PV181 Laboratory of security and applied cryptography

Marek Sýs, Zdeněk Říha

Centre for Research on Cryptography and Security

www.fi.muni.cz/crocs

1 | PV181

Before we start

- Log into your account within IS
- Find and download provided materials
- Look where is the openssl folder
 - Start -> openssl -> version -a

Goals of Cryptography

- Confidentiality (privacy) preventing open access
 ciphers
- Authentication:
 - 1. Entity identity verification various (password, MAC, ...)
 - 2. Data origin identity of message originator MAC
- Integrity preventing unauthorized modification
 hash functions
- Non-repundation preventing denial of actions
 digital signature

Crypto primitives

- **Ciphers** encryption/decryption of data using **key**
 - Symmetric ciphers same key for enc/dec
 - Asymmetric ciphers **different** key for enc/dec
- Random number generators (RNGs)
 - Key generation
- Hash functions "unique" fingerprint of data
- Based on previous: MAC, PBKDF, Digital signature

4

Standards

Primitives are defined in various types of standards:

- FIPS PUB 197 AES block cipher
- RFC1321 md5 hash function
- NIST SP,...

Test vectors: defined output to test implementation

MD5 ("") = d41d8cd98f00b204e9800998ecf8427e

Ciphers: Kerckhoffs' principle

- A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.
- I.e. only the key should be kept secret, not the algorithm.

Symmetric cryptosystem

Internetwork Security (Stallings)

7 | PV181

www.fi.muni.cz/crocs

Asymmetric cryptosystem

Internetwork Security (Stallings)

www.fi.muni.cz/crocs

8 | PV181

Block cipher

- Input divided into blocks of fixed size (e.g 256 bits)
 Padding message is padded to complete last block
- Different modes of operation:
 - Insecure basic ECB mode leaks info
 - Secure modes: CBC, OFB,CFB,CTR,...

- CBC, OFB, CFB need initialization
 - Initialization vector (IV) must be known

Source: https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Block ciphers - padding

StandardANSI X.923...ISO 10126...PKCS7...ISO/IEC 7816-4...Zero padding...

method

•••		DD	l	DD	DD	DD	DD	00	00	00	04	Ι								
• • •		DD	Ι	DD	DD	DD	DD	81	A6	23	04									
•••		DD	I	DD	DD	DD	DD	04	04	04	04									
•••		DD		DD	DD	DD	DD	80	00	00	00									
	I	מם	חח	I	חח	חח	חח	חח	00	00	00	00	I							

Block ciphers: ECB vs CBC mode

Electronic Codebook (ECB) mode encryption

Cipher Block Chaining (CBC) mode encryption

Source: https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

11 | PV181

www.fi.muni.cz/crocs

Random number generators

- Used to generate: keys, IV, …
- 1. Truly RNG physical process
 - aperiodic, slow
- 2. Pseudo RNG (PRNG) software function
 - deterministic, periodic, fast
 - initialized by **seed** fully determines random data
- Combination often used:
 - truly RNG used to generate **seed** for PRNG
 - dev/urandom, dev/random in Linux, Fortuna scheme

Hash function

- Cryptographic hash function
- Input of arbitrary size
- Output of fixed size: n bits (e.g. 256 bits).
- Function is not injective (there are "collisions").
- Hash is a compact representative of input (also called imprint, (digital) fingerprint or message digest).
- Hash functions often used to protect integrity. First the has is computed and then only the hash is protected (e.g. digitally signed).

Hash function properties

- One-way property
 - It is easy to calculate **h(x)** for arbitraty **x**.
 - In a reasonable time it is not possible for the fixed y to find
 x, such that h(x) = y.
- Collision resistance
 - (weak): In a reasonable time it is not possible for a given x to find x' ($x \neq x$ ') such that h(x) = h(x').
 - (strong): In a reasonable time it is not possible to find any x, x' such that h(x) = h(x').

CR⊙CS

Cryptographic hash functions

- MD5: output 128 bits
 - Still used although not considered secure at all
 - Broken: efficient algorithm for finding collisions available
 - 128-bit output not considered secure enough
- RIPEMD
 - Output : 128, 160, 256 or 320 bits
 - Less frequently used
- Whirlpool
 - Output: 512 bits
 - Based on AES
 - Recommended by NESSIE project
 - Standardized by ISO

CROCS

Secure Hash Algorithm (SHA)

• SHA-1

- NIST standard, collision found in 2016, 160 bits hash

• SHA-2

- function family: SHA-256, SHA-384, SHA-512, SHA-224
- defined in FIPS 180-2
- Recommended

• SHA-3

- New standard 2015
- Keccak sponge function family: SHAKE-128, SHA3-224, ...
- defined in FIPS 202, used in FIPS-202, SP 800-185
- Recomended

Hash functions - examples

- MD5
 - Input: "Autentizace".
 - Output: 2445b187f4224583037888511d5411c7.
 - Output 128 bits, written in hexadecimal notation.
 - Input: "Cutentizace".
 - Output: cd99abbba3306584e90270bf015b36a7.
 - A single bit changed in input → big change in output, so called "Avalanche effect"
- SHA-1
 - Input: "Autentizace".
 - Output: 647315cd2a6c953cf5c29d36e0ad14e395ed1776
- SHA-256
 - Input: "Autentizace".
 - Output: a2eb4bc98a5f71a4db02ed4aed7f12c4ead1e7c98323fda8ecbb69282e4df584

Password protection password hashing & salting

- 1. Clear password could be stolen:
 - store hash of password
 hash = H(password)
 - Checking: password is correct if hash matches
- 2. Attack (brute force or dictionary)
 - trying possible passwords "aaa", "aab"..."zzz" N tests
 - N test for single but also for 2,3,... passwords !!!
- 3. Slow down attack increase password size:
 - random "salt" is added to password,

CROCS

Password protection password hashing & salting

Source: http://blog.conviso.com.br/worst-and-best-practices-for-secure-password-storage/

19 | PV181

www.fi.muni.cz/crocs

Key protection

- Encrypt key K (using cipher and other k):
 - Key ${\bf k}$ typically derived from password
- Insufficient entropy of passwords
 - E.g. only 17000 guesses for ***
 - salt protects many passwords not single (is stored)
- Password Based Key Derivation Function (PBKDF):
 - 2 types PBKDF2 is newer (PKCS#5)
 - slow down hash function
 - iterate hash function *c* times Key = $H^{c}(pwd | salt)$:

CROCS

www.fi.muni.cz/crocs

21 | PV181

Message authentication code (MAC)

- Based on block cipher (MAC) or hash function (HMAC)
 - Key + message \rightarrow algorithm \rightarrow fixed size block MAC

Source: https://www.tutorialspoint.com/cryptography/message_authentication.htm

CROCS

RSA: mathematics

- Prime multiplication is simple & Factorization of integers is computationally intensive.
- We choose randomly 2 primes and compute n and $\varphi(n)$:
 - p, q
 - $n = p \cdot q$
 - $\phi(n) = (p-1)(q-1).$
- **e** is chosen such that $gcd(e, \varphi(n)) = 1$.
- We compute ed = 1 (mod φ(n)).
- Public key: n, e.
 Private parameters: p, q, d.
 Private key: d.
- For RSA with 1024 bit **n**, the encrypted message will be 1024 bit long.

CRତCS

RSA: example

- Intentionally small numbers (such cryptosystem is **not** secure).
- We generate parameters:
 - p = 17, q = 7,
 - n = pq = 119,
 - $\phi(n) = 16 \times 6 = 96.$
- Public exponent is selected e = 3,5, equation is solved (3 can not be) ed = 5d = 1 (mod 96) to have d = 77.
- The public key: (n = 119, e = 5), The private key: d = 77.
- Encryption/decryption:
 - Message **m** = 'C' = 65
 - Encryption $m' = 65^5 \mod 119 = 46$.
 - Decryption $m = 46^{77} \mod 119 = 65$

CRତCS

Links

- SHA1 collision:
 - https://shattered.io
- Salting password:
 - https://crackstation.net/hashing-security.htm
- OpenSSL
 - Manual: https://www.openssl.org/docs/man1.0.2/
 - https://wiki.openssl.org/index.php/Command_Line_Utilities
 - https://www.madboa.com/geek/openssl/