Exercise 1 Suppose we are given a predicate flight(From, To, Time, Price) containing information
about direct flights including the starting airport, the destination, the flight time, and the price of a
ticket. Write a Prolog program computing a predicate travel(From, To, Stops, Time, Price) indicating
all possibilities to travel from one city to another using one or several flights.

Exercise2 Write a Prolog predicate fib(N, X)) computing the Fibonacci sequence. Evaluate fib(3, X)
and fib(N, 5).

Exercise 3 Write Prolog definitions of the following predicates.

length(List, N') N is the length of List .
append(X, Y, 2) Z is the concatenation of the lists X and Y.
reverse(X,Y) Y is the reverse of the list X .
map(X,Y) mapsalist X =[X,,..., X, t0o Y = [f(X)),..., f(Xn)].
fold_left(X,Y, Z) maps Y = [Y,,.... Y, Jto Z = f(---f(f(X, Y1), Ys) -, V).
fold_right(X, Y, Z) maps Y = [Y;,..., Y]to Z = f(Yy, f(Yay oo, (Y, X)...))).

The Prolog notation for lists is as follows:

[[X.v.z] [X)Y] [X.Y[Z].

Exercise 4 Write a naive sort function
naive_sort(X,Y) :- permute(X,Y), sorted(Y).

by implementing the relations

sorted(X) checks that the list X is sorted.
insert(X,Y,Z) if the list Z is obtained from Y by inserting X at an arbitrary position.
permute(X, Y) if the list Y is a permutation of X .

Implement merge sort using a relation

merge(X,Y,Z) merges two sorted lists X and Y into Z.
split(X,Y, Z) splits the list X into two lists Y and Z.

Exercise 5 We consider directed graphs of the form (V, E). Express the following relation in rela-
tional algebra.

(a) x and y are not connected by an edge.
(b) The edge (x, y) is part of a triangle.
(c) x has at least two neighbours.

(d) Every neighbour of x is also a neighbour of y.

Exercise 6 Evaluate the following Datalog program on the tree (V, E, P) to the right.

U< S(x,y)AW(x)AW(y)

W(x) < P(x) / 1 \)
W(x) < E(x,y) A W(y) 2 3
S(x,y) < E(z,x) NE(z,y) Ax+y 4/ \5 \6

R(x,y) < P(x)Ax =y P / \
17) 8

R(x,y) < E(x,2) AR(2,y)
R(x,y) < R(x,2) A E(z,y)

