
PV181 Laboratory of security

and applied cryptography

Asymmetric cryptography

Marek Sýs, Zdeněk Říha

| PV1811

Asymmetric cryptography

• Confidentiality

– asymmetric cipher - encryption, key agreement

• Authentication

1. Entity – identity verification - certificates

2. Data origin - digital signature

• Integrity

– digital signature

• Non-repudiation

– digital signature

2 | PV181

Asymmetric cryptosystem

3 | PV181

Adapted Source: Network and

Internetwork Security (Stallings)

encryption decryption

message
Alice

Public key of Bob

Bob

Private key of Bob

Encrypted
message

Decrypted
original
message

Asymmetric cryptography

• Two related keys – created by one party

– different inverse operations (encryption - decryption,

signing – signature verification)

• Properties - hard to compute private from public key

– based on hard mathematical problems

• Hard problems and cryptosystems:

– Integer factorization – RSA, Rabin, …

– Discrete logarithm problem (DLP): ElGamal, EC, DSA, …

– Others (DH, decoding,…) – Diffie-Helman, McElliece,…

4 | PV181

Public vs private key cryptography

• Private (symmetric)

– both parties share secret (private)

– Pros: fast encryption

– Cons: key distribution requires secure channel

• Public (asymmetric)

– one key is public

– Pros - key distribution – insecure channel is OK

– Cons - slow encryption

• Practice - private + public:

– public used to establish key for private key system

5 | PV181

Diffie Hellman algorithm
• First asymmetric cryptography algorithms appeared at

the beginning of 1970s:
– British GCHQ (Clifford Cocks).

– Public announcement in 1997.

– Application of the asymmetric algorithms for authentication -
signature “invented” later by the academic community for their
algorithms.

• First public algorithms at the end of 1970s (W. Diffie
and M. Hellman influenced by R. Merkle).

• The famous algorithm RSA (Rivest, Shamir, Adelman)
published in 1977, patented in 1983 (patent has
already expired).

• Described in PKCS#1

Hard problems

•

7 | PV181

DLP for integers

•

8 | PV181

Elliptic curve

•

Example (domain params)

•

G=[1,1]
2G=[2,4]

3G=[6,5]

4G=[4,5]

5G=[3,1]

7G=[4,2]
6G=[3,6]

[6,2]=8G

[2,3]=9G

[1,6]=10G

∞ =11G

+G
+G

…

RSA: mathematics

•

11 | PV181

RSA example

•

12 | PV181

RSA in practice: Padding

• (M) = 6b bb … bb ba || Hash(M) || 3x cc

where x = 3 for SHA-1, 1 for RIPEMD-160
– ANSI X9.31

• (M) = 00 01 ff … ff 00 || HashAlgID || Hash(M)
– PKCS #1 v1.5

• (M) = 00 || H || G(H) [salt || 00 … 00]

where H = Hash(salt, M), salt is random, and G is a
mask generation function
– Probabilistic Signature Scheme (PSS)

RSA Padding example (PKCS#1 v1.5)

• Document
– “00 01 02 03 04 05 06 07 07 06 05 04 03 02 01”

• Hash of the document (sha-1)
– “b3 39 90 4c d2 a0 10 e6 19 37 eb e5 b5 83 37 8c 5d 10

51 95”

• Padded hash
– “00 01 ff 00

30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 b3 39 90 4c
d2 a0 10 e6 19 37 eb e5 b5 83 37 8c 5d 10 51 95”

Digital signature

• Asymmetric cryptography

– Private key – signature generation (usually only hash of

data is signed not data itself)

– Public key – verification procedure

• Data integrity + data origin + non-repudiation:

• Non-repudiation - correct signatures can be
generated only by those having the private key

• The digital signature itself does not give any
guarantees with respect to signing time.

Digital signature scheme

16 | PV181

Signature

algorithm

Verification

algorithmmessage signed
message

Alice

Public key of Alice

Bob

Source: Network and

Internetwork Security (Stallings)

verified
message

Private key of Alice

Digital Signature Algorithm (DSA)

• Proposed in 1991 by NIST

• In 1994 the selection procedure for Digital Signature Standard
(DSS) was concluded – DSA (Digital Signature Algorithm) was
selected.

• Modified version of ElGamal algorithm, based on discrete
logarithm in Zp.

• Became FIPS standard FIPS 186 in 1993.

• Slightly modified in 1996 as FIPS 186-1.

• Extended in 2000 as FIPS 186-2.

• Updated in 2009 as FIPS 186-3 (new key sizes).

• Now NIST FIPS 186-3 supports RSA & DSA & ECDSA.

Digital Signature Standard (DSS)

18 | PV181

DSS

• Selection of Parameter Sizes and Hash Functions

• Domain Parameter Generation

- only for DSA, ECDSA

• Signature Generation

• Signature Verification and Validation

19 | PV181

DSA: mathematics

• Key generation – domain parameters
– Decide on a key length L and N, e.g. (1024,160).

• N must be less than or equal to the hash output length

– Choose an N-bit prime q. [“order of g w.r.t p”]

– Choose an L-bit prime modulus p such that p–1 is a multiple
of q.

– Choose g, a number whose multiplicative order modulo p is q,
e.g. g = h(p–1)/q mod p for some arbitrary h (1 < h < p-1).
[“generator”]

– Domain parameters (p, q, g) may be shared between different
users of the DSA system.

DSA: mathematics II

• Key generation

– Choose random x, such that 0 < x < q.

– Calculate y = gx mod p.

• Private key: x.

• Public key: y & (p, q, g).

DSA: mathematics III
• Signature generation

– Generate a random per-message value k such that 0 < k < q.

– Calculate r = (gk mod p) mod q

– Calculate s = (k−1(H(m) + x*r)) mod q

– The signature is (r, s).

• Signature verification

– w = (s)−1 mod q

– u1 = (H(m)*w) mod q

– u2 = (r*w) mod q

– v = ((gu1*yu2) mod p) mod q

– The signature is valid if v = r

• For DSA (1024,160) the signature size will be 2x160 bits.

DSA: Padding

• Decide on lengths L and N, e.g. (1024,160).

– N must be less than or equal to the hash output length

• E.g. for (1024,160) sha-1 is typically used,

sha-256 would be ok as well and only first 160 bits would be

used

– s = (k−1(H(m) + x*r)) mod q
• “It is recommended that the security strength of the (L, N) pair and the security strength of the hash

function used for the generation of digital signatures be the same unless an agreement has been

made between participating entities to use a stronger hash function. When the length of the output of

the hash function is greater than N (i.e., the bit length of q), then the leftmost N bits of the hash

function output block shall be used in any calculation using the hash function output during the

generation or verification of a digital signature. A hash function that provides a lower security

strength than the (L, N) pair ordinarily should not be used, since this would reduce the security

strength of the digital signature process to a level no greater than that provided by the hash

function.” [FIPS 186-3]

Elliptic curve DSA (ECDSA)

• Elliptic curves invented by Koblitz & Miller in 1985.

• ECDSA proposed in 1992 by Vanstone

• Became ISO standard (ISO 14888-3) in 1998

• Became ANSI standard (ANSI X9.62) in 1999

• ECDSA is a version of DSA based on elliptic

curves.

ECDSA: Elliptic curve domain parameters

• (field,a,b,G,n,h)

– Finite field

• p for Fp

• m, bases (trinomial, pentanomial) for F2
m

– Coefficients a, b: y2 = x3 + ax +b

– Group generator: G

– Order of the G: n

– Optional cofactor: h

• (h = number of elements in field / order n)

– The base point G generates a cyclic subgroup of order n in

the field.

ECDSA: Keys

• Generating key pair
– Select a random integer d from [1,n − 1]

– Compute P = d*G;

• Private key: d

• Public key: P

• For 256-bit curve
– the private key d will be approx. 256-bit long

– the public key P is a point on the curve – will be approx
512-bit long

ECDSA: Signatures
• Generate signature

– Select a random integer k from [1,n − 1]

– (x1,y1) = k*G

– Calculate r = x1 (mod n)

– Calculate s = k−1(M + r*d) (mod n)

– Signature is (r,s).

• Signature verification
– Calculate w = s−1 (mod n)

– Calculate u1 = z*w (mod n) & u2 = r*w (mod n)

– Calculate (x1,y1) = u1*G + u2*P

– The signature is valid if r = x1 (mod n).

• For 256-bit curve the signature length will be approx.
512 bits

ECDSA: Padding

• Rules are same as for DSA
• “It is recommended that the security strength associated with the bit length of

n and the security strength of the hash function be the same unless an

agreement has been made between participating entities to use a stronger

hash function. When the length of the output of the hash function is greater

than the bit length of n, then the leftmost n bits of the hash function output

block shall be used in any calculation using the hash function output during

the generation or verification of a digital signature. A hash function that

provides a lower security strength than the security strength associated with

the bit length of n ordinarily should not be used, since this would reduce the

security strength of the digital signature process to a level no greater than that

provided by the hash function.” [FIPS 186-3]

