PV248 Python

Petr Rockai

Disclaimer

e [am nota Python programmer

e please don't ask sneaky language-lawyer questions
Goals

e Jlet'slearn to use Python in practical situations
e have alook at existing packages and what they can do for us
e code up some cool stuff & have fun

Organisation

e [I'min India next Monday, Mr. Kaplan will come instead
e starting 9th of Oct, we can start at 8:30 (let’s have a vote)

PV248 Python 1/76 November 27, 2017

Stuff We Could Try

e working with text, regular expressions

e using the pdb debugger

e plotting stuff with bokeh (https://bokeh.pydata.org)
e talking to SQL databases

e talking to HTTP servers

e beingan HTTP server

e implementing a JSON-based REST API

e parsing YAML and/or JSON data

e .. (suggestions welcome)

PV248 Python 2/76 November 27, 2017

Some Resources

e https://docs.python.org/3/ (obviously)

e https://github.com/VerosK/python-pv248
e https://msivak.fedorapeople.org/python/
e study materialsin IS

PV248 Python 3/76 November 27, 2017

Part 1: Text & Regular Expressions

PV248 Python 4/76 November 27, 2017

Reading Input

e opening files: open('scorelib.txt', 'r'")
o files can be iterated

f = open(,)
for line in f:
print line

PV248 Python 5/76 November 27, 2017

Regular Expressions

e compiling: r = re.compile(r"Composer: (.*)")
e matching:m = r.match("Composer: Bach, J. S.")
e extracting captures: print m.group(1)
— prints Bach, J. S.
e substitutions: s2 = re.sub(r"\s*$", "', sl)
— strips all trailing whitespace in s1

Other String Operations

e Dbetter whitespace stripping: s2 = sl.strip()
e splitting: str.split(';")

PV248 Python 6/76 November 27, 2017

Dictionaries

e associative arrays: map (e.g.) strings to numbers
e nicesyntax: dict = { 'foo': 1, 'bar': 3 }
e nice & easy to work with

e canbeiterated: for k, v in dict.items()

Counters

o from collections import Counter

e like a dictionary, but the default value is 0
e ctr = Counter()

e comparectr['baz'] += 1lwithdict

PV248 Python 7/76 November 27, 2017

Exercise 1: Input

get yourself a git/mercurial /darcs repository

grab input data (scorelib. txt) from study materials
read and process the text file

use regular expressions to extract data

use dictionaries to collect stats

beware! hand-written, somewhat irregular data

PV248 Python 8/76 November 27, 2017

Exercise 1: Output

e print some interesting statistics
— how many pieces by each composer?
— how many pieces composed in a given century?
— how many in the key of ¢ minor?
e bonus if you are bored: searching
— list all pieces in a given key
— list pieces featuring a given instrument (say, bassoon)

PV248 Python 9/76 November 27, 2017

Exercise 1: Example Output

e Telemann, G. P.: 68
e Bach,].S.: 79
e Bach,]J.C.: 6

[]
For centuries:

e 16th century: 10
e 17th century: 33
e 18th century: 4

PV248 Python 10/76

November 27, 2017

Cheat Sheet

for line in open('file’,
dict = {}

dict[key] = value

r = re.compile(r"(.*):")
m = r.match("foo: bar")
if m 1s None: continue
print m.group(1)

for k, v 1n dict.items()
print "%d, %d" % (12, 1337)

PV248 Python 11/76

r')

read lines

an empty dictionary

set a value in a dictionary
compile a regexp

match a string

match failed, loop again
extract a capture

iterate a dictionary

print some numbers

November 27, 2017

Part 2: Databases & SQL

PV248 Python 12/76 November 27, 2017

SQLite

e lightweightin-process SQL engine

e the entire database is in a single file
e convenient python module, sqlite3
e stepping stone for a “real” database

Other Databases

e postgresql (psycopg?2, ...)
e mysql / mariadb (mysql-python, mysqgl-connector, ...
e big & expensive: Oracle (cx oracle), DB2 (pyDB2)

PV248 Python 13/76 November 27, 2017

More Resources & Stuff to Look Up

e SQL:https://www.w3schools.com/sql/

e https://docs.python.org/3/library/sqlite3.html
e Python Database API: PEP 249

e Object-Relational Mapping

e SQLAlchemy: constructing portable SQL

e SQL Injection

PV248 Python 14/76 November 27, 2017

Database Structure

e definedinscorelib.sqgl (see study materials)

e importwith: sqlite3 scorelib.dat < scorelib.sql
e youcan rm scorelib.dat any time to start over

e consult commentsinscorelib.sql

e do not store duplicate rows

PV248 Python 15/76 November 27, 2017

Python Objects

e class Foo,with inheritance: class Bar(Foo)

e initialisation: init (self, ...)

e calling super-class methods: super().method(param)
e youcanuse super() tocall parent's init

e objectvariables are createdin init ,notinclass

PV248 Python 16/76 November 27, 2017

Python Objects (cont'd)

don’t forget sel !

self.variable = 3 sets the object variable
different from variable = 3

set up your variablesin init

methods take sel f as an explicit argument

PV248 Python 17/76

November 27, 2017

Exercise 2

e createanempty scorelib.dat from scorelib.sql

e fetchscorelib-import.py as a starting point

e part1: import composers & editors into the database
— use the pre-made class Person for this
— finish the implementation of its init
— use regular expressions (cf. Exercise 1)
— string.split() may come in handy

PV248 Python 18/76 November 27, 2017

Exercise 2 (cont'd)

e part 2: import scores

implement a Score class similar to Person

authors should be stored as a list of Person objects
also fill in the score author table

think about how would you de-duplicate score rows

e part 3: the rest of the import

PV248 Python

details in scorelib.sql
finish at home (you might need this later)

19/76 November 27, 2017

SQL Cheat Sheet

e INSERT INTO table (cl, c2) VALUES (vl1, v2)
e SELECT (c1, c2) FROM table WHERE cl = "foo"
sqlite3 Cheats

e conn = sglite3.connect("scorelib.dat")

e Cur = conn.cursor()

e cur.execute("... values (?, ?)", (foo, bar))
e conn.commit() (don’tforgetto do this)

PV248 Python 20/76 November 27, 2017

Part 3: SQL Redux & JSON

PV248 Python 21/76 November 27, 2017

JSON

structured data format

atoms: integers, strings, booleans
objects (dictionaries), arrays (lists)
widely used around the web &c.
simple (compared to XML or YAML)

PV248 Python 22/76

November 27, 2017

JSON: Example
{

-

PV248 Python 23/76 November 27, 2017

JSON: Writing

printing JSON seems straightforward enough

but: double quotes in strings

strings must be properly \-escaped during output
also pesky commas

keeping track of indentation for human readability
better use an existing library: import json

PV248 Python 24/76 November 27, 2017

JSON in Python

e json.dumps = short for dump to string
e python dict/list/str/... data comes in
e astring with valid JSON comes out

Workflow

e just convert everything to dict’s and lists
e run json.dumps or json.dump(data, file)

PV248 Python 25/76 November 27, 2017

Python Example

d = {}

dl[1 =1]
d[] =

df 1 = { 1: , 2 }
json.dump(d, sys.stdout, indent=4)

Beware: keys are always strings in JSON

PV248 Python 26/76 November 27, 2017

Exercise 3: Preliminaries

e pulldatafrom scorelib.dat using SQL

e print the results as (nicely formatted) JSON

e getinputfrom sys.argv (youneed to import sys)
— note that sys.argv[0] is the program name

e run as, for instance: python search.py Bach

PV248 Python 27/76 November 27, 2017

Exercise 3: Part 1

e writeascriptgetprint.py

e theinputisa print number

e the outputis a list of composers

e you will need to use SQL joins

e select ... from person join score authors
on person.id = score author.composer
where print.id = ?

e hint: the result of cursor.execute is iterable

PV248 Python 28/76 November 27, 2017

Exercise 3: Part 2

e write a script search.py

e theinputisa composer name (substring)

e the outputis alist of all matching composers
e along with all their scores in the database

e optionally also with print numbers

e ... where person.name like "%Bach%"

PV248 Python 29/76 November 27, 2017

Part 4: Plotting with Bokeh

PV248 Python 30/76 November 27, 2017

Preliminaries: Parsing J[SON

e 1mport json

e json.load isthe counterpartto json.dump from last time
— de-serialise data from an open file
— Dbuilds lists, dictionaries, etc.

e json.loads corresponds to json.dumps

PV248 Python 31/76 November 27, 2017

Bokeh

e alibrary for plotting data in python

e notincluded in the default python install

e (inshell) $ pip3 install --user bokeh

e from bokeh.plotting import figure, show

PV248 Python 32/76 November 27, 2017

A Simple Bar Plot

from bokeh.plotting import figure, show

p = figure(x range = (-1,10))

p.vbar(x = [0, 1], top = [25, 50], width = 0.7)
show(p)

PV248 Python 33/76 November 27, 2017

A Simple Pie Chart

from bokeh.plotting import figure,
from numpy import pi

p = figure(x range = (-10,10))
p.wedge(x = 0, y = 0, radius = 5,
start angle = [1/4 * pi,
end angle = [6/4 * pi,
color = [
show(p)

4

PV248 Python 34/76

show

6/4 * p1i |,
1/4 * p1i],

November 27, 2017

Creating Data Sources

from bokeh.models import ColumnDataSource
src = ColumnDataSource(data = {
[1/4 * pi, 6/4 * pi |,
[6/4 * pi, 1/4 * pi],
[; 1,
[, 1 })

Notice the label column - this will become the legend.

PV248 Python 35/76 November 27, 2017

Using Data Sources

from bokeh.plotting import figure
p = figure()
p.wedge(x = 0, y = 0, radius = 5,
start angle =)
end angle =)
color =)
legend =)
source = src)

PV248 Python 36/76 November 27, 2017

Exercise 4

e grabelection.json from study materials
e part1: load the data and create a bar plot
— bigger parties havea 'color' key in the JSON
— theyalso havea 'short' key for the acronym
— set up fallbacks for both (either may be missing)

PV248 Python 37/76 November 27, 2017

Exercise 4 (cont'd)

e part 2: summarise the below-one-percent parties
— only create a single bar for those
— add a legend using the short names

e part 3: make a pie chart with the results

e optional: count the share of those who abstained
— include them as a separate slice in the pie chart

PV248 Python 38/76 November 27, 2017

Part 5: Serving HTTP

PV248 Python 39/76 November 27, 2017

Hyper-Text Transfer Protocol

e originally a simple text-based, stateless protocol
e however
— SSL/TLS, cryptography (https)
— pipelining (somewhat stateful)
— cookies (somewhat stateful in a different way)
e typically between client (browser) and a front-end server
e butalso as a back-end protocol (web server to app server)

PV248 Python 40/76 November 27, 2017

Request Anatomy

e request type (see below)
e header (text-based, like e-mail)
e content

Request Types

e GET - asks the server to send a resource
e HEAD - like GET but only send back headers
e POST -send data to the server

PV248 Python 41/76

November 27, 2017

Python and HTTP

e both client and server functionality
— 1import http.client
— 1import http.server

e TLS/SSL wrappers are also available
— 1mport ssl

e synchronous by default

e async available (next time)

PV248 Python 42/76 November 27, 2017

Serving Requests

derive from BaseHTTPRequestHandler
implementa do GET method

this gets called whenever the client does a GET
also available: do HEAD, do POST, etc.

pass the class (not an instance) to HTTPServer

PV248 Python 43/76

November 27, 2017

Serving Requests (cont’d)

e HTTPServer creates a new instance of your Handler
e the BaseHTTPRequestHandler machinery runs
e itcallsyour do GET etc. method
e request data is available in instance variables
— self.path, self.headers

PV248 Python 44/76 November 27, 2017

Talking to the Client

HTTP responses start with a response code

— self.send response(200, 'OK')

the headers follow (set at least Content-Type)

— self.send header('Connection', 'close')
headers and the content need to be separated

— self.end headers()

finally, send the content by writing to self.wfile

PV248 Python 45/76 November 27, 2017

Sending Content

e self.wfileisan open file

e ithasawrite() method which you can use

e sockets only accept byte sequences, not str

e use the bytes built-in function to convert str to bytes

PV248 Python 46/76 November 27, 2017

Exercise 5

e implementa simple HTTP server

— listen on a high port (e.g. 8000)

— point your browser to http://localhost: 8000/
e part 1: serve some static text (or HTML)
e part 2: get & print back some data from the URL

— e.g. when serving http://localhost:8000/file. txt
— return “you asked for file.txt”

Reminder: https://docs.python.org/3/library

PV248 Python 47/76 November 27, 2017

Part 6: A Simple Web Interface

PV248 Python 48/76 November 27, 2017

Parsing URLSs

e import urllib.parse
e urlparse - parses the URL

— eg.url = "/foo?bar=1"

— urlparse(url).query gives bar=1
e parse s - parses the query string

— loads up the key-value pairs intoa dict

PV248 Python 49/76 November 27, 2017

Building Strings

e str() -turnsan objectinto a string
e the % operator: printf-style formatting
"%s</1i>" % (item,)
e the + operator (concatenation)
e triple-quote literals for long/multiline strings
— template = """<html>... %s ...</html>"""
— html = template % (...)

PV248 Python 50/76 November 27, 2017

Exercise 6

respond to GET /result?g=search+term&f=json

the functionality is the same as search.py in Exercise 3
part 1: return JSON for the result

— only if f=json is in the query string

— you can test with curl orwget

part 2: format the output as HTML

— only if f=html is in the query string

part 3: generate a simple web form on GET /

— submit goes to the above (with f=html)

PV248 Python 51/76 November 27, 2017

Part 7: Basic Linear Algebra with NumPy

PV248 Python 52/76 November 27, 2017

Computing in Python

Python code is generally slow
and not very memory-efficient either
hence not suitable for number crunching

NumPy provides compact array data type
along with a whole lot of C code to do math
— uses LAPACK in the backend

much faster than doing math in pure Python

PV248 Python 53/76 November 27, 2017

What can NumPy do for you?

e matrices and linear algebra

multiplication, inversion
eigenvalues and eigenvectors
linear equation solver

e standard math function toolkit

PV248 Python

trigonometric & hyperbolic
exponentials and logarithms
and so on...

handles complex numbers

54/76

November 27, 2017

What can NumPy do for you? (cont'd)

discrete Fourier transform

— useful in signal processing

a statistical toolkit

— averages, medians

— variance, standard deviation

— histograms

polynomials

— Dbasic algebra and calculus

— least square fitting

random sampling and distributions

PV248 Python 55/76

November 27, 2017

Plotting

e bokeh integrates with NumPy
e and so does matplotlib

Why Plots?

e especially useful for measurement data
e and corresponding regressions

PV248 Python 56/76 November 27, 2017

Documentation

e asusual, read online docs for the package
— https://numpy.org/

e also: help() in the interactive interpreter
— useas: from numpy import linalg
— then type help(linalg.det)

PV248 Python 57/76 November 27, 2017

Entering Data

e mostdatais stored in numpy.array
e can be constructed from froma list
— alist of list for 2D arrays
e ordirectly loaded from / stored to a file
— binary: numpy. load, numpy.save
— text: numpy. loadtxt, numpy.savetxt

PV248 Python 58/76 November 27, 2017

Exercise 7

e part 1: basic use
— load a matrix from a text file
— compute the determinant and inverse
— both are available in numpy . Linalg
e part 2: equations
— load the coefficients like in part 1
— use linalg.solve
— make sure you understand the meaning

PV248 Python 59/76 November 27, 2017

Exercise 7 (cont'd)

e part 3: nice equations
— parse a human-readable system of equations
— variables are letters, coefficients are numbers

— only + and — are allowed

— print the solution (using variable names)

2 X + 3y
X - y
solution:

PV248 Python

X

5
0

60/76

November 27, 2017

Part 8: Animations with Pygame

PV248 Python 61/76 November 27, 2017

Pygame and SDL

e SDL = Simple DirectMedia Layer
e an easy-to-use library for interactive media
— 2D graphics and animation
— audio output
— input handling
— can be combined with OpenGL
e nota fancy engine for building complicated games

PV248 Python 62/76 November 27, 2017

Pygame Components

e from pygame import display, draw, time, event

display - putting your graphics on the screen
draw - simple 2D shapes (lines, circles, etc.)
time - clocks and frame rate

event — reacting to user inputs

e there’s alot more, but we won't need it today

PV248 Python

see https://pygame.org for docs

63/76 November 27, 2017

Setting up Graphics
e screen = display.set mode([800, 600])
— screen is a surface that you can draw on
— double buffered by default
e display.flip() swaps the 2 buffers
e everything else is done via the surface (screen)

PV248 Python 64/76 November 27, 2017

Drawing Things
e screen.fill(colour) clears the surface
— screen always refers to the off-screen buffer
e draw.line,draw.circle, etc.
— the first parameter is the surface
— will be just screen in our case
— then colour and geometry parameters

PV248 Python 65/76 November 27, 2017

Example

screen = display.set mode([800, 600])
screen.fill([O0, 0, 0O])

colour = [200, 100, 100]

center = [400, 300]

radius = 50

draw.circle(screen, colour, center, radius, 1)
display.flip()

time.wait (2000)

PV248 Python 66/76 November 27, 2017

Animation and Time

e repeat forever
— draw a picture in the off-screen buffer
— wait until the next frame should be shown
— flip buffers
e use a timer for the wait
— clock = time.Clock()
— clock.tick(60)
— this caps the frame rate at 60 frames per second

PV248 Python 67/76 November 27, 2017

Events

e Kkeyboard, mouse, joysticks and so on

e events are queued by the library

e ev = event.poll() gives you the next event
— ev.typeispygame.NOEVENT if the queue is empty
— pygame.KEYDOWN tells you a key was pressed

PV248 Python 68/76 November 27, 2017

Exercise 8: Raindrops / Bubbles

do a screen-saver-like animation at 60 fps
draw expanding circles on the screen

— put them in random locations

— expansion at 1 pixel per frame works nicely
remove circles when they get too big

add new circles as old ones disappear

— 1 new circle per frame works

quit when the user hits a key

PV248 Python 69/76

November 27, 2017

Part 9: Testing and Debugging

PV248 Python 70/76 November 27, 2017

The Python Debugger

run as python -m pdb program.py
there’s a built-in help command
next steps through the program
break to set a breakpoint

cont to run until end or a breakpoint

PV248 Python 71/76

November 27, 2017

Writing Unit Tests

from unittest import TestCase

derive your test class from TestCase

put test code into methods named test *
run with python -m unittest program.py
— add - v for more verbose output

PV248 Python 72/76

November 27, 2017

Unit Test Example

from unittest import TestCase

class TestArith(TestCase):
def test add(self):
self.assertEqual(l, 4 - 3)
def test leq(self):
self.assertTrue(3 <= 2 * 3)

PV248 Python 73/76

November 27, 2017

Exercise 9: Preliminaries

e suppose an n-dimensional space
e n + 1 points determine an n-simplex
— 3 points determine a 2D triangle
— 4 points determine a 3D tetrahedron
e pick one of the points
— subtract it from the others to get n vectors
— put the vectors into columns of an n X n matrix
e volume of an n-parallelotope is the determinant
— divide by n! to get n-simplex volume

PV248 Python 74/76 November 27, 2017

Exercise 9: Part 1

o startwithdef volume(*args): pass
e write unit tests for this volume function
e check with a few obvious examples
— it’'s enough to check in 2D and 3D
— do atleast 4-5 distinct cases
e also check behaviour for invalid inputs
— mismatched number of points vs dimension
— extraneous components in points

PV248 Python 75/76 November 27, 2017

Exercise 9: Part 2

e actually implement the volume function
— take variable number of parameters
— fordef f(*args),argsisatuple

e compute n-simplex volume
— only makes sense for 3 or more points
— use numpy to do the math

e check that the unit tests pass

PV248 Python 76/76 November 27, 2017

