
PV248 Python

Petr Ročkai

PV248 Python 1/76 November 27, 2017

Disclaimer

• I am not a Python programmer

• please don’t ask sneaky language-lawyer questions

Goals

• let’s learn to use Python in practical situations

• have a look at existing packages and what they can do for us

• code up some cool stuff & have fun

Organisation

• I’m in India next Monday, Mr. Kaplan will come instead

• starting 9th of Oct, we can start at 8:30 (let’s have a vote)

PV248 Python 2/76 November 27, 2017

Stuff We Could Try

• working with text, regular expressions

• using the pdb debugger

• plotting stuff with bokeh (https://bokeh.pydata.org)

• talking to SQL databases

• talking to HTTP servers

• being an HTTP server

• implementing a JSON-based REST API

• parsing YAML and/or JSON data

• … (suggestions welcome)

PV248 Python 3/76 November 27, 2017

Some Resources

• https://docs.python.org/3/ (obviously)

• https://github.com/VerosK/python-pv248

• https://msivak.fedorapeople.org/python/

• study materials in IS

• …

PV248 Python 4/76 November 27, 2017

Part 1: Text & Regular Expressions

PV248 Python 5/76 November 27, 2017

Reading Input

• opening ϐiles: open('scorelib.txt', 'r')

• ϐiles can be iterated

f = open('scorelib.txt', 'r')

for line in f:

print line

PV248 Python 6/76 November 27, 2017

Regular Expressions

• compiling: r = re.compile(r"Composer: (.*)")

• matching: m = r.match("Composer: Bach, J. S.")

• extracting captures: print m.group(1)

− prints Bach, J. S.

• substitutions: s2 = re.sub(r"\s*$", '', s1)

− strips all trailing whitespace in s1

Other String Operations

• better whitespace stripping: s2 = s1.strip()

• splitting: str.split(';')

PV248 Python 7/76 November 27, 2017

Dictionaries

• associative arrays: map (e.g.) strings to numbers

• nice syntax: dict = { 'foo': 1, 'bar': 3 }

• nice & easy to work with

• can be iterated: for k, v in dict.items()

Counters

• from collections import Counter

• like a dictionary, but the default value is 0

• ctr = Counter()

• compare ctr['baz'] += 1with dict

PV248 Python 8/76 November 27, 2017

Exercise 1: Input

• get yourself a git/mercurial/darcs repository

• grab input data (scorelib.txt) from study materials

• read and process the text ϐile

• use regular expressions to extract data

• use dictionaries to collect stats

• beware! hand-written, somewhat irregular data

PV248 Python 9/76 November 27, 2017

Exercise 1: Output

• print some interesting statistics

− howmany pieces by each composer?

− howmany pieces composed in a given century?

− howmany in the key of c minor?

• bonus if you are bored: searching

− list all pieces in a given key

− list pieces featuring a given instrument (say, bassoon)

PV248 Python 10/76 November 27, 2017

Exercise 1: Example Output

• Telemann, G. P.: 68

• Bach, J. S.: 79

• Bach, J. C.: 6

• …

For centuries:

• 16th century: 10

• 17th century: 33

• 18th century: 4

PV248 Python 11/76 November 27, 2017

Cheat Sheet

for line in open('file', 'r') read lines

dict = {} an empty dictionary

dict[key] = value set a value in a dictionary

r = re.compile(r"(.*):") compile a regexp

m = r.match("foo: bar") match a string

if m is None: continue match failed, loop again

print m.group(1) extract a capture

for k, v in dict.items() iterate a dictionary

print "%d, %d" % (12, 1337) print some numbers

PV248 Python 12/76 November 27, 2017

Part 2: Databases & SQL

PV248 Python 13/76 November 27, 2017

SQLite

• lightweight in-process SQL engine

• the entire database is in a single ϐile

• convenient python module, sqlite3

• stepping stone for a “real” database

Other Databases

• postgresql (psycopg2,…)

• mysql / mariadb (mysql-python, mysql-connector,…)

• big & expensive: Oracle (cx_oracle), DB2 (pyDB2)

PV248 Python 14/76 November 27, 2017

More Resources & Stuff to Look Up

• SQL: https://www.w3schools.com/sql/

• https://docs.python.org/3/library/sqlite3.html

• Python Database API: PEP 249

• Object-Relational Mapping

• SQLAlchemy: constructing portable SQL

• SQL Injection

PV248 Python 15/76 November 27, 2017

Database Structure

• deϐined in scorelib.sql (see study materials)

• import with: sqlite3 scorelib.dat < scorelib.sql

• you can rm scorelib.dat any time to start over

• consult comments in scorelib.sql

• do not store duplicate rows

PV248 Python 16/76 November 27, 2017

Python Objects

• class Foo, with inheritance: class Bar(Foo)

• initialisation: __init__(self, ...)

• calling super-class methods: super().method(param)

• you can use super() to call parent’s __init__

• object variables are created in __init__, not in class

PV248 Python 17/76 November 27, 2017

Python Objects (cont’d)

• don’t forget self!

• self.variable = 3 sets the object variable

• different from variable = 3

• set up your variables in __init__

• methods take self as an explicit argument

PV248 Python 18/76 November 27, 2017

Exercise 2

• create an empty scorelib.dat from scorelib.sql

• fetch scorelib-import.py as a starting point

• part 1: import composers & editors into the database

− use the pre-made class Person for this

− ϐinish the implementation of its __init__

− use regular expressions (cf. Exercise 1)

− string.split()may come in handy

PV248 Python 19/76 November 27, 2017

Exercise 2 (cont’d)

• part 2: import scores

− implement a Score class similar to Person

− authors should be stored as a list of Person objects

− also ϐill in the score_author table

− think about how would you de-duplicate score rows

• part 3: the rest of the import

− details in scorelib.sql

− ϐinish at home (you might need this later)

PV248 Python 20/76 November 27, 2017

SQL Cheat Sheet

• INSERT INTO table (c1, c2) VALUES (v1, v2)

• SELECT (c1, c2) FROM table WHERE c1 = "foo"

sqlite3 Cheats

• conn = sqlite3.connect("scorelib.dat")

• cur = conn.cursor()

• cur.execute("... values (?, ?)", (foo, bar))

• conn.commit() (don’t forget to do this)

PV248 Python 21/76 November 27, 2017

Part 3: SQL Redux & JSON

PV248 Python 22/76 November 27, 2017

JSON

• structured data format

• atoms: integers, strings, booleans

• objects (dictionaries), arrays (lists)

• widely used around the web &c.

• simple (compared to XML or YAML)

PV248 Python 23/76 November 27, 2017

JSON: Example
{

"composer": ["Bach, Johann Sebastian"],

"key": "g",

"voices": {

"1": "oboe",

"2": "bassoon"

}

}

PV248 Python 24/76 November 27, 2017

JSON: Writing

• printing JSON seems straightforward enough

• but: double quotes in strings

• strings must be properly \-escaped during output

• also pesky commas

• keeping track of indentation for human readability

• better use an existing library: import json

PV248 Python 25/76 November 27, 2017

JSON in Python

• json.dumps= short for dump to string

• python dict/list/str/… data comes in

• a string with valid JSON comes out

Workϐlow

• just convert everything to dict’s and lists

• run json.dumps or json.dump(data, file)

PV248 Python 26/76 November 27, 2017

Python Example

d = {}

d["composer"] = ["Bach, Johann Sebastian"]

d["key"] = "g"

d["voices"] = { 1: "oboe", 2: "bassoon" }

json.dump(d, sys.stdout, indent=4)

Beware: keys are always strings in JSON

PV248 Python 27/76 November 27, 2017

Exercise 3: Preliminaries

• pull data from scorelib.dat using SQL

• print the results as (nicely formatted) JSON

• get input from sys.argv (you need to import sys)

− note that sys.argv[0] is the program name

• run as, for instance: python search.py Bach

PV248 Python 28/76 November 27, 2017

Exercise 3: Part 1

• write a script getprint.py

• the input is a print number

• the output is a list of composers

• you will need to use SQL joins

• select ... from person join score_authors

on person.id = score_author.composer ...

where print.id = ?

• hint: the result of cursor.execute is iterable

PV248 Python 29/76 November 27, 2017

Exercise 3: Part 2

• write a script search.py

• the input is a composer name (substring)

• the output is a list of all matching composers

• along with all their scores in the database

• optionally also with print numbers

• ... where person.name like "%Bach%"

PV248 Python 30/76 November 27, 2017

Part 4: Plotting with Bokeh

PV248 Python 31/76 November 27, 2017

Preliminaries: Parsing JSON

• import json

• json.load is the counterpart to json.dump from last time

− de-serialise data from an open ϐile

− builds lists, dictionaries, etc.

• json.loads corresponds to json.dumps

PV248 Python 32/76 November 27, 2017

Bokeh

• a library for plotting data in python

• not included in the default python install

• (in shell) $ pip3 install --user bokeh

• from bokeh.plotting import figure, show

PV248 Python 33/76 November 27, 2017

A Simple Bar Plot

from bokeh.plotting import figure, show

p = figure(x_range = (-1,10))

p.vbar(x = [0, 1], top = [25, 50], width = 0.7)

show(p)

PV248 Python 34/76 November 27, 2017

A Simple Pie Chart

from bokeh.plotting import figure, show

from numpy import pi

p = figure(x_range = (-10,10))

p.wedge(x = 0, y = 0, radius = 5,

start_angle = [1/4 * pi, 6/4 * pi],

end_angle = [6/4 * pi, 1/4 * pi],

color = ["purple", "darkblue"])

show(p)

PV248 Python 35/76 November 27, 2017

Creating Data Sources

from bokeh.models import ColumnDataSource

src = ColumnDataSource(data = {

'start': [1/4 * pi, 6/4 * pi],

'end': [6/4 * pi, 1/4 * pi],

'color': ["purple", "darkblue"],

'label': ["mlem", "purr"] })

Notice the label column – this will become the legend.

PV248 Python 36/76 November 27, 2017

Using Data Sources

from bokeh.plotting import figure

p = figure()

p.wedge(x = 0, y = 0, radius = 5,

start_angle = 'start',

end_angle = 'end',

color = 'color',

legend = 'label',

source = src)

PV248 Python 37/76 November 27, 2017

Exercise 4

• grab election.json from study materials

• part 1: load the data and create a bar plot

− bigger parties have a 'color' key in the JSON

− they also have a 'short' key for the acronym

− set up fallbacks for both (either may be missing)

PV248 Python 38/76 November 27, 2017

Exercise 4 (cont’d)

• part 2: summarise the below-one-percent parties

− only create a single bar for those

− add a legend using the short names

• part 3: make a pie chart with the results

• optional: count the share of those who abstained

− include them as a separate slice in the pie chart

PV248 Python 39/76 November 27, 2017

Part 5: Serving HTTP

PV248 Python 40/76 November 27, 2017

Hyper-Text Transfer Protocol

• originally a simple text-based, stateless protocol

• however

− SSL/TLS, cryptography (https)

− pipelining (somewhat stateful)

− cookies (somewhat stateful in a different way)

• typically between client (browser) and a front-end server

• but also as a back-end protocol (web server to app server)

PV248 Python 41/76 November 27, 2017

Request Anatomy

• request type (see below)

• header (text-based, like e-mail)

• content

Request Types

• GET – asks the server to send a resource

• HEAD – like GET but only send back headers

• POST – send data to the server

PV248 Python 42/76 November 27, 2017

Python and HTTP

• both client and server functionality

− import http.client

− import http.server

• TLS/SSL wrappers are also available

− import ssl

• synchronous by default

• async available (next time)

PV248 Python 43/76 November 27, 2017

Serving Requests

• derive from BaseHTTPRequestHandler

• implement a do_GETmethod

• this gets called whenever the client does a GET

• also available: do_HEAD, do_POST, etc.

• pass the class (not an instance) to HTTPServer

PV248 Python 44/76 November 27, 2017

Serving Requests (cont’d)

• HTTPServer creates a new instance of your Handler

• the BaseHTTPRequestHandlermachinery runs

• it calls your do_GET etc. method

• request data is available in instance variables

− self.path, self.headers

PV248 Python 45/76 November 27, 2017

Talking to the Client

• HTTP responses start with a response code

− self.send_response(200, 'OK')

• the headers follow (set at least Content-Type)

− self.send_header('Connection', 'close')

• headers and the content need to be separated

− self.end_headers()

• ϐinally, send the content by writing to self.wfile

PV248 Python 46/76 November 27, 2017

Sending Content

• self.wfile is an open ϐile

• it has a write()method which you can use

• sockets only accept byte sequences, not str

• use the bytes built-in function to convert str to bytes

PV248 Python 47/76 November 27, 2017

Exercise 5

• implement a simple HTTP server

− listen on a high port (e.g. 8000)

− point your browser to http://localhost:8000/

• part 1: serve some static text (or HTML)

• part 2: get & print back some data from the URL

− e.g. when serving http://localhost:8000/file.txt

− return “you asked for file.txt”

Reminder: https://docs.python.org/3/library

PV248 Python 48/76 November 27, 2017

Part 6: A Simple Web Interface

PV248 Python 49/76 November 27, 2017

Parsing URLs

• import urllib.parse

• urlparse – parses the URL

− e.g. url = "/foo?bar=1"

− urlparse(url).query gives bar=1

• parse_qs – parses the query string

− loads up the key-value pairs into a dict

PV248 Python 50/76 November 27, 2017

Building Strings

• str() – turns an object into a string

• the % operator: printf-style formatting

− "%s" % (item,)

• the + operator (concatenation)

• triple-quote literals for long/multiline strings

− template = """<html>... %s ...</html>"""

− html = template % (...)

PV248 Python 51/76 November 27, 2017

Exercise 6

• respond to GET /result?q=search+term&f=json

• the functionality is the same as search.py in Exercise 3

• part 1: return JSON for the result

− only if f=json is in the query string

− you can test with curl or wget

• part 2: format the output as HTML

− only if f=html is in the query string

• part 3: generate a simple web form on GET /

− submit goes to the above (with f=html)

PV248 Python 52/76 November 27, 2017

Part 7: Basic Linear Algebra with NumPy

PV248 Python 53/76 November 27, 2017

Computing in Python

• Python code is generally slow

• and not very memory-efϐicient either

• hence not suitable for number crunching

• NumPy provides compact array data type

• along with a whole lot of C code to do math

− uses LAPACK in the backend

• much faster than doing math in pure Python

PV248 Python 54/76 November 27, 2017

What can NumPy do for you?

• matrices and linear algebra

− multiplication, inversion

− eigenvalues and eigenvectors

− linear equation solver

• standard math function toolkit

− trigonometric & hyperbolic

− exponentials and logarithms

− and so on…

− handles complex numbers

PV248 Python 55/76 November 27, 2017

What can NumPy do for you? (cont’d)

• discrete Fourier transform

− useful in signal processing

• a statistical toolkit

− averages, medians

− variance, standard deviation

− histograms

• polynomials

− basic algebra and calculus

− least square ϐitting

• random sampling and distributions

PV248 Python 56/76 November 27, 2017

Plotting

• bokeh integrates with NumPy

• and so does matplotlib

Why Plots?

• especially useful for measurement data

• and corresponding regressions

PV248 Python 57/76 November 27, 2017

Documentation

• as usual, read online docs for the package

− https://numpy.org/

• also: help() in the interactive interpreter

− use as: from numpy import linalg

− then type help(linalg.det)

PV248 Python 58/76 November 27, 2017

Entering Data

• most data is stored in numpy.array

• can be constructed from from a list

− a list of list for 2D arrays

• or directly loaded from / stored to a ϐile

− binary: numpy.load, numpy.save

− text: numpy.loadtxt, numpy.savetxt

PV248 Python 59/76 November 27, 2017

Exercise 7

• part 1: basic use

− load a matrix from a text ϐile

− compute the determinant and inverse

− both are available in numpy.linalg

• part 2: equations

− load the coefϐicients like in part 1

− use linalg.solve

− make sure you understand the meaning

PV248 Python 60/76 November 27, 2017

Exercise 7 (cont’d)

• part 3: nice equations

− parse a human-readable system of equations

− variables are letters, coefϐicients are numbers

− only+ and− are allowed

− print the solution (using variable names)

2 x + 3 y = 5

x - y = 0

solution: x = 1, y = 1

PV248 Python 61/76 November 27, 2017

Part 8: Animations with Pygame

PV248 Python 62/76 November 27, 2017

Pygame and SDL

• SDL = Simple DirectMedia Layer

• an easy-to-use library for interactive media

− 2D graphics and animation

− audio output

− input handling

− can be combined with OpenGL

• not a fancy engine for building complicated games

PV248 Python 63/76 November 27, 2017

Pygame Components

• from pygame import display, draw, time, event

− display – putting your graphics on the screen

− draw – simple 2D shapes (lines, circles, etc.)

− time – clocks and frame rate

− event – reacting to user inputs

• there’s a lot more, but we won’t need it today

− see https://pygame.org for docs

PV248 Python 64/76 November 27, 2017

Setting up Graphics

• screen = display.set_mode([800, 600])

− screen is a surface that you can draw on

− double buffered by default

• display.flip() swaps the 2 buffers

• everything else is done via the surface (screen)

PV248 Python 65/76 November 27, 2017

Drawing Things

• screen.fill(colour) clears the surface

− screen always refers to the off-screen buffer

• draw.line, draw.circle, etc.

− the ϐirst parameter is the surface

− will be just screen in our case

− then colour and geometry parameters

PV248 Python 66/76 November 27, 2017

Example

screen = display.set_mode([800, 600])

screen.fill([0, 0, 0])

colour = [200, 100, 100]

center = [400, 300]

radius = 50

draw.circle(screen, colour, center, radius, 1)

display.flip()

time.wait(2000) # milliseconds

PV248 Python 67/76 November 27, 2017

Animation and Time

• repeat forever

− draw a picture in the off-screen buffer

− wait until the next frame should be shown

− ϐlip buffers

• use a timer for the wait

− clock = time.Clock()

− clock.tick(60)

− this caps the frame rate at 60 frames per second

PV248 Python 68/76 November 27, 2017

Events

• keyboard, mouse, joysticks and so on

• events are queued by the library

• ev = event.poll() gives you the next event

− ev.type is pygame.NOEVENT if the queue is empty

− pygame.KEYDOWN tells you a key was pressed

PV248 Python 69/76 November 27, 2017

Exercise 8: Raindrops / Bubbles

• do a screen-saver-like animation at 60 fps

• draw expanding circles on the screen

− put them in random locations

− expansion at 1 pixel per frame works nicely

• remove circles when they get too big

• add new circles as old ones disappear

− 1 new circle per frame works

• quit when the user hits a key

PV248 Python 70/76 November 27, 2017

Part 9: Testing and Debugging

PV248 Python 71/76 November 27, 2017

The Python Debugger

• run as python -m pdb program.py

• there’s a built-in help command

• next steps through the program

• break to set a breakpoint

• cont to run until end or a breakpoint

PV248 Python 72/76 November 27, 2017

Writing Unit Tests

• from unittest import TestCase

• derive your test class from TestCase

• put test code into methods named test_*

• run with python -m unittest program.py

− add -v for more verbose output

PV248 Python 73/76 November 27, 2017

Unit Test Example

from unittest import TestCase

class TestArith(TestCase):

def test_add(self):

self.assertEqual(1, 4 - 3)

def test_leq(self):

self.assertTrue(3 <= 2 * 3)

PV248 Python 74/76 November 27, 2017

Exercise 9: Preliminaries

• suppose an 𝑛-dimensional space

• 𝑛 + 1 points determine an 𝑛-simplex

− 3 points determine a 2D triangle

− 4 points determine a 3D tetrahedron

• pick one of the points

− subtract it from the others to get 𝑛 vectors

− put the vectors into columns of an 𝑛 × 𝑛matrix

• volume of an 𝑛-parallelotope is the determinant

− divide by 𝑛! to get 𝑛-simplex volume

PV248 Python 75/76 November 27, 2017

Exercise 9: Part 1

• start with def volume(*args): pass

• write unit tests for this volume function

• check with a few obvious examples

− it’s enough to check in 2D and 3D

− do at least 4–5 distinct cases

• also check behaviour for invalid inputs

− mismatched number of points vs dimension

− extraneous components in points

PV248 Python 76/76 November 27, 2017

Exercise 9: Part 2

• actually implement the volume function

− take variable number of parameters

− for def f(*args), args is a tuple

• compute 𝑛-simplex volume

− only makes sense for 3 or more points

− use numpy to do the math

• check that the unit tests pass

