
Convolutional network

1

Convolutional layers

Every neuron is connected with a (typically small) receptive
field of neurons in the lower layer.

Neuron is "standard": Computes a weighted sum of its inputs,
applies an activation function.

2

Convolutional layers

Neurons grouped into
feature maps sharing
weights.

3

Convolutional layers

Each feature map represents a property of the input that is
supposed to be spatially invariant.

Typically, we consider several feature maps in a single layer.

4

Pooling layers

Neurons in the pooling layer compute simple functions of their
receptive fields (the fields are typically disjoint):
I Max-pooling : maximum of inputs
I L2-pooling : square root of the sum of squres
I Average-pooling : mean
I · · ·

5

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional & pooling layer Lm: Contains two
sub-layers:

I convolutional layer: Neurons organized into disjoint
feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: Each (convolutional) feature map F has
a corresponding pooling map P. Neurons of P

I have inputs only from F (typically few of them),
I compute a simple aggregate function (such as max),
I have disjoint inputs.

6

Convolutional networks – architecture
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

I jshare is a set of neurons sharing weights with j
i.e. neurons that belong to the same feature map as j 7

Convolutional networks – activity
I neurons of dense and convolutional layers:

I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable):

yj = σj(ξj)

I Neurons of pooling layers: Apply the "pooling" function:
I max-pooling:

yj = max
i∈j←

yi

I avg-pooling:

yj =

∑
i∈j← yi

|j←|
A convolutional network is evaluated layer-wise (as MLP), for each j ∈ Y we
have that yj(~w, ~x) is the value of the output neuron j after evaluating the
network with weights ~w and input ~x.

8

Convolutional networks – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function – mean square error (for example):

E(~w) =
1
p

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk) − dkj

)2

9

Convolutional networks – SGD

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
1
|T |

∑
k∈T

∇Ek (~w(t))

Here T is a minibatch (of a fixed size),
I 0 < ε(t) ≤ 1 is a learning rate in step t + 1
I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented
by randomly shuffling all data and then choosing minibatches
sequentially. Epoch consists of one round through all data. 10

Backprop

Recall that ∇Ek (~w(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
I Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

I Now for every wji where j is in a convolutional layer, that is
shares wji with neurons of jshare:

∂Ek

∂wji
=

∑
r∈jshare

∂Ek

∂yr
· σ′r (ξr) · yr

I Neurons of pooling layers do not have weights.
11

Backprop
Now compute derivatives w.r.t. yj :
I for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the mean-square error, for other error functions
the derivative w.r.t. outputs will be different.

I for every j ∈ Z r Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

I for every j ∈ Z r Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

I.e. gradient can be propagated from the output layer downwards as in MLP.
12

Convolutional networks – conclusions

I Conv. nets. are nowadays the most used networks in
image processing (and also in other areas where input has
some local, "spatially" invariant properties)

I Typically trained using backpropagation.
I Due to the weight sharing allow (very) deep architectures.
I Typically extended with more adjustments and tricks in

their topologies.

13

Recurrent networks – Hopfield network

Auto-associative network: Given an input, the network outputs
a training example (encoded in its weights) "similar" to
the given input.

14

Hopfield network

Architecture:
I complete topology, i.e. output of each neuron is input to all

neurons
I all neurons are both input and output
I denote by ξ1, . . . , ξn inner potentials and by y1, . . . , yn

outputs (states) of individual neurons
I denote by wji the weight of connection from a neuron

i ∈ {1, . . . ,n} to a neuron j ∈ {1, . . . ,n}
I assume wjj = 0 for every j = 1, . . . ,n
I For now: no neuron has a bias

15

Hopfield network

Learning: Training set

T = {~xk | ~xk = (xk1, . . . , xkn) ∈ {−1,1}n, k = 1, . . . ,p}

The goal is to "store" the training examples of T so that the
network is able to associate similar examples.

Hebb’s learning rule: If the inputs to a system cause the same pattern
of activity to occur repeatedly, the set of active elements constituting that
pattern will become increasingly strongly interassociated. That is, each
element will tend to turn on every other element and (with negative weights)
to turn off the elements that do not form part of the pattern. To put it another
way, the pattern as a whole will become "auto-associated".
Mathematically speaking:

wji =

p∑
k=1

xkjxki 1 ≤ j , i ≤ n

Intuition: "Neurons that fire together, wire together".
16

Hopfield network

Learning: Training set

T = {~xk | ~xk = (xk1, . . . , xkn) ∈ {−1,1}n, k = 1, . . . ,p}

Hebb’s rule:

wji =

p∑
k=1

xkjxki 1 ≤ j , i ≤ n

Note that wji = wij , i.e. the weight matrix is symmetric.

Learning can be seen as poll about equality of inputs:
I If xkj = xki , then the training example votes for "i equals j"

by adding one to wji .
I If xkj , xki , then the training example votes for "i does not

equal j" by subtracting one from wji .

17

Hopfield network

Activity: Initially, neurons set to the network input
~x = (x1, . . . , xn), thus y(0)

j = xj for every j = 1, . . . ,n.

Cyclically update states of neurons, i.e. in step t + 1 compute
the value of a neuron j such that j = (t mod p) + 1, as follows:

Compute the inner potential:

ξ(t)j =

n∑
i=1

wjiy
(t)
i

then

y(t+1)
j =


1 ξ(t)j > 0

y(t)
j ξ(t)j = 0

−1 ξ(t)j < 0

18

Hopfield network – activity

The computation stops in a step t ∗ if the network is for the first
time in a stable state, i.e.

y(t ∗+n)
j = y(t ∗)

j (j = 1, . . . ,n)

Theorem
Assuming symmetric weights, computation of a Hopfiled
network always stops for every input.

This implies that a given Hopfiled network computes a function
from {−1,1}n to {−1,1}n (determined by its weights).

Denote by ~y(W , ~x) =
(
y(t ∗)

1 , . . . , y(t ∗)
n

)
the value of the network

for a given input ~x and a weight matrix W .
Denote by yj(W , ~x) = y(t ∗)

j the component of the value of
the network corresponding to the neuron j.

If W is clear from the context, we write only y(~x) a yj(~x).
19

Ising model – an analogy

Simple models of magnetic materials resemble Hopfield
network.

I atomic magnets organized into
square-lattice

I each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

I orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
orientation of the other magnets

I weights in the Hopfiled net model
determine interaction among
magnets

20

Energy function

Energy function E assigns to every state ~y ∈ {−1,1}n

a (potential) energy:

E(~y) = −
1
2

n∑
j=1

n∑
i=1

wjiyjyi

I states with low energy are stable (few neurons "want to"
change their states), states with high energy are not stable

I i.e. large (positive) wjiyjyi is stable and small (negative)
wjiyjyi is not stable

The energy does not increase during computation:
E(~y(t)) ≥ E(~y(t+1)), stable states ~y(t ∗) correspond to local
minima of E.

21

Energy landscape

22

Hopfield – example

1 2

3

−1

−11

y1 y2 y3 E
1 1 1 1
1 1 −1 1
1 −1 1 −3
1 −1 −1 1
−1 1 1 1
−1 1 −1 −3
−1 −1 1 1
−1 −1 −1 1

I Hopfield network with three neurons
I trained on a single training example (1,−1,1) using Hebb’s

rule
(note that (−1,1,−1) has also been "stored" into the network)

23

Hopfield network – convergence

Observe that
I the energy does not increase during computation:

E(~y(t)) ≥ E(~y(t+1))

I if the state is updated in a step t + 1, then
E(~y(t)) > E(~y(t+1))

I there are only finitely many states, and thus, eventually,
a local minimum of E is reached.

This proves that computation of a Hopfield network always
stops.

24

Hopfield network – phantoms

The energy function E may have local minima that do not
correspond to training examples (so called phantoms).

Phantoms can be "unlearned" e.g. using the following rule:
Given a phantom (x1, . . . , xn) ∈ {−1,1}n and weights wji , then
new weights w′ji are computed by

w′ji = wji − xixj

(i.e. similar to Hebb’s rule but with the opposite sign)

25

Reproduction – statistical analysis

Capacity of Hopfield network is defined as the ratio p/n of
number of training examples the net is able to learn over the
number of neurons.

Assume that training examples are chosen randomly: each
component of ~xk is set to 1 with probability 1/2 and to −1 with
probability 1/2.

Consider a configuration W obtained by learning using the
Hebb’s rule.

Denote

β = P
[
~xk = ~y(W , ~xk) pro k = 1, . . . ,p

]
Then for n→∞ and p ≤ n/(4 log n) we have β→ 1.

I.e. the maximum number of examples that can be effectively
stored in Hopfield net is proportional to n/(4 log n).

26

Hopfield network – example

I figures 12 × 10
(120 neurons, −1 is white and 1 is black)

I learned 8 figures
I input generated with 25% noise
I image shows the activity of the

Hopfield network

27

Hopfield network – example

28

Hopfield network – example

29

