The halting problem is undecidable for networks with at least 25 neurons and rational weights.
	- \triangleright There is "universal" network (equivalent of the universal Turing machine)
- \triangleright Recurrent networks are super-Turing powerful

A network **recognizes** a language L ⊆ {0, 1} ⁺ if it computes a function $F : A \to \mathbb{R}$ ($A \subseteq \mathbb{R}$) such that

- \triangleright Recurrent networks with rational weights are equivalent to Turing machines
	- For every recursively enumerable language $L \subseteq \{0, 1\}^+$ there is a recurrent network with rational weights and less than 1000 neurons, which recognizes L.
	- \triangleright The halting problem is undecidable for networks with at least 25 neurons and rational weights.
	- \triangleright There is "universal" network (equivalent of the universal Turing machine)
- \triangleright Recurrent networks are super-Turing powerful
	- ► For every language $L \subseteq \{0, 1\}^+$ there is a recurrent network with less than 1000 nerons which recognizes L.

Summary of theoretical results

- \triangleright Neural networks are very strong from the point of view of theory:
	- \triangleright All Boolean functions can be expressed using two-layer networks.
	- \triangleright Two-layer networks may approximate any continuous function.
	- \triangleright Recurrent networks are at least as strong as Turing machines.
Summary of theoretical results

- \triangleright Neural networks are very strong from the point of view of theory:
	- \blacktriangleright All Boolean functions can be expressed using two-layer networks.
	- \triangleright Two-layer networks may approximate any continuous function.
	- \triangleright Recurrent networks are at least as strong as Turing machines.
- \triangleright These results are purely theoretical!
	- \blacktriangleright "Theoretical" networks are extremely huge.
	- \cdot It is very difficult to handcraft them even for simplest problems.
- \triangleright From practical point of view, the most important advantage of neural networks are: learning, generalization, robustness.

- \blacktriangleright 1951: SNARC (Minski et al)
	- \blacktriangleright the first implementation of neural network
	- \triangleright a rat strives to exit a maze
	- \triangleright 40 artificial neurons (300 vacuum tubes, engines, etc.)

 \triangleright 1957: Mark I Perceptron (Rosenblatt et al) - the first successful network for image recognition

- \blacktriangleright single layer network
- image represented by 20×20 photocells
- \rightarrow intensity of pixels was treated as the input to a perceptron (basically the formal neuron), which recognized figures
- \triangleright weights were implemented using potentiometers, each set by its own engine
- \cdot it was possible to arbitrarily reconnect inputs to neurons to demonstrate adaptability

 \triangleright 1960: ADALINE (Widrow & Hof)

- \blacktriangleright single layer neural network
- \triangleright weights stored in a newly invented electronic component **memistor**, which remembers history of electric current in the form of resistance.
- \triangleright Widrow founded a company Memistor Corporation, which sold implementations of neural networks.
- \blacktriangleright 1960-66: several companies concerned with neural networks were founded.

- \triangleright 1967-82: dead still after publication of a book by Minski & Papert (published 1969, title Perceptrons)
- \triangleright 1983-end of 90s: revival of neural networks
	- \triangleright many attempts at hardware implementations
		- \triangleright application specific chips (ASIC)
		- \triangleright programmable hardware (FPGA)
	- \triangleright hw implementations typically not better than "software" implementations on universal computers (problems with weight storage, size, speed, cost of production etc.)

- \triangleright 1967-82: dead still after publication of a book by Minski & Papert (published 1969, title Perceptrons)
- \triangleright 1983-end of 90s: revival of neural networks
	- \triangleright many attempts at hardware implementations
		- \triangleright application specific chips (ASIC)
		- \triangleright programmable hardware (FPGA)
	- \triangleright hw implementations typically not better than "software" implementations on universal computers (problems with weight storage, size, speed, cost of production etc.)
- \triangleright end of 90s-cca 2005: NN suppressed by other machine learning methods (support vector machines (SVM))
- \triangleright 2006-now: The boom of neural networks!
	- \rightarrow deep networks often better than any other method
	- \triangleright GPU implementations
	- \cdot ... some specialized hw implementations (Google's TPU)

History in waves ...

Figure: The figure shows two of the three historical waves of articial neural nets research, as measured by the frequency of the phrases "cybernetics" and "connectionism" or "neural networks" according to Google Books (the third wave is too recent to appear).

Increasing dataset size ...

Current hardware – What do we face?

... and thus increasing size of neural networks ...

- **2.** ADALINE
- **4.** Early back-propagation network (Rumelhart et al., 1986b)
- **8.** Image recognition: LeNet-5 (LeCun et al., 1998b)
- **10.** Dimensionality reduction: Deep belief network (Hinton et al., 2006) ... here the third "wave" of neural networks started
- **15.** Digit recognition: GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
- **18.** Image recognition (AlexNet): Multi-GPU convolutional network (Krizhevsky et al., 2012)
- **20.** Image recognition: GoogLeNet (Szegedy et al., 2014a)

Current hardware – What do we face?

... as a reward we get this ...

Figure: Since deep networks reached the scale necessary to compete in the ImageNetLarge Scale Visual Recognition Challenge, they have consistently won the competition every year, and yielded lower and lower error rates each time. Data from Russakovsky et al. (2014b) and He et al. (2015).

Current hardware

In 2012, Google trained a large network of 1.7 billion weights and 9 layers

The task was image recognition (10 million youtube video frames)

The hw comprised a 1000 computer network (16 000 cores), computation took three days.

Current hardware

In 2012, Google trained a large network of 1.7 billion weights and 9 layers

The task was image recognition (10 million youtube video frames)

The hw comprised a 1000 computer network (16 000 cores), computation took three days.

In 2014, similar task performed on Commodity Off-The-Shelf High Performance Computing (COTS HPC) technology: a cluster of GPU servers with Infiniband interconnects and MPI.

Able to train 1 billion parameter networks on just 3 machines in a couple of days. Able to scale to 11 billion weights (approx. 6.5 times larger than the Google model) on 16 GPUs. **64**

Current hardware – NVIDIA DGX Station

- \blacktriangleright 4x GPU (Tesla V100)
- \blacktriangleright TFLOPS = 480
- \triangleright GPU memory 64GB total
- ▶ NVIDIA Tensor Cores: 2,560
- NVIDIA CUDA Cores: 20,480
- \triangleright System memory: 256 GB
- ▶ Network: Dual 10 Gb LAN
- \triangleright NVIDIA Deep Learning SDK

NVIDIA DGX Station Delivers 47X Faster Training

Current software

- **Figure 1 TensorFlow** (Google)
	- \rightarrow open source software library for numerical computation using data flow graphs
	- \blacktriangleright allows implementation of most current neural networks
	- \triangleright allows computation on multiple devices (CPUs, GPUs, ...)
	- \blacktriangleright Python API
	- \triangleright **Keras**: a library on top of TensorFlow that allows easy description of most modern neural networks
- **CNTK** (Microsoft)
	- \blacktriangleright functionality similar to TensorFlow
	- \triangleright special input language called BrainScript
- ► Theano:
	- \triangleright The "academic" grand-daddy of deep-learning frameworks, written in Python. Strongly inspired TensorFlow (some people developing Theano moved on to develop TensorFlow).
- \triangleright There are others: Caffe, Torch (Facebook), Deeplearning4j, ...

Current software – Keras

```
from keras.models import Sequential
from keras. layers import Dense, Dropout, Activation
from keras.optimizers import SGD
model = Sequential()# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape
# here, 20-dimensional vectors,
model.add(Dense(64, input dim=20, init='uniform'))
model.add(Activation('tanh'))
model.add(Dropout(0.5))model.add(Dense(64, init='uniform'))
model.add(Activation('tanh'))
model.add(Dropout(0.5))model.add(Dense(10, init='uniform'))
model.add(Activation('softmax'))
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)model.compile(loss='categorical crossentropy',
              optimizer=sgd,
              metrics=['accuracy']model.fit(X train, y train,
          nb epoch=20,
          batch size=16)
score = model.event(X test, y test, batch size=16)
```
Most "mathematical" software packages contain some support of neural networks:

- \triangleright MATLAB
- \triangleright R
- \triangleright STATISTICA
- \blacktriangleright Weka
- \blacktriangleright ...

The implementations are typically not on par with the previously mentioned dedicated deep-learning libraries.

SyNAPSE (USA)

- \triangleright Big research project, partially funded by DARPA
- \triangleright Among the main subjects IBM a HRL, collaboraton with top US universities, e.g. Boston, Stanford
- \blacktriangleright The project started in 2008
- Invested tens of millions USD .
- The goal
	- \triangleright Develop a neural network comparable with a real brain of a mammal
	- \triangleright The resulting hw chip should simulate 10 billion neurons, 100 trillion synaptic connections, consume 1 kilowatt (∼ a small heater), size 2 dm³
	- \triangleright Oriented towards development of a new parallel computer architecture rather than neuroscience.

SyNAPSE (USA) – some results

A cat brain simulation (2009)

- A simulation of a network with 10^9 neurons, 10^{13} synapses
- \triangleright Simulated on a supercomputer Dawn (Blue Gene/P), 147,450 CPU, 144 tB of memory
- \triangleright 643 times slower than the real brain
- \blacktriangleright The network modelled according to the real-brain structure (hierarchical model of a visual cortex, 4 layers)
- \blacktriangleright The authors claim that they observed some behaviour similar to the behaviour of the real brain (signal propagation, α , γ waves)
- ... simulation was heavily criticised (see latter)

... in 2012 the number of neurons increased to 530 bn neurons a 100 tn synapses

SyNAPSE (USA) – TrueNorth

- \triangleright A chip with 5.4 billion elements
- \triangleright 4096 neurosynaptic cores connected by a network, implementing 1 million programmable "spiking" neurons, 256 million programmable synaptic connections
- \blacktriangleright global frequency 1-kHz
- \blacktriangleright low energy consumption, approx. 63mW
- \triangleright Offline learning, implemented some known algorithms (convolutional networks, RBM etc.)
- \blacktriangleright Applied to simple image recognition tasks.

Human Brain Project, HBP (Europe)

- Funded by EU, budget 10^9 EUR for 10 years
- ▶ Successor of Blue Brain Project at EPFL Lausanne
- \triangleright Blue Brain started in 2005, ended in 2012, Human Brain Project started in 2013

The original goal: Deeper understanding of human brain

P networking in neuroscience

- \blacktriangleright diagnosis of brain diseases
- \blacktriangleright thinking machine

The approach:

- \triangleright study of brain tissue using current technology
- \triangleright modelling of biological neurons
- \triangleright simulation of the models (program NEURON)

Blue brain project (2008)

- \blacktriangleright Model of a part of the brain cortex of a rat (approx. 10,000 neurons), much more complex model of neurons than in SyNAPSE
- \triangleright Simulated on a supercomputer of the type Blue Gene/P (provided by IBM on discount), 16,384 CPU, 56 teraflops, 16 terabytů paměti, 1 PB disk space
- \triangleright Simulation 300x slower than the real brain
- Human brain project (2015):
	- \triangleright Simplified model of the nervous system of a rat (approx. 200 000 neurons)

2011: IBM Simulates 4.5 percent of the Human Brain, and All of the Cat Brain (Scientific American)

"... performed the first near real-time cortical simulation of the brain that exceeds the scale of a cat cortex" (IBM)

2011: IBM Simulates 4.5 percent of the Human Brain, and All of the Cat Brain (Scientific American)

"... performed the first near real-time cortical simulation of the brain that exceeds the scale of a cat cortex" (IBM)

This announcement has been heavily criticised by Dr. Markram (head of HBP)

2011: IBM Simulates 4.5 percent of the Human Brain, and All of the Cat Brain (Scientific American)

"... performed the first near real-time cortical simulation of the brain that exceeds the scale of a cat cortex" (IBM)

This announcement has been heavily criticised by Dr. Markram (head of HBP)

"This is a mega public relations stunt – a clear case of scientific deception of the public"

2011: IBM Simulates 4.5 percent of the Human Brain, and All of the Cat Brain (Scientific American)

"... performed the first near real-time cortical simulation of the brain that exceeds the scale of a cat cortex" (IBM)

This announcement has been heavily criticised by Dr. Markram (head of HBP)

"This is a mega public relations stunt – a clear case of scientific deception of the public"

"Their so called "neurons" are the tiniest of points you can imagine, a microscopic dot"

2011: IBM Simulates 4.5 percent of the Human Brain, and All of the Cat Brain (Scientific American)

"... performed the first near real-time cortical simulation of the brain that exceeds the scale of a cat cortex" (IBM)

This announcement has been heavily criticised by Dr. Markram (head of HBP)

"This is a mega public relations stunt – a clear case of scientific deception of the public"

"Their so called "neurons" are the tiniest of points you can imagine, a microscopic dot"

"Neurons contain 10's of thousands of proteins that form a network with 10's of millions of interactions. These interactions are incredibly complex and will require solving millions of differential equations. They have none of that."

"Eugene Izhikevik himself already in 2005 ran a simulation with 100 billion such points interacting just for the fun of it: (over 60 times larger than Modha's simulation)"

"Eugene Izhikevik himself already in 2005 ran a simulation with 100 billion such points interacting just for the fun of it: (over 60 times larger than Modha's simulation)"

Why did they get the Gordon Bell Prize?

"They seem to have been very successful in influencing the committee with their claim, which technically is not peer-reviewed by the respective community and is neuroscientifically outrageous."

"Eugene Izhikevik himself already in 2005 ran a simulation with 100 billion such points interacting just for the fun of it: (over 60 times larger than Modha's simulation)"

Why did they get the Gordon Bell Prize?

"They seem to have been very successful in influencing the committee with their claim, which technically is not peer-reviewed by the respective community and is neuroscientifically outrageous."

But is there any innovation here?

"The only innovation here is that IBM has built a large supercomputer."

"Eugene Izhikevik himself already in 2005 ran a simulation with 100 billion such points interacting just for the fun of it: (over 60 times larger than Modha's simulation)"

Why did they get the Gordon Bell Prize?

"They seem to have been very successful in influencing the committee with their claim, which technically is not peer-reviewed by the respective community and is neuroscientifically outrageous."

But is there any innovation here?

"The only innovation here is that IBM has built a large supercomputer."

But did Mohda not collaborate with neuroscientists?

"I would be very surprised if any neuroscientists that he may have had in his DARPA consortium realized he was going to make such an outrageous claim. I can't imagine that the San Fransisco neuroscientists knew he was going to make such a stupid claim. Modha himself is a software engineer with no knowledge of the brain." In 2014, the European Commission received an open letter signed by more than 130 heads of laboratories demanding a substantial change in the management of the whole project.

In 2014, the European Commission received an open letter signed by more than 130 heads of laboratories demanding a substantial change in the management of the whole project.

Peter Dayan, director of the computational neuroscience unit at UCL: "The main apparent goal of building the capacity to construct a larger-scale simulation of the human brain is radically premature." "We are left with a project that can't but fail from a scientific perspective. It is a waste of money, it will suck out funds from valuable neuroscience research, and would leave the public, who fund this work, justifiably upset."

The European Commission and the Human Brain Project Coordinator, the École Polytechnique Fédérale de Lausanne (EPFL), have signed the first Specific Grant Agreement (SGA1), releasing EUR 89 million in funding retroactively from 1st April 2016 until the end of March 2018. The signature of SGA1 means that the HBP and the European Commision have agreed on the HBP Work Plan for this two year period.

The SGA1 work plan will move the Project closer to achieving its aim of establishing a cutting-edge, ICT-based scientific Research Infrastructure for brain research, cognitive neuroscience and brain-inspired computing.

ADALINE

Architecture:

 $\vec{w} = (w_0, w_1, \dots, w_n)$ and $\vec{x} = (x_0, x_1, \dots, x_n)$ where $x_0 = 1$. **Activity:**

► inner potential: $\xi = w_0 + \sum_{i=1}^n w_i x_i = \sum_{i=0}^n w_i x_i = \vec{w} \cdot \vec{x}$

▶ activation function:
$$
\sigma(\xi) = \xi
$$

• network function: $y[\vec{w}](\vec{x}) = \sigma(\xi) = \vec{w} \cdot \vec{x}$

Learning:

F Given a training set

$$
\mathcal{T} = \left\{ \left(\vec{x}_1, d_1\right), \left(\vec{x}_2, d_2\right), \ldots, \left(\vec{x}_p, d_p\right) \right\}
$$

Here $\vec{x}_k = (x_{k0}, x_{k1}, \dots, x_{kn}) \in \mathbb{R}^{n+1}$, $x_{k0} = 1$, is the k-th input, and $d_k \in \mathbb{R}$ is the expected output.

Intuition: The network is supposed to compute an affine approximation of the function (some of) whose values are given in the training set.
Oaks in Wisconsin

Error function:

$$
E(\vec{w}) = \frac{1}{2} \sum_{k=1}^{p} (\vec{w} \cdot \vec{x}_k - d_k)^2 = \frac{1}{2} \sum_{k=1}^{p} \left(\sum_{i=0}^{n} w_i x_{ki} - d_k \right)^2
$$

The goal is to find \vec{w} which minimizes $E(\vec{w})$.

Error function

82

Gradient of the error function

Consider **gradient** of the error function:

$$
\nabla E(\vec{w}) = \left(\frac{\partial E}{\partial w_0}(\vec{w}), \ldots, \frac{\partial E}{\partial w_n}(\vec{w})\right)
$$

Intuition: $\nabla E(\vec{w})$ is a vector in the **weight space** which points in the direction of the steepest ascent of the error function. Note that the vectors \vec{x}_k are just parameters of the function E, and are thus fixed!

Gradient of the error function

Consider **gradient** of the error function:

$$
\nabla E(\vec{w}) = \left(\frac{\partial E}{\partial w_0}(\vec{w}), \ldots, \frac{\partial E}{\partial w_n}(\vec{w})\right)
$$

Intuition: $\nabla E(\vec{w})$ is a vector in the **weight space** which points in the direction of the steepest ascent of the error function. Note that the vectors \vec{x}_k are just parameters of the function E, and are thus fixed!

Fact

If $\nabla E(\vec{w}) = \vec{0} = (0, \ldots, 0)$, then \vec{w} is a global minimum of E.

For ADALINE, the error function $E(\vec{w})$ is a convex paraboloid and thus has the unique global minimum.

Gradient - illustration

Caution! This picture just illustrates the notion of gradient ... it is not the convex paraboloid $E(\vec{w})$!

$$
\frac{\partial E}{\partial w_{\ell}}(\vec{w}) = \frac{1}{2} \sum_{k=1}^{p} \frac{\delta}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i} x_{ki} - d_{k} \right)^{2}
$$

$$
\frac{\partial E}{\partial w_{\ell}}(\vec{w}) = \frac{1}{2} \sum_{k=1}^{p} \frac{\delta}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right)^{2}
$$

$$
= \frac{1}{2} \sum_{k=1}^{p} 2 \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right) \frac{\delta}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right)
$$

 \sim

$$
\frac{\partial E}{\partial w_{\ell}}(\vec{w}) = \frac{1}{2} \sum_{k=1}^{p} \frac{\delta}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right)^{2}
$$
\n
$$
= \frac{1}{2} \sum_{k=1}^{p} 2 \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right) \frac{\delta}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right)
$$
\n
$$
= \frac{1}{2} \sum_{k=1}^{p} 2 \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right) \left(\sum_{i=0}^{n} \left(\frac{\delta}{\delta w_{\ell}} w_{i}x_{ki} \right) - \frac{\delta E}{\delta w_{\ell}} d_{k} \right)
$$

$$
\frac{\partial E}{\partial w_{\ell}}(\vec{w}) = \frac{1}{2} \sum_{k=1}^{p} \frac{\delta}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right)^{2}
$$
\n
$$
= \frac{1}{2} \sum_{k=1}^{p} 2 \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right) \frac{\delta}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right)
$$
\n
$$
= \frac{1}{2} \sum_{k=1}^{p} 2 \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right) \left(\sum_{i=0}^{n} \left(\frac{\delta}{\delta w_{\ell}} w_{i}x_{ki} \right) - \frac{\delta E}{\delta w_{\ell}} d_{k} \right)
$$
\n
$$
= \sum_{k=1}^{p} (\vec{w} \cdot \vec{x}_{k} - d_{k}) x_{k\ell}
$$

 \sim

$$
\frac{\partial E}{\partial w_{\ell}}(\vec{w}) = \frac{1}{2} \sum_{k=1}^{p} \frac{\delta}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right)^{2}
$$
\n
$$
= \frac{1}{2} \sum_{k=1}^{p} 2 \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right) \frac{\delta}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right)
$$
\n
$$
= \frac{1}{2} \sum_{k=1}^{p} 2 \left(\sum_{i=0}^{n} w_{i}x_{ki} - d_{k} \right) \left(\sum_{i=0}^{n} \left(\frac{\delta}{\delta w_{\ell}} w_{i}x_{ki} \right) - \frac{\delta E}{\delta w_{\ell}} d_{k} \right)
$$
\n
$$
= \sum_{k=1}^{p} (\vec{w} \cdot \vec{x}_{k} - d_{k}) x_{k\ell}
$$

p

Thus

$$
\nabla E(\vec{w}) = \left(\frac{\partial E}{\partial w_0}(\vec{w}),\ldots,\frac{\partial E}{\partial w_n}(\vec{w})\right) = \sum_{k=1}^p \left(\vec{w}\cdot\vec{x}_k - d_k\right)\vec{x}_k
$$

Batch algorithm (gradient descent):

Idea: In every step "move" the weights in the direction opposite to the gradient.

Batch algorithm (gradient descent):

Idea: In every step "move" the weights in the direction opposite to the gradient.

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

► weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0

Batch algorithm (gradient descent):

Idea: In every step "move" the weights in the direction opposite to the gradient.

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- ► weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- \blacktriangleright in the step $t+1$, weights $\vec{w}^{(t+1)}$ are computed as follows: $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \nabla E(\vec{w}^{(t)})$

$$
= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^p (\vec{w}^{(t)} \cdot \vec{x}_k - d_k) \cdot \vec{x}_k
$$

Here $k = (t \mod p) + 1$ and $0 < \varepsilon \le 1$ is a learning rate.

Batch algorithm (gradient descent):

Idea: In every step "move" the weights in the direction opposite to the gradient.

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- ► weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- \blacktriangleright in the step $t+1$, weights $\vec{w}^{(t+1)}$ are computed as follows: $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \nabla E(\vec{w}^{(t)})$

$$
= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^p (\vec{w}^{(t)} \cdot \vec{x}_k - d_k) \cdot \vec{x}_k
$$

Here $k = (t \mod p) + 1$ and $0 < \varepsilon \le 1$ is a learning rate.

Proposition

For sufficiently small $\varepsilon > 0$ the sequence $\vec{w}^{(0)}$, $\vec{w}^{(1)}$, $\vec{w}^{(2)}$,... converges (componentwise) to the global minimum of E (i.e. to the vector \vec{w} satisfying $\nabla E(\vec{w}) = \vec{0}$).

Linear regression by gradient descent **Error function** 8000 $\overline{1}$ 6000 ഗ 4000 error \rightarrow 2000 \circ \circ \overline{c} 50 100 150 200 0 0 Iterations $\pmb{\chi}$

87

87

Linear regression by gradient descent **Error function** 8000 $\overline{1}$ 6000 ഗ 4000 error \rightarrow 2000 \circ \circ \overline{c} 50 100 150 200 0 0 Iterations $\pmb{\chi}$

87
ADALINE – Animation

Linear regression by gradient descent **Error function** 8000 $\overline{1}$ 6000 S 4000 error \rightarrow 2000 \circ \circ \overline{c} 50 100 150 200 0 0 Iterations $\pmb{\chi}$

ADALINE – Animation

ADALINE – Animation

ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):

- **•** weights in $\vec{w}^{(0)}$ initialized randomly close to 0
- \blacktriangleright in the step $t+1$, weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot (\vec{w}^{(t)} \cdot \vec{x}_k - d_k) \cdot \vec{x}_k
$$

Here $k = t \mod p + 1$ and $0 < \varepsilon(t) \le 1$ is a learning rate in the step $t + 1$.

Note that the algorithm does not work with the complete gradient but only with its part determined by the currently considered training example.

ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):

- **•** weights in $\vec{w}^{(0)}$ initialized randomly close to 0
- \blacktriangleright in the step $t+1$, weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot (\vec{w}^{(t)} \cdot \vec{x}_k - d_k) \cdot \vec{x}_k
$$

Here $k = t \mod p + 1$ and $0 < \varepsilon(t) \le 1$ is a learning rate in the step $t + 1$.

Note that the algorithm does not work with the complete gradient but only with its part determined by the currently considered training example.

Theorem (Widrow & Hoff)

If $\varepsilon(t) = \frac{1}{t}$, then $\vec{w}^{(0)}$, $\vec{w}^{(1)}$, $\vec{w}^{(2)}$,... converges to the global minimum of E.

 \blacktriangleright The training set is

$$
\mathcal{T} = \left\{ \left(\vec{x}_1, d_1 \right), \left(\vec{x}_2, d_2 \right), \ldots, \left(\vec{x}_p, d_p \right) \right\}
$$

kde $\vec{x}_k = (x_{k0}, x_{k1}, \dots, x_{kn}) \in \mathbb{R}^{n+1}$ a $d_k \in \{1, -1\}.$ Here d_k determines a class.

 \blacktriangleright The training set is

$$
\mathcal{T} = \left\{ \left(\vec{x}_1, d_1 \right), \left(\vec{x}_2, d_2 \right), \ldots, \left(\vec{x}_p, d_p \right) \right\}
$$

kde $\vec{x}_k = (x_{k0}, x_{k1}, \ldots, x_{kn}) \in \mathbb{R}^{n+1}$ a $d_k \in \{1, -1\}.$ Here d_k determines a class.

 \triangleright Train the network using the ADALINE algorithm.

 \blacktriangleright The training set is

$$
\mathcal{T} = \left\{ \left(\vec{x}_1, d_1 \right), \left(\vec{x}_2, d_2 \right), \ldots, \left(\vec{x}_p, d_p \right) \right\}
$$

kde $\vec{x}_k = (x_{k0}, x_{k1}, \dots, x_{kn}) \in \mathbb{R}^{n+1}$ a $d_k \in \{1, -1\}.$ Here d_k determines a class.

- \triangleright Train the network using the ADALINE algorithm.
- \triangleright We may expect the following:

• if
$$
d_k = 1
$$
, then $\vec{w} \cdot \vec{x}_k \ge 0$

 \cdot if $d_k = -1$, then $\vec{w} \cdot \vec{x}_k < 0$

 \blacktriangleright The training set is

$$
\mathcal{T} = \left\{ \left(\vec{x}_1, d_1 \right), \left(\vec{x}_2, d_2 \right), \ldots, \left(\vec{x}_p, d_p \right) \right\}
$$

kde $\vec{x}_k = (x_{k0}, x_{k1}, \dots, x_{kn}) \in \mathbb{R}^{n+1}$ a $d_k \in \{1, -1\}.$ Here d_k determines a class.

- \triangleright Train the network using the ADALINE algorithm.
- \triangleright We may expect the following:
	- ► if $d_k = 1$, then $\vec{w} \cdot \vec{x}_k > 0$
	- \cdot if $d_k = -1$, then $\vec{w} \cdot \vec{x}_k < 0$
- \triangleright This does not have to be always true but if the training set is reasonably linearly separable, then the algorithm typically gives satisfactory results.

Architecture – Multilayer Perceptron (MLP)

- **Neurons partitioned into layers;** one input layer, one output layer, possibly several hidden layers
- layers numbered from 0; the input layer has number 0
	- \blacktriangleright E.g. three-layer network has two hidden layers and one output layer
- \blacktriangleright Neurons in the *i*-th layer are connected with all neurons in the $i + 1$ -st layer
- \triangleright Architecture of a MLP is typically described by numbers of neurons in individual layers (e.g. 2-4-3-2)

Notation:

- \blacktriangleright Denote
	- \triangleright X a set of *input* neurons
	- \blacktriangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$

Notation:

- \blacktriangleright Denote
	- \rightarrow X a set of *input* neurons
	- \rightarrow Y a set of *output* neurons
	- \triangleright Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron *j after the computation* stops

Notation:

- \blacktriangleright Denote
	- \rightarrow X a set of *input* neurons
	- \rightarrow Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron *j after the computation* stops
	- ► y_j is the output of the neuron j after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

Notation:

- \blacktriangleright Denote
	- \rightarrow X a set of *input* neurons
	- \rightarrow Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron *j after the computation* stops
	- ► y_j is the output of the neuron j after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ii} is the weight of the connection **from** *i* to *j*

(in particular, w_{i0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

Notation:

- \blacktriangleright Denote
	- \rightarrow X a set of *input* neurons
	- \rightarrow Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron *j after the computation* stops
	- ► y_j is the output of the neuron j after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ii} is the weight of the connection **from** *i* to *j*

(in particular, w_{i0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

 \blacktriangleright i_{\leftarrow} is a set of all *i* such that *i* is adjacent from *i* (i.e. there is an arc **to** j from i)

Notation:

- \blacktriangleright Denote
	- \rightarrow X a set of *input* neurons
	- \triangleright Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron *j after the computation* stops
	- ► y_j is the output of the neuron j after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ii} is the weight of the connection **from** *i* to *j*

(in particular, w_{i0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

- \blacktriangleright i_{\leftarrow} is a set of all *i* such that *i* is adjacent from *i* (i.e. there is an arc **to** j from i)
- \rightarrow \vec{l} is a set of all *i* such that *i* is adjacent to *i* (i.e. there is an arc **from** j to i)

Activity:

 \blacktriangleright inner potential of neuron j:

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

Activity:

 \blacktriangleright inner potential of neuron *j*:

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

• activation function σ_j for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]

Activity:

inner potential of neuron i :

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

- **•** activation function σ_j for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]
- ► State of non-input neuron $j \in Z \setminus X$ after the computation stops:

$$
y_j = \sigma_j(\xi_j)
$$

(y_i depends on the configuration \vec{w} and the input \vec{x} , so we sometimes write $y_i(\vec{w}, \vec{x})$)

Activity:

inner potential of neuron i :

$$
\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i
$$

- **•** activation function σ_j for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]
- ► State of non-input neuron $j \in Z \setminus X$ after the computation stops:

$$
y_j=\sigma_j(\xi_j)
$$

(y_i depends on the configuration \vec{w} and the input \vec{x} , so we sometimes write $y_i(\vec{w}, \vec{x})$)

The network computes a function $\mathbb{R}^{|X|}$ do $\mathbb{R}^{|Y|}$. Layer-wise computation: First, all input neurons are assigned values of the input. In the ℓ -th step, all neurons of the ℓ -th layer are evaluated.

MLP – learning

Learning:

 \blacktriangleright Given a **training set** $\mathcal T$ of the form

$$
\left\{ \begin{pmatrix} \vec{x}_k, \vec{d}_k \end{pmatrix} \quad \middle| \quad k = 1, \ldots, p \right\}
$$

Here, every $\vec{x}_k \in \mathbb{R}^{|X|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|Y|}$ is the desired network output. For every $j \in Y$, denote by d_{ki} the desired output of the neuron *j* for a given network input \vec{x}_{k} (the vector \vec{d}_{k} can be written as $\left(d_{kj}\right)_{j\in\mathsf{Y}}).$

MLP – learning

Learning:

 \blacktriangleright Given a **training set** $\mathcal T$ of the form

$$
\left\{ \begin{pmatrix} \vec{x}_k, \vec{d}_k \end{pmatrix} \quad \middle| \quad k = 1, \ldots, p \right\}
$$

Here, every $\vec{x}_k \in \mathbb{R}^{|X|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|Y|}$ is the desired network output. For every $j \in Y$, denote by d_{ki} the desired output of the neuron *j* for a given network input \vec{x}_{k} (the vector \vec{d}_{k} can be written as $\left(d_{kj}\right)_{j\in\mathsf{Y}}).$

Error function:

$$
E(\vec{w}) = \sum_{k=1}^p E_k(\vec{w})
$$

where

$$
E_k(\vec{w}) = \frac{1}{2} \sum_{j \in Y} (y_j(\vec{w}, \vec{x}_k) - d_{kj})^2
$$

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- \blacktriangleright weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- \blacktriangleright in the step $t+1$ (here $t=0,1,2\ldots$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- \blacktriangleright weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- \blacktriangleright in the step $t+1$ (here $t=0,1,2\ldots$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})
$$

is a weight update of w_{ii} in step $t + 1$ and $0 < \varepsilon(t) \leq 1$ is a learning rate in step $t + 1$.

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- \blacktriangleright weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- \blacktriangleright in the step $t+1$ (here $t=0,1,2\ldots$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})
$$

is a weight update of w_{ii} in step $t + 1$ and $0 < \varepsilon(t) \leq 1$ is a learning rate in step $t + 1$.

Note that $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})$ is a component of the gradient ∇E , i.e. the weight update can be written as $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot \nabla E(\vec{w}^{(t)})$.

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}
$$

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}
$$

where for every $k = 1, \ldots, p$ holds

$$
\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}
$$

where for every $k = 1, \ldots, p$ holds

$$
\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

and for every $j \in Z \setminus X$ we get

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}
$$

where for every $k = 1, \ldots, p$ holds

$$
\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

and for every $j \in Z \setminus X$ we get

∂E^k

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\to}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj} \qquad \text{for } j \in Z \setminus (Y \cup X)
$$

(Here all y_i are in fact $y_i(\vec{w}, \vec{x}_k)$).

• If
$$
\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}
$$
 for all $j \in \mathbb{Z}$, then

$$
\sigma'_j(\xi_j) = \lambda_j y_j (1 - y_j)
$$

• If
$$
\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}
$$
 for all $j \in \mathbb{Z}$, then

$$
\sigma'_j(\xi_j) = \lambda_j y_j(1 - y_j)
$$

and thus for all $j \in Z \setminus X$:

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^+} \frac{\partial E_k}{\partial y_r} \cdot \lambda_r y_r (1 - y_r) \cdot w_{rj} \quad \text{for } j \in Z \setminus (Y \cup X)
$$

• If
$$
\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}
$$
 for all $j \in \mathbb{Z}$, then

$$
\sigma'_j(\xi_j) = \lambda_j y_j(1 - y_j)
$$

and thus for all $j \in Z \setminus X$:

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{-1}} \frac{\partial E_k}{\partial y_r} \cdot \lambda_r y_r (1 - y_r) \cdot w_{rj} \quad \text{for } j \in Z \setminus (Y \cup X)
$$

► If $\sigma_i(\xi) = a \cdot \tanh(b \cdot \xi_i)$ for all $j \in \mathbb{Z}$, then

$$
\sigma'_j(\xi_j)=\frac{b}{a}(a-y_j)(a+y_j)
$$

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows:

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows:

Initialize $\mathcal{E}_{ii} := 0$

(By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ji} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

1. forward pass: compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $i \in \mathbb{Z}$
MLP – computing the gradient

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $i \in \mathbb{Z}$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using backpropagation (see the next slide!)

MLP – computing the gradient

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $i \in \mathbb{Z}$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using backpropagation (see the next slide!)

3. compute
$$
\frac{\partial E_k}{\partial w_{ji}}
$$
 for all w_{ji} using

$$
\frac{\partial E_k}{\partial w_{ji}} := \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

MLP – computing the gradient

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_{ji}}$ $\frac{\partial E_k}{\partial \textit{w}_{ji}}$ as follows: Initialize $\mathcal{E}_{ii} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ji}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_i = y_i(\vec{w}, \vec{x}_k)$ for all $i \in \mathbb{Z}$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using backpropagation (see the next slide!)

3. compute
$$
\frac{\partial E_k}{\partial w_{ji}}
$$
 for all w_{ji} using

$$
\frac{\partial E_k}{\partial w_{ji}} := \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

4.
$$
\mathcal{E}_{ji}:=\mathcal{E}_{ji}+\tfrac{\partial E_k}{\partial w_{ji}}
$$

The resulting \mathcal{E}_{ji} equals $\frac{\partial E}{\partial \mathsf{w}_{ji}}.$

Compute
$$
\frac{\partial E_k}{\partial y_j}
$$
 for all $j \in Z$ as follows:

MLP – backpropagation

Compute
$$
\frac{\partial E_k}{\partial y_j}
$$
 for all $j \in Z$ as follows:
\n▶ if $j \in Y$, then $\frac{\partial E_k}{\partial y_j} = y_j - d_{kj}$

Compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ as follows:

• if
$$
j \in Y
$$
, then $\frac{\partial E_k}{\partial y_j} = y_j - d_{kj}$

Fif $j \in Z \setminus Y \cup X$, then assuming that j is in the ℓ -th layer and assuming that $\frac{\partial E_k}{\partial y_r}$ has already been computed for all neurons in the $\ell + 1$ -st layer, compute

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^+} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj}
$$

(This works because all neurons of $r \in j^{\rightarrow}$ belong to the $\ell + 1$ -st layer.)

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set. (assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set. (assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$
- **3.** computes $\frac{\partial E_k}{\partial \mathbf{w}_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$
- **3.** computes $\frac{\partial E_k}{\partial \mathbf{w}_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

The steps 1. - 3. take linear time.

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_t(\xi_t)$ for given ξ_t)

Proof sketch: The algorithm does the following p times:

- **1.** forward pass, i.e. computes $y_i(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_j}$
- **3.** computes $\frac{\partial E_k}{\partial \mathbf{w}_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be estimated ...

MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- \blacktriangleright weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- \blacktriangleright in the step $t+1$ (here $t=0,1,2\ldots$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial E_k}{\partial w_{ji}} (w_{ji}^{(t)})
$$

is the weight update of w_{ij} in the step $t + 1$ and $0 < \varepsilon(t) \leq 1$ is the learning rate in the step $t + 1$.

There are other variants determined by selection of the training examples used for the error computation (more on this later).

Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

One iteration:

Architecture – Multilayer Perceptron (MLP)

- **Neurons partitioned into layers;** one input layer, one output layer, possibly several hidden layers
- layers numbered from 0; the input layer has number 0
	- \blacktriangleright E.g. three-layer network has two hidden layers and one output layer
- \blacktriangleright Neurons in the *i*-th layer are connected with all neurons in the $i + 1$ -st layer
- \triangleright Architecture of a MLP is typically described by numbers of neurons in individual layers (e.g. 2-4-3-2)

MLP – architecture

Notation:

- \blacktriangleright Denote
	- \rightarrow X a set of *input* neurons
	- \rightarrow Y a set of *output* neurons
	- ► Z a set of all neurons $(X, Y \subseteq Z)$
- \blacktriangleright individual neurons denoted by indices i, j etc.
	- \blacktriangleright ξ_j is the inner potential of the neuron *j after the computation* stops
	- ► y_j is the output of the neuron j after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

 \triangleright w_{ii} is the weight of the connection **from** *i* to *j*

(in particular, w_{i0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

- \blacktriangleright i_{\leftarrow} is a set of all *i* such that *i* is adjacent from *i* (i.e. there is an arc **to** j from i)
- \rightarrow \vec{l} is a set of all *i* such that *i* is adjacent to *i* (i.e. there is an arc **from** j to i)

MLP – learning

Learning:

 \blacktriangleright Given a **training set** $\mathcal T$ of the form

$$
\left\{ \begin{pmatrix} \vec{x}_k, \vec{d}_k \end{pmatrix} \quad \middle| \quad k = 1, \ldots, p \right\}
$$

Here, every $\vec{x}_k \in \mathbb{R}^{|X|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|Y|}$ is the desired network output. For every $j \in Y$, denote by d_{ki} the desired output of the neuron *j* for a given network input \vec{x}_{k} (the vector \vec{d}_{k} can be written as $\left(d_{kj}\right)_{j\in\mathsf{Y}}).$

Error function:

$$
E(\vec{w}) = \sum_{k=1}^p E_k(\vec{w})
$$

where

$$
E_k(\vec{w}) = \frac{1}{2} \sum_{j \in Y} (y_j(\vec{w}, \vec{x}_k) - d_{kj})^2
$$

MLP – batch learning

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- \blacktriangleright weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- \blacktriangleright in the step $t+1$ (here $t=0,1,2\ldots$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\vec{w}^{(t+1)} = \vec{w}^{(t)} + \Delta \vec{w}^{(t)}
$$

Here

$$
\Delta \vec{w}^{(t)} = -\varepsilon(t) \cdot \nabla E(\vec{w}^{(t)}) = -\varepsilon(t) \cdot \sum_{k=1}^{p} \nabla E_k(\vec{w}^{(t)})
$$

- $\geq 0 < \varepsilon(t) \leq 1$ is a learning rate in step $t + 1$
- \blacktriangleright $\nabla E(\vec{w}^{(t)})$ is the gradient of the error function
- $\blacktriangleright \ \nabla E_k(\vec{w}^{(t)})$ is the gradient of the error function for the training example k

► square error:

$$
E(\vec{w}) = \sum_{k=1}^p E_k(\vec{w})
$$

where
$$
E_k(\vec{w}) = \frac{1}{2} \sum_{j \in Y} (y_j(\vec{w}, \vec{x}_k) - d_{kj})^2
$$

Figure 10 mean square error (mse):

$$
E(\vec{w}) = \frac{1}{p} \sum_{k=1}^{p} E_k(\vec{w})
$$

I will use mse throughout the rest of this lecture.

MLP – mse gradient

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \frac{1}{p} \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}
$$

MLP – mse gradient

For every w_{ji} we have

$$
\frac{\partial E}{\partial w_{ji}} = \frac{1}{p} \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}
$$

where for every $k = 1, \ldots, p$ holds

$$
\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i
$$

and for every $j \in Z \setminus X$ we get

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{-}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj} \qquad \text{for } j \in Z \setminus (Y \cup X)
$$

(Here all y_i are in fact $y_i(\vec{w}, \vec{x}_k)$).

Practical issues of gradient descent

- \blacktriangleright Training efficiency:
	- \triangleright What size of a minibatch?
	- \blacktriangleright How to choose the learning rate $\varepsilon(t)$ and control SGD ?
	- \blacktriangleright How to pre-process the inputs?
	- \blacktriangleright How to initialize weights?
	- \blacktriangleright How to choose desired output values of the network?

Practical issues of gradient descent

- \blacktriangleright Training efficiency:
	- \triangleright What size of a minibatch?
	- \blacktriangleright How to choose the learning rate $\varepsilon(t)$ and control SGD ?
	- \blacktriangleright How to pre-process the inputs?
	- \blacktriangleright How to initialize weights?
	- \blacktriangleright How to choose desired output values of the network?
- \triangleright Quality of the resulting model:
	- \triangleright When to stop training?
	- \blacktriangleright Regularization techniques.
	- \blacktriangleright How large network?

For simplicity, I will illustrate the reasoning on MLP $+$ mse. Later we will see other topologies and error functions with different but always somewhat related issues.

Issues in gradient descent

Lots of local minima where the descent gets stuck:

- \blacktriangleright The model identifiability problem: Swapping incoming weights of neurons *i* and *j* leaves the same network topology – **weight space symmetry**
- \triangleright Recent studies show that for sufficiently large networks all local minima have low values of the error function.

Issues in gradient descent

Lots of local minima where the descent gets stuck:

- \blacktriangleright The model identifiability problem: Swapping incoming weights of neurons *i* and *j* leaves the same network topology – **weight space symmetry**
- \triangleright Recent studies show that for sufficiently large networks all local minima have low values of the error function.

Saddle points

One can show (by a combinatorial argument) that larger networks have exponentially more saddle points than local minima.

Issues in gradient descent – too slow descent

\blacktriangleright flat regions

E.g. if the inner potentials are too large (in abs. value), then their derivative is extremely small.

Issues in gradient descent – too fast descent

 \triangleright steep cliffs: the gradient is extremely large, descent skips important weight vectors

Issues in gradient descent – local vs global structure

What if we initialize on the left?

Issues in computing the gradient

 \triangleright vanishing and exploding gradients

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^+} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj} \qquad \text{for } j \in Z \setminus (Y \cup X)
$$

Issues in computing the gradient

 \triangleright vanishing and exploding gradients

$$
\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y
$$

$$
\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{-}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj} \qquad \text{for } j \in Z \setminus (Y \cup X)
$$

- \blacktriangleright inexact gradient computation:
	- \blacktriangleright Minibatch gradient is only an estimate of the true gradient.
	- ► Minibatch gradient is only an estimate of the true gradier
► Note that the variance of the estimate is (roughly) σ/\sqrt{m} where m is the size of the minibatch and σ is the variance of the gradient estimate for a single training example. (E.g. minibatch size 10 000 means 100 times more computation than the size 100 but gives only 10 times less variance.)
\blacktriangleright Larger batches provide a more accurate estimate of the gradient, but with less than linear returns.

- \blacktriangleright Larger batches provide a more accurate estimate of the gradient, but with less than linear returns.
- \triangleright Multicore architectures are usually underutilized by extremely small batches.

- \blacktriangleright Larger batches provide a more accurate estimate of the gradient, but with less than linear returns.
- \triangleright Multicore architectures are usually underutilized by extremely small batches.
- \blacktriangleright If all examples in the batch are to be processed in parallel (as is the typical case), then the amount of memory scales with the batch size. For many hardware setups this is the limiting factor in batch size.

- \blacktriangleright Larger batches provide a more accurate estimate of the gradient, but with less than linear returns.
- \triangleright Multicore architectures are usually underutilized by extremely small batches.
- \blacktriangleright If all examples in the batch are to be processed in parallel (as is the typical case), then the amount of memory scales with the batch size. For many hardware setups this is the limiting factor in batch size.
- \triangleright Some kinds of hardware achieve better runtime with specific sizes of arrays. Especially when using GPUs, it is common for power of 2 batch sizes to offer better runtime. Typical power of 2 batch sizes range from 32 to 256, with 16 sometimes being attempted for large models.

- \blacktriangleright Larger batches provide a more accurate estimate of the gradient, but with less than linear returns.
- \triangleright Multicore architectures are usually underutilized by extremely small batches.
- If all examples in the batch are to be processed in parallel (as is the typical case), then the amount of memory scales with the batch size. For many hardware setups this is the limiting factor in batch size.
- \triangleright Some kinds of hardware achieve better runtime with specific sizes of arrays. Especially when using GPUs, it is common for power of 2 batch sizes to offer better runtime. Typical power of 2 batch sizes range from 32 to 256, with 16 sometimes being attempted for large models.
- \triangleright Small batches can offer a regularizing effect, perhaps due to the noise they add to the learning process.

Moment

Issue in the gradient descent:

 \blacktriangleright $\nabla E(\vec{w}^{(t)})$ constantly changes direction (but the error steadily decreases).

Moment

Issue in the gradient descent:

 \blacktriangleright $\nabla E(\vec{w}^{(t)})$ constantly changes direction (but the error steadily decreases).

Solution: In every step add the change made in the previous step (weighted by a factor α):

$$
\Delta \vec{w}^{(t)} = -\varepsilon(t) \cdot \sum_{k \in \mathcal{T}} \nabla E_k(\vec{w}^{(t)}) + \alpha \cdot \Delta w_{ji}^{(t-1)}
$$

where $0 < \alpha < 1$.

Momentum – illustration

SGD with momentum

- ► weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- \blacktriangleright in the step $t + 1$ (here $t = 0, 1, 2...$), weights $\vec{w}^{(t+1)}$ are computed as follows:
	- \triangleright Choose (randomly) a set of training examples $T \subseteq \{1, ..., p\}$
	- \triangleright Compute

$$
\vec{w}^{(t+1)} = \vec{w}^{(t)} + \Delta \vec{w}^{(t)}
$$

where

$$
\Delta \vec{w}^{(t)} = -\varepsilon(t) \cdot \sum_{k \in \mathcal{T}} \nabla E_k(\vec{w}^{(t)}) + \alpha \Delta \vec{w}^{(t-1)}
$$

- \triangleright 0 < ε (t) \leq 1 is a learning rate in step t + 1
- \triangleright 0 < α < 1 measures the "influence" of the moment
- ► $\nabla E_k(\vec{w}^{(t)})$ is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by randomly shuffling all data and then choosing minibatches sequentially.

Learning rate

Generic rules for adaptation of $\varepsilon(t)$

Learning rate

Generic rules for adaptation of $\varepsilon(t)$

In Start with a larger learning rate (e.g. $\varepsilon = 0.1$ **).**

Later decrease as the descent is supposed to settle in a minimum of E.

Some tools allow to set a list of learning rates, each rate for one epoch of the descent.

Learning rate

Generic rules for adaptation of $\varepsilon(t)$

Start with a larger learning rate (e.g. $\varepsilon = 0.1$).

Later decrease as the descent is supposed to settle in a minimum of E.

Some tools allow to set a list of learning rates, each rate for one epoch of the descent.

In case you may observe the error evolving:

- \blacktriangleright If the error decreases, increase slightly the rate.
- If the error increases, decrease the rate.
- \triangleright Note that the error may increase for the short period without any harm to convergence of the learning process.

So far we have considered a uniform learning rate.

It is better to have

- \blacktriangleright larger rates for weights with smaller updates,
- \triangleright smaller rates for weights with larger updates.

AdaGrad uses individually adapting learning rate for each weight.

SGD with AdaGrad

- ► weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ► in the step $t + 1$ (here $t = 0, 1, 2...$), compute $\vec{w}^{(t+1)}$:
	- ► Choose (randomly) a minibatch $T \subseteq \{1, ..., p\}$
	- \triangleright Compute

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

SGD with AdaGrad

- ► weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ► in the step $t + 1$ (here $t = 0, 1, 2...$), compute $\vec{w}^{(t+1)}$:
	- \triangleright Choose (randomly) a minibatch $T \subseteq \{1, ..., p\}$
	- \triangleright Compute

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\frac{\eta}{\sqrt{r_j^{(t)} + \delta}} \cdot \sum_{k \in \mathcal{T}} \frac{\partial E_k}{\partial w_{ji}} (\vec{w}^{(t)})
$$

and

$$
r_j^{(t)} = r_j^{(t-1)} + \left(\sum_{k \in \mathcal{T}} \frac{\partial E_k}{\partial w_{ji}} (\vec{w}^{(t)})\right)^2
$$

- \blacktriangleright η is a constant expressing the influence of the learning rate, typically 0.01.
- \triangleright δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.

The main disadvantage of AdaGrad is the accumulation of the gradient throughout the whole learning process.

In case the learning needs to get over several "hills" before settling in a deep "valley", the weight updates get far too small before getting to it.

RMSProp uses an exponentially decaying average to discard history from the extreme past so that it can converge rapidly after finding a convex bowl, as if it were an instance of the AdaGrad algorithm initialized within that bowl.

SGD with RMSProp

- ► weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ► in the step $t + 1$ (here $t = 0, 1, 2...$), compute $\vec{w}^{(t+1)}$:
	- ► Choose (randomly) a minibatch $T \subseteq \{1, ..., p\}$
	- \triangleright Compute

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

SGD with RMSProp

- ► weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ► in the step $t + 1$ (here $t = 0, 1, 2...$), compute $\vec{w}^{(t+1)}$:
	- \triangleright Choose (randomly) a minibatch $T \subseteq \{1, ..., p\}$
	- \triangleright Compute

$$
\mathbf{w}_{ji}^{(t+1)} = \mathbf{w}_{ji}^{(t)} + \Delta \mathbf{w}_{ji}^{(t)}
$$

where

$$
\Delta w_{ji}^{(t)} = -\frac{\eta}{\sqrt{r_j^{(t)} + \delta}} \cdot \sum_{k \in T} \frac{\partial E_k}{\partial w_{ji}} (\vec{w}^{(t)})
$$

and

$$
r_j^{(t)} = \rho r_j^{(t-1)} + (1-\rho) \left(\sum_{k \in T} \frac{\partial E_k}{\partial w_{ji}} (\vec{w}^{(t)}) \right)^2
$$

- \blacktriangleright η is a constant expressing the influence of the learning rate (Hinton suggests $\rho = 0.9$ and $\eta = 0.001$).
- $\geq \delta > 0$ is a smoothing term (typically 1e-8) avoiding division by 0.

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with adaptive learning rates (represented by RMSProp and AdaDelta) performed fairly robustly, no single best algorithm has emerged.

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with adaptive learning rates (represented by RMSProp and AdaDelta) performed fairly robustly, no single best algorithm has emerged.

Currently, the most popular optimization algorithms actively in use include SGD, SGD with momentum, RMSProp, RMSProp with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to depend largely on the user's familiarity with the algorithm.

Choice of (hidden) activations

Generic requirements imposed on activation functions:

1. differentiability

(to do gradient descent)

2. non-linearity

(linear multi-layer networks are equivalent to single-layer)

3. monotonicity

(local extrema of activation functions induce local extrema of the error function)

4. "linearity"

(i.e. preserve as much linearity as possible; linear models are easiest to fit; find the "minimum" non-linearity needed to solve a given task)

The choice of activation functions is closely related to input preprocessing and the initial choice of weights. I will illustrate the reasoning on sigmoidal functions; say few words about other activation functions later.

Activation functions – tanh

Activation functions – tanh

Activation functions – tanh

 \triangleright Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of a car (in km/h) vs its price (in CZK), etc.

 \triangleright Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of a car (in km/h) vs its price (in CZK), etc.

 \blacktriangleright Large inputs have greater influence on the training than the small ones. In addition, too large inputs may slow down learning (saturation of activation functions).

 \triangleright Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of a car (in km/h) vs its price (in CZK), etc.

- \blacktriangleright Large inputs have greater influence on the training than the small ones. In addition, too large inputs may slow down learning (saturation of activation functions).
- \blacktriangleright Typical standardization:
	- average $= 0$ (subtract the mean)
	- \triangleright variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated from data (the training set).

- \blacktriangleright Individual inputs should not be correlated.
- \triangleright Correlated inputs can be removed as a part of dimensionality reduction.

(Dimensionality reduction and decorrelation can be implemented using neural networks. There are also standard methods such as PCA.)

 \triangleright Typically, the weights are chosen randomly from an interval [-w, w] where w depends on the number of inputs of a given neuron.

- \triangleright Typically, the weights are chosen randomly from an interval [-w, w] where w depends on the number of inputs of a given neuron.
- ► Consider the activation function $\sigma(\xi) = 1.7159 \cdot \tanh(\frac{2}{3})$ $\frac{2}{3} \cdot \xi$) for all neurons.
	- \triangleright σ is almost linear on [-1, 1],
	- ► extreme values of σ ["] are close to -1 and 1,
	- $\cdot \sigma$ saturates out of the interval [−4,4] (i.e. it is close to its limit values and its derivative is close to 0.

- \triangleright Typically, the weights are chosen randomly from an interval [−w, w] where w depends on the number of inputs of a given neuron.
- ► Consider the activation function $\sigma(\xi) = 1.7159 \cdot \tanh(\frac{2}{3})$ $\frac{2}{3} \cdot \xi$) for all neurons.
	- \triangleright σ is almost linear on [-1, 1],
	- ► extreme values of σ ["] are close to -1 and 1,
	- $\cdot \sigma$ saturates out of the interval [−4,4] (i.e. it is close to its limit values and its derivative is close to 0.

Thus

- \triangleright for too small w we may get (almost) linear model.
- \triangleright for too large w (i.e. much larger than 1) the activations may get saturated and the learning will be very slow.

Hence, we want to choose w so that the inner potentials of neurons will be roughly in the interval [−1, 1].

Standardization gives mean = 0 and variance = 1 of the input data. Assume that individual inputs are (almost) uncorrelated.

- \triangleright Standardization gives mean = 0 and variance = 1 of the input data. Assume that individual inputs are (almost) uncorrelated.
- \triangleright Consider a neuron *j* from the first layer with *d* inputs. Assume that its weights are chosen uniformly from [−w, w].

- \triangleright Standardization gives mean = 0 and variance = 1 of the input data. Assume that individual inputs are (almost) uncorrelated.
- \triangleright Consider a neuron *j* from the first layer with *d* inputs. Assume that its weights are chosen uniformly from $[-w, w]$.
- **The rule:** choose w so that the standard deviation of ξ_i (denote by o_j) is close to the border of the interval on which σ_j is linear. In our case: $o_i \approx 1$.

- \triangleright Standardization gives mean = 0 and variance = 1 of the input data. Assume that individual inputs are (almost) uncorrelated.
- \triangleright Consider a neuron *j* from the first layer with *d* inputs. Assume that its weights are chosen uniformly from $[-w, w]$.
- **The rule:** choose w so that the standard deviation of ξ_i (denote by o_j) is close to the border of the interval on which σ_j is linear. In our case: $o_i \approx 1$.
- ► Our assumptions imply: $o_j = \sqrt{\frac{d}{3}} \cdot w$.

Thus we put $w = \frac{\sqrt{3}}{\sqrt{d}}$.
Initial weights (for tanh)

- \triangleright Standardization gives mean = 0 and variance = 1 of the input data. Assume that individual inputs are (almost) uncorrelated.
- \triangleright Consider a neuron *j* from the first layer with *d* inputs. Assume that its weights are chosen uniformly from [−w, w].
- **The rule:** choose w so that the standard deviation of ξ_i (denote by o_j) is close to the border of the interval on which σ_j is linear. In our case: $o_i \approx 1$.

► Our assumptions imply:
$$
o_j = \sqrt{\frac{d}{3}} \cdot w
$$
.

Thus we put $w = \frac{\sqrt{3}}{\sqrt{d}}$.

 \triangleright The same works for higher layers, d corresponds to the number of neurons in the layer one level lower.

Glorot & Bengio initialization

The previous heuristics for weight initialization ignores variance of the gradient (i.e. it is concerned only with the "size" of activations in the forward pass.

Glorot & Bengio initialization

The previous heuristics for weight initialization ignores variance of the gradient (i.e. it is concerned only with the "size" of activations in the forward pass.

Glorot & Bengio (2010) presented a **normalized initialization** by choosing w uniformly from the interval:

$$
\left(-\sqrt{\frac{6}{m+n}},\sqrt{\frac{6}{m+n}}\right)
$$

Here m is the number of inputs to the neuron, m is the number of outputs of the neuron.

Glorot & Bengio initialization

The previous heuristics for weight initialization ignores variance of the gradient (i.e. it is concerned only with the "size" of activations in the forward pass.

Glorot & Bengio (2010) presented a **normalized initialization** by choosing w uniformly from the interval:

$$
\left(-\sqrt{\frac{6}{m+n}},\sqrt{\frac{6}{m+n}}\right)
$$

Here m is the number of inputs to the neuron, m is the number of outputs of the neuron.

This is designed to compromise between the goal of initializing all layers to have the same activation variance and the goal of initializing all layers to have the same gradient variance.

The formula is derived using the assumption that the network consists only of a chain of matrix multiplications, with no non-linearities. Real neural networks obviously violate this assumption, but many strategies designed for the linear model perform reasonably well on its non-linear counterparts.

Target values (tanh)

- **Target values** d_{ki} **should be chosen in the range of the** output activation functions, in our case [−1.716, 1.716].
- \blacktriangleright Target values too close to extrema of the output activations, in our case ± 1.716 , may cause that the weights will grow indefinitely (slows down learning).
- \triangleright Thus it is good to choose target values from the interval $[-1.716 + \delta, 1.716 - \delta].$

As before, ideally $[-1.716 + \delta, 1.716 - \delta]$ should span the interval on which the activation function is linear, i.e. d_{ki} should be taken from [−1, 1].

Modern activation functions

For hidden neurons sigmoidal functions are often substituted with piece-wise linear activations functions. Most prominent is ReLU:

 $σ(ξ) = max{0, ξ}$

- \triangleright THE default activation function recommended for use with most feedforward neural networks.
- \triangleright As close to linear function as possible; very simple; does not saturate for large potentials.

Output neurons

The choice of activation functions for output units depends on the concrete applications.

For regression (function approximation) the output is typically linear (or sigmoidal).

Output neurons

The choice of activation functions for output units depends on the concrete applications.

For regression (function approximation) the output is typically linear (or sigmoidal).

For classification, the current activation functions of choice are

- \triangleright logistic sigmoid or tanh binary classification
- \blacktriangleright softmax:

$$
\sigma_j(\xi_j) = \frac{e^{\xi_j}}{\sum_{i \in \mathsf{Y}} e^{\xi_i}}
$$

for multi-class classification.

Output neurons

The choice of activation functions for output units depends on the concrete applications.

For regression (function approximation) the output is typically linear (or sigmoidal).

For classification, the current activation functions of choice are

- \triangleright logistic sigmoid or tanh binary classification
- \blacktriangleright softmax:

$$
\sigma_j(\xi_j) = \frac{e^{\xi_j}}{\sum_{i \in \mathsf{Y}} e^{\xi_i}}
$$

for multi-class classification.

For some reasons the error function used with softmax (assuming that the target values d_{ki} are from $\{0, 1\}$ is typically **cross-entropy**:

$$
-\frac{1}{p}\sum_{k=1}^p\sum_{j\in Y}\Big[d_{kj}\ln(y_j)+(1-d_{kj})\ln(1-y_j)\Big]
$$

... which somewhat corresponds to the maximum likelihood principle.

Sigmoidal outputs with cross-entropy – in detail

Consider

- \triangleright Binary classification, two classes $\{0, 1\}$
- \triangleright One output neuron *i*, its activation logistic sigmoid

$$
\sigma_j(\xi_j)=\frac{1}{1+e^{-\xi_j}}
$$

The output of the network is $y = \sigma_j(\xi_j)$.

Sigmoidal outputs with cross-entropy – in detail

Consider

- \triangleright Binary classification, two classes {0, 1}
- \triangleright One output neuron *j*, its activation logistic sigmoid

$$
\sigma_j(\xi_j)=\frac{1}{1+e^{-\xi_j}}
$$

The output of the network is $y = \sigma_i(\xi_i)$.

 \blacktriangleright For a training set

$$
\mathcal{T} = \left\{ \begin{pmatrix} \vec{x}_k, d_k \end{pmatrix} \quad \middle| \quad k = 1, \ldots, p \right\}
$$

(here $\vec{x}_k \in \mathbb{R}^{|X|}$ and $d_k \in \mathbb{R}$), the cross-entropy looks like this:

$$
E^{cross} = -\frac{1}{p} \sum_{k=1}^{p} \left[d_k \ln(y_k) + (1 - d_k) \ln(1 - y_k) \right]
$$

where y_k is the output of the network for the k-th training input \vec{x}_k , and \vec{a}_k is the k-th desired output.

Generalization

Intuition: Generalization = ability to cope with new unseen instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not return exact results as in the training set.

Generalization

Intuition: Generalization = ability to cope with new unseen instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not return exact results as in the training set.

More formally: It is typically assumed that the training set has been generated as follows:

$$
d_{kj}=g_j(\vec{x}_k)+\Theta_{kj}
$$

where $g_{\mathbb{j}}$ is the "underlying" function corresponding to the output neuron $j \in Y$ and Θ_{ki} is random noise.

The network should fit g_i not the noise.

Methods improving generalization are called **regularization methods**.

Regularization is a big issue in neural networks, as they typically use a huge amount of parameters and thus are very susceptible to overfitting.

Regularization is a big issue in neural networks, as they typically use a huge amount of parameters and thus are very susceptible to overfitting.

von Neumann: **"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."**

... and I ask you prof. Neumann:

What can you fit with 40GB of parameters??

Early stopping means that we stop learning before it reaches a minimum of the error E.

When to stop?

Early stopping means that we stop learning before it reaches a minimum of the error E.

When to stop?

In many applications the error function is not the main thing we want to optimize.

E.g. in the case of a trading system, we typically want to maximize our profit not to minimize (strange) error functions designed to be easily differentiable.

Also, as noted before, minimizing E completely is not good for generalization.

For start: We may employ standard approach of training on one set and stopping on another one.

Early stopping

Divide your dataset into several subsets:

- **training set** (e.g. 60%) train the network here
- **validation set** (e.g. 20%) use to stop the training
- \triangleright (possibly) **test set** (e.g. 20%) use to compare trained models

What to use as a stopping rule?

Early stopping

Divide your dataset into several subsets:

- **training set** (e.g. 60%) train the network here
- **validation set** (e.g. 20%) use to stop the training
- \triangleright (possibly) **test set** (e.g. 20%) use to compare trained models

What to use as a stopping rule?

You may observe E (or any other function of interest) on the validation set, if it does not improve for last k steps, stop.

Alternatively, you may observe the gradient, if it is small for some time, stop.

(recent studies shown that this traditional rule is not too good: it may happen that the gradient is larger close to minimum values; on the other hand, E does not have to be evaluated which saves time.

To compare models you may use ML techniques such as cross-validation etc.

Similar problem as in the case of the training duration:

- \triangleright Too small network is not able to capture intrinsic properties of the training set.
- \blacktriangleright Large networks overfit faster bad generalization.

Solution: Optimal number of neurons :-)

Similar problem as in the case of the training duration:

- \triangleright Too small network is not able to capture intrinsic properties of the training set.
- \blacktriangleright Large networks overfit faster bad generalization.

Solution: Optimal number of neurons :-)

- \triangleright there are some (useless) theoretical bounds
- \triangleright there are algorithms dynamically adding/removing neurons (not much use nowadays)
- \blacktriangleright In practice:
	- \triangleright start using a rule of thumb: the number of neurons \approx ten times less than the number of training instances.
	- \triangleright experiment, experiment, experiment.

Consider a two layer network. Hidden neurons are supposed to represent "patterns" in the inputs.

Example: Network 64-2-3 for letter classification:

sample training patterns

learned input-to-hidden weights

Techniques for reducing generalization error by combining several models.

The reason that ensemble methods work is that different models will usually not make all the same errors on the test set.

Idea: Train several different models separately, then have all of the models vote on the output for test examples.

Techniques for reducing generalization error by combining several models.

The reason that ensemble methods work is that different models will usually not make all the same errors on the test set.

Idea: Train several different models separately, then have all of the models vote on the output for test examples.

Bagging:

- Generate k training sets $T_1, ..., T_k$ of the same size by sampling from $\mathcal T$ uniformly with replacement. If $|T_i| = |\mathcal{T}|$, then on average $|T_i| = (1 - 1/e)|\mathcal{T}|$.
- For each i, train a model M_i on T_i .
- \triangleright Combine outputs of the models: for regression by averaging, for classification by (majority) voting.

Dropout

The algorithm: In every step of the gradient descent

- \triangleright choose randomly a set N of neurons, each neuron is included in N independently with probability 1/2, (in practice, different probabilities are used as well).
- \triangleright update weights of neurons in N (in a standard way), leave weights of the other neurons unchanged.

Dropout

The algorithm: In every step of the gradient descent

- \triangleright choose randomly a set N of neurons, each neuron is included in N independently with probability 1/2, (in practice, different probabilities are used as well).
- \triangleright update weights of neurons in N (in a standard way), leave weights of the other neurons unchanged.

Dropout resembles bagging: Large ensemble of neural networks is trained "at once" on parts of the data.

Dropout is not exactly the same as bagging: The models share parameters, with each model inheriting a different subset of parameters from the parent neural network. This parameter sharing makes it possible to represent an exponential number of models with a tractable amount of memory.

In the case of bagging, each model is trained to convergence on its respective training set. This would be infeasible for large networks/training sets.

Weight decay

Generalization can be improved by removing "unimportant" weights.

Penalising large weights gives stronger indication about their importance.

Weight decay

Generalization can be improved by removing "unimportant" weights.

Penalising large weights gives stronger indication about their importance.

In every step we decrease weights (multiplicatively) as follows:

$$
w_{ji}^{(t+1)} = (1 - \zeta)(w_{ji}^{(t)} + \Delta w_{ji}^{(t)})
$$

Intuition: Unimportant weights will be pushed to 0, important weights will survive the decay.

Weight decay

Generalization can be improved by removing "unimportant" weights.

Penalising large weights gives stronger indication about their importance.

In every step we decrease weights (multiplicatively) as follows:

$$
w_{ji}^{(t+1)} = (1 - \zeta)(w_{ji}^{(t)} + \Delta w_{ji}^{(t)})
$$

Intuition: Unimportant weights will be pushed to 0, important weights will survive the decay.

Weight decay is equivalent to the gradient descent with a constant learning rate ε and the following error function:

$$
E'(\vec{w})=E(\vec{w})+\frac{2\zeta}{\varepsilon}(\vec{w}\cdot\vec{w})
$$

Here $\frac{2\zeta}{\varepsilon}(\vec{w}\cdot\vec{w})$ penalizes large weights.

There are many more practical tips, optimization methods, regularization methods, etc.

For a very nice survey see

<http://www.deeplearningbook.org/>

... and also all other infinitely many urls concerned with deep learning.