System Identification of a Continuous-Time Linear System Jan H. van Schuppen 25 October 2018 MUINI.FI Brno, Czech Republic 1 / 5 Example Example 6.4. Case of a linear system – System specification dx(t) dt = Ax(t), x(0) = x0, y(t) = Cx(t), A =   0.0 1.0 0.0 −0.8 −0.8 0.0 0.0 0.0 −0.9   , x0 =   1.5 0.0 −0.8   , C = 1.1 −0.8 1.2 , dx = 3, dy = 1, ds = 8, t1 = 20, ∆t = 0.02, t1d = 100, tobsbegin = 13, tpast = 12, tfuture = 20, thyfuture = 4, thxo = 4. 2 / 5 Example 6.4 - Simulation system Time step 0 10 20 30 40 50 60 70 80 90 100 y -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Time series 3 / 5 Example 6.4 - Prediction of identified system Time step 0 10 20 30 40 50 60 y -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Time series Observer output 4 / 5 Example Example 6.4. Case of a linear system – Computed values Observable canonical form used for observer and for system. dxo(t) dt = Ao,ocf xo(t) + Ko[y(t) − Coxo(t)], xo(0) = xo,0, yo(t) = Co,ocf xo(t), Ao,ocf = =   0 1 0 0 0 1 −0.6070 −1.4670 −1.7104   , Aocf =   0 1 0 0 0 1 −0.7200 −1.5200 −1.7000   , Co,ocf = 1 0 0 = Cocf , Λo =   −0.4432 + i 0.7350 −0.4432 − i 0.7350 −0.8240   , Λ =   −0.4000 + i 0.8000 −0.4000 − i 0.8000 −0.9000   . 5 / 5