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2 Graph Searching and Connectivity
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Brief outline of this lecture

• Generic graph search scheme, the BFS and DFS searches.

• Connectivity, components, Menger’s theorem, 2-connected graphs.

• Minimum spanning tree problem (Jarník / Prim).

• Connectivity in directed graphs, strong components.
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2.0 Exploring a Graph

How can one read a graph?

• Being humans, we look at a picture. . .✷

• Being a computer, then what?

✷

Algorithms need to employ local-search routines on huge input graphs. ✷

• We are going to present a general scheme of searching through a graph.
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2.1 General Graph Search Scheme

This meta-algorithm works with the following data states and structures: ✷

• A vertex: having one of the states . . .

– initial – assigned at the beginning,

– discovered – after being found along an edge (stored for further processing),

– processed – after checking and/or processing all the incident edges. ✷

– (Can also be “post-processed”, after finishing all of its descendants – cf. DFS.) ✷

• An edge: having one of the states . . .

– initial – assigned at the beginning,

– processed – after it has been processed at one of its endvertices. ✷

• Stack (depository): is a supplementary data structure (a set) which

– keeps all the discovered vertices, until they have been processed, and

– (optionally) stores an access edge for every discovery of a vertex. ✷

Graph search has many variants mostly given by the way vertices are picked from the stack.
For greater generality, our scheme can record vertices together with their access edges.

Spec. programming tasks can be performed at each vertex or edge of G while processing them.



* Procházení souvislým grafem *
state = stav, stack / depository = úschovna
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Algorithm 2.1. Searching through a connected graph G.
This algorithm visits and processes every vertex and edge of a connected graph G.

state[ all vertices and edges of G ] ← initial;
stack U ← {(∅, v0)}, for any starting vertex v0 of G;

search tree T ← ∅;
while ( U 6= ∅ ) {

choose (e,v) ∈ U;

U ← U \ {(e,v)};
if (e 6= ∅) PROCESS(e;v);

if (state[v] 6= processed) {

foreach (edge f incident with v) {

w ← the opposite vertex of “f = vw”;
if (state[w] 6= processed) {

state[w] ← discovered;
U ← U ∪ {(f,w)};

}
}

PROCESS(v;e);

state[v] ← processed;
T ← T ∪ {e,v};

}
}

G is searched and processed.
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Remarks

• Algorithm 2.1 is only a general scheme, and not a complete implementation. ✷

• In particular, implementing the stack U and the procedures PROCESS() would
likely require additional (“hidden”) variables and/or data structures. ✷

• Algorithm 2.1 altogether performs O(|E(G)|) (linearly many) elementary opera-
tions, calls to ‘PROCESS()’ and updates of the stack U. ✷

• Given a particular implementation of U and PROCESS(), the general scheme can
often be simplified (such as, by avoiding duplicates in U or by using recursion).
✷

• There are no mupliple calls to ‘PROCESS(a)’ for any vertex or edge a of G.

– True for vertices a = v by ‘state[v] ← processed ’,

– and for edges a = f since one end v of f gets processed together with
adding of f into U, and then we have:

if (state[w] 6= processed ) { ... U ← U ∪ {(f,w)}; }



.Petr Hliněný, FI MU Brno, 2017 6 / 31 FI:MA010: Searching and Connectivity

Correctness of the search scheme

Theorem 2.2. Let G be a connected graph and v0 ∈ V (G) an arbitrary vertex. Then
Algorithm 2.1 on G, when started from v0, processes all the vertices and edges of G.✷

Proof.
1. Every element of G (vertex or edge) that gets into U will event. be processed:

choose (e,v) ∈ U;

if (e 6= ∅) PROCESS(e);

if (state[v] 6= processed ) { ... PROCESS(v); ...} ✷

2. If an edge f = vw ∈ E(G) gets into U , then both ends v, w will be processed:

if (state[w] 6= processed ) { ... U ← U ∪ {(f,w)}; }

Hence v already is processed at this moment and w will be processed by 1. ✷

3. Suppose there is an edge f ∈ E(G) that never gets into U . Then f is either
incident to v = v0 or, by connectivity of G, f shares an endvertex v with some
h ∈ E(G) that is closer to v0. Hence choosing f closest possible to v0, we see
that h gets into U ; (h, v) ∈ U . In either case, f will get into U via

foreach (edge f incident with v) { ... U← U∪ {(f,w)}; }

a contradiction to the assumption that f never gets into U .
✷
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Correctness. . . , II, the Search tree

Various applications of the graph search scheme, moreover, use the outcome T and
refer to it as to the search tree of G. To be math. precise, we have to justify this fact:

Proposition 2.3. The subgraph T ⊆ G computed by Algorithm 2.1 is a tree spanning
all the vertices of G. (See also further Def. 2.12.) ✷

Proof. Using induction on the number of iterations of the main cycle

while ( U 6= ∅ ) { ... ... T ← T ∪ {e,v}; } }

we prove that T is a tree spanning the set of already processed vertices.✷

• After the first iteration, T = {∅, v0} which represents a single-node tree v0. ✷

• Let, after iteration i, the induction claim hold. Iteration i+1 chooses (e, v) ∈ U ,
and if v is processed, then nothing new happens.

if (state[v] 6= processed ) { ... T ← T ∪ {e,v}; } ✷

Hence v is not processed yet, and T ← T ∪ {e, v} means we are adding to T a
new vertex v with an edge e to some existing vertex of T . Then T ∪ {e, v} is
again connected and acyclic, hence a tree, too.

✷



disconnected graph = nesouvislý graf
DFS = prohl. do hloubky, BFS = prohl. do šířky
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Variants and Applications

of the graph search scheme: while ( U nonempty) {

(*) choose (e,v) ∈ U;

......

The many variants of graph search mostly differ by the way (*) vertices are chosen
(picked up) from the stack. . .✷

• BFS breadth-first search – the stack U is a “fifo” queue

– perhaps the simplest variant, and trivially implementable. ✷

• DFS depth-first search – the stack U is a “lifo” stack

– very important to store the vertices to U multiple times→ last one “wins”.✷

• Searching a disconnected graph (in any way)

– simply repeat Alg. 2.1 with arbitrary starting vertices in the parts. . .✷

• Searching a directed graph

– in Alg. 2.1, instead of foreach (edge f incident with v), just use

foreach (arc f starting in v) . . .



“fifo” = fronta, “lifo” = zásobník
.Petr Hliněný, FI MU Brno, 2017 9 / 31 FI:MA010: Searching and Connectivity

DFS and BFS search trees

Recalling the concept of a search tree T from Proposition 2.3, the following are par-
ticularly recognized variants of it:

T of BFS (“fifo”)

s

s

s

s

ss

s

s s

s

❢v0

T of DFS (“lifo”)

s

s

s

s

ss

s

s s

s

❢v0



.Petr Hliněný, FI MU Brno, 2017 10 / 31 FI:MA010: Searching and Connectivity

Variants and Applications. . . , II

• Some slightly more involved variants (using additional implicit variables):

– testing bipartite graphs – one simply runs BFS such that it “switches sides”
with each PROCESS(e), until none or some conflict is found. (Lecture 6)

s s s s s

s s s s ✷

– Jarník’s minimum spanning tree algorithm – the stack U always offers the
vertex closest to any processed vertex. (Section 2.3) ✷

– Dijkstra’s shortest path algorithm – the stack U always offers the vertex
closest to the starting position v0. (Lecture 3)



walk = procházka v grafu, alternating = střídající
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2.2 Connectivity and Components

Recall: connected graphs are those graphs G such that, for any two vertices u, v ∈
V (G), there is a path in G between the ends u and v. ✷

Definition: A walk W of length n in a graph G is a sequence of alternating vertices
and edges

W = (v0, e1, v1, e2, v2, . . . , en, vn) , ✷

such that every its edge ei has the ends vi−1, vi, for i = 1, . . . , n.

We speak about a walk from u = v0 to vn = v, even if the graph G is undirected.

Such a sequence really is a “walk” through the graph, see for instance how an IP packet is
routed through the internet – it often repeats vertices.
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connected component = souvislá komponenta
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Components of a graph

Lemma 2.4. Let ∼ be a binary relation on the vertex set V (G) of a graph G, such
that u ∼ v if, and only if, there exists a walk in G starting in u and ending in v. Then
∼ is an equivalence relation. ✷

Proof. The relation ∼ is

• reflexive since every vertex itself forms a walk of length 0,

• symmetric since any undirected walk can be easily “reversed”, and ✷

• transitive since two walks can be concatenated at the common endvertex.
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Definition 2.5. The connected components of a graph G

are formed by the equivalence classes of the above relation ∼ (Lemma 2.4) on V (G).✷

More generally, by connected components we also mean the subgraphs induced on
these vertex set classes of ∼ .
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Connected graphs revisited

Fact: By the definition, a path in a graph is a walk without repetition of vertices.

Lemma 2.6. If there exists a walk between vertices u and v in a graph G, then there
also exists a path from u to v in this G. ✷

Proof. Among all the walks between u and v in G, we choose the (one of) shortest
walk as W ⊆ G. It is then clear that if the same vertex is repeated on W , then W

could be shortened further, a contradiction. Hence W is a path in G.
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Corollary 2.7. A graph G is connected if, and only if, G consists of at most one
connected component.



* Vyšší stupně souvislosti *
vertex- / edge-k-connected = vrcholově / hranově k-souvislý
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Higher Levels of Connectivity

Various netw. applications demand not only that a graph is connected, but that it stays
connected even after failure of a small number of nodes (vertices) or links (edges).

This can be studied in theory as “higher levels” of graph connectivity. ✷

Definition: A graph G is edge-k-connected, k > 1, if G stays connected even after
removal of any subset of ≤ k − 1 edges. ✷

Definition: A graph G is vertex-k-connected, k > 1, if G has more than k vertices
and G stays connected even after removal of any subset of ≤ k − 1 vertices.

Specially, the complete graph Kn is defined to be vertex-(n − 1)-connected but not
n-connected for n > 1, and K1 is vertex-1-connected. ✷

Graphs that are “vertex / edge-1-connected” are just connected.
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Sometimes we speak about a k-connected graph, and then we usually mean it to be
vertex-k-connected. High vertex connectivity is a (much) stronger requirement than
edge connectivity. . .



edge-disjoint paths = hranově disjunktní cesty
internally-disjoint paths = vnitřně disjunktní (tj. bez konců) cesty
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Menger’s theorem and related

Theorem 2.8. A graph G is edge-k-connected if, and only if, G has (at least) k edge-
disjoint paths between any pair of vertices (the paths may share vertices).

(Menger) A graph G is vertex-k-connected if, and only if, G has (at least) k internally-
disjoint paths between any pair of vertices (the paths may share only their ends).
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✷

A few notes:

• For k = 1 the statement is trivial (note that this holds also for K1). ✷

• For k = 2 the theorem (second part) reads:

A graph G is vertex-2-conn. iff every two vertices of G lie on a common cycle. ✷

• The full proof, for any k, will be given in Lecture 4.
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Menger’s theorem, II

Recall: A graph G is vertex-k-connected if, and only if, there exist (at least) k internally-
disjoint paths between any pair of vertices (the paths may share only their ends).

A straightforward reformulation of Theorem 2.8 is: ✷

Theorem 2.9. Assume G is a k-connected graph, k ≥ 2. Then, for every two disjoint
sets U1, U2 ⊂ V (G), |U1| = |U2| = k, there exist k pairwise disjoint paths from the
terminals of U1 to U2.

A sketch:
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s sx1 x2

add two new vertices x1, x2, each adjacent to one of U1, U2, and take the k internally-
disjoint paths from Theorem 2.8 between x1 and x2.
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More on 2-connected graphs

To better illustrate the interesting properties of highly connected graphs, we give the following
alternative characterizations of 2-connected ones. (A similar one exists for 3-conn. graphs.)

Theorem 2.10. A simple graph is 2-connected if, and only if, it can be constructed
from a cycle by “adding ears”; i.e. by iterating the operation which adds a new path (of
arbitrary length, even an edge, but not a parallel edge) between two existing vertices
of a graph.
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✷

A sketch: find the first cycle, and “grow it” to the largest possible subgraph G′ by
adding ears. A closest vertex of the graph “outside” of G′ has two connections to
G′—one a direct edge and another via a path—making together a new ear. ✷

Theorem 2.11. G is a 2-connected graph if, and only if, every two edges of G belong
to a common cycle. ✷

Proof. For two edges ei = uivi, i = 1, 2, apply Theorem 2.9 to Ui = {ui, vi}. ✷



* Problém minimální kostry *
spanning tree = kostra grafu
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2.3 Minimum Spanning Tree problem

Recall (Section 1.3); trees are “minimal connected graphs” on a given vertex set. . .

Definition 2.12. A spanning tree of a connected graph G

is a subgraph T ⊆ G such that T is a tree and V (T ) = V (G).



weighted graph = vážený či ohodnocený graf
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The MST problem formulation

Definition: A weighted graph is a pair of a graph G together with a weighting w of
the edges by real numbers w : E(G)→ R (edge lengths in this case).
A positively weighted graph (G,w) is such that w(e) > 0 for all edges e. ✷

Looking for a minimal interconnection in a graph (wrt. weights w) hence reads:

Problem 2.13. The minimum spanning tree (MST) problem
Given a weighted connected graph (G,w) with (positive) edge weights w; the problem
is to find a spanning tree T in G that minimizes the total weight. ✷Formally

MST := min
sp. tree T⊂G
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A bit of history – it all started in Brno!

• Long time ago, in the past century, the task was to connect towns and villages
in South Moravia by electric power lines of minimum total length. . .

✷

• Does it sound familiar? Yes—we have to find a minimum spanning tree in the
graph of all possible connections between these settlements. ✷

• Did it really happen? Yes, indeed, and an algorithmic solution was found in 1926
by Otakar Borůvka, a Brno mathematician. ✷

A simpler and precise algorithm of Vojtěch Jarník then followed in 1930. ✷

• Unfortunately, both there works were published only in Czech language, and so
most of the world knows only the work of Kruskal, giving another algorithm in
1956, and of Prim, who later rediscovered Jarník’s algorithm.



min-heap = halda s minimálním klíčem
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Jarník’s MST Algorithm
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Algorithm 2.14. Jarník’s (later known as Prim’s) algorithm for MST.

Given is a weighted graph (G,w) with edge weights w (which are commonly assumed
positive, but this is not necessary). ✷

• Run Algorithm 2.1 with an implementation of the step

choose (e,v) ∈ U;

such that (e, v) ∈ U minimizes w(e). ✷

• U is thus implemented as a min-heap with the key w(e) for (e, v) ∈ U . ✷

• The resulting search tree T is a minimum spanning tree of G.
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Jarník’s MST algorithm, proof

Algorithm 2.14:

• Run Algorithm 2.1 with an implementation of the step

choose (e,v) ∈ U;

such that (e, v) ∈ U minimizes w(e).

• U is thus implemented as a min-heap with the key w(e) for (e, v) ∈ U .

• The resulting search tree T is a minimum spanning tree of G.

Proof of Algorithm 2.14. We have the following setup;

• let T be the spanning tree (Proposition 2.3) computed by the algorithm, ✷

• T1 = {v0}, T2, . . . , Tn = T be the seq. of part. solutions after each iter., and

• T opt 6= T be some optimal MST solution, maximizing index k s.t. Tk ⊆ T opt.✷

Then k < n. Let {e} = E(Tk+1) \E(Tk) be the first “wrong” edge chosen by the alg.

By Corollary 1.12, T opt + e (by adding the edge e to T opt) contains exactly one cycle
C ⊆ T opt + e. Then C has at least two edges leaving V (Tk); e and some f . ✷

Now T alt = (T opt + e) \ f is a spanning tree again, and since w(f) ≥ w(e) (by the
algorithm, w(e) was minimized when choosing (e, v) ∈ U), also T alt is an optimal
MST solution. This contradicts our choice of max. k. ✷



directed walk = orientovaná procházka
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2.4 Connectivity in Directed Graphs

For start, we proceed analogously to the undirected case. . .

Definition: A directed walk W of length n in a digraph D is a sequence of alternating
vertices and oriented edges

W = (v0, e1, v1, e2, v2, . . . , en, vn) ,

such that every edge (arc) ei in W is of the form ei = (vi−1, vi).
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Lemma 2.15. If there exists a directed walk from u to v in a digraph D, then there
also exists a directed path from u to v in this D.
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weak connectivity = slabá souvislost
reachability = dosažitelnost
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Views of directed connectivity

• The weak connectivity view does not care about directions of arcs.
Not so usable or interesting. . .✷

• The reachability view is as follows:

Definition: A digraph D is out-connected if there exists a vertex v ∈ V (D) such that
for every x ∈ V (D) there is a directed walk from v to x (all vertices reachable from v).
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✷

No, this graph is not out-connected – see the right-most vertex. . .✷

• The strong (bidirectional) view builds on the following:



strong components = silné komponenty
strongly connected = silně souvislý
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Strong connectivity

Lemma 2.16. Let ≈ be a binary relation on the vertex set V (D) of a directed graph
D such that u ≈ v if, and only if, there exist two directed walks in D – one starting in
u and ending in v and the other starting in v and ending in u.

Then ≈ is an equivalence relation. ✷

Definition 2.17. The strong components of a digraph D

are formed by the equivalence classes of the above relation ≈ (Lemma 2.16) on V (D).✷

A digraph is strongly connected if it has at most one strong component.

See the four strong components in this illustration picture:
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acyclic = acyklický, condensation = kondenzace
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Condensation of a digraph

Definition: A digraph Z whose vertices are the strong components of D, and the
arcs of Z exist exactly between those pairs of distinct components of D such that D

contains an arc between them, is called a condensation of D. ✷

Definition: A digraph is acyclic (a “DAG”) if it does not contain a directed cycle.✷

Proposition 2.18. The condensation of any digraph is an acyclic digraph.
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2.5 Appendix: DFS and BFS examples

Following on Algorithm 2.1. . .

Example 2.15. An example of a breadth-first search run from the vertex a.
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Example 2.16. An example of a depth-first search run from the vertex a.
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2.6 Appendix: Eulerian Trail

Perhaps the oldest recorded result of graph theory comes from famous Leonhard Eu-
ler— it is the “7 bridges of Königsberg” (Královec, now Kaliningrad) problem.

So what was the problem? The city majors that time wanted to walk through the city
while crossing each of the 7 bridges exactly once. . .
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.Petr Hliněný, FI MU Brno, 2017 31 / 31 FI:MA010: Searching and Connectivity

This problem led Euler to introduce the following:

Definition: A trail in a (multi)graph is a walk which does not repeat edges.
A closed trail (tour) is such a trail that ends in the same vertex it started with. The
opposite is an open trail.

And the (perhaps) oldest graph theory result by Euler reads: ✷

Theorem 2.17. (Euler) A (multi)graph G consists of one closed trail if, and only if,
G is connected and all the vertex degrees in G are even. ✷

Corollary 2.18. A (multi)graph G consists of one open trail if, and only if, G is
connected and all the vertex degrees in G but two are even.

Analogous results hold true also for digraphs (the proofs are the same). . .


