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Preface

The motivation for this textbook came from many years of lecturing Mathematics at the Faculty of Informatics at the
Masaryk University in Brno. The programme requires introduction to genuine mathematical thinking and precision. The
endeavor was undertaken by Jan Slovdk and Martin Pandk since 2004, with further collaborators joining later. Our goal was
to cover seriously, but quickly, about as much of mathematical methods as usually seen in bigger courses in the classical
Science and Technology programmes. At the same time, we did not want to give up the completeness and correctness
of the mathematical exposition. We wanted to introduce and explain more demanding parts of Mathematics together with
elementary explicit examples how to use the concepts and results in practice. But we did not want to decide how much of
theory or practice the reader should enjoy and in which order.

All these requirements have lead us to the two column format of the textbook, where the theoretical explanation on one
side and the practical procedures and exercises on the other side are split. This way, we want to encourage and help the readers
to find their own way. Either to go through the examples and algorithms first, and then to come to explanations why the things
work, or the other way round. We also hope to overcome the usual stress of the readers horrified by the amount of the stuff.
With our text, they are not supposed to read through the book in a linear order. On the opposite, the readers should enjoy
browsing through the text and finding their own thrilling paths through the new mathematical landscapes.

In both columns, we intend to present rather standard exposition of basic Mathematics, but focusing on the essence of
the concepts and their relations. The exercises are addressing simple mathematical problems but we also try to show the
exploitation of mathematical models in practice as much as possible.

We are aware that the text is written in a very compact and non-homogeneous way. A lot of details are left to readers,
in particular in the more difficult paragraphs, while we try to provide a lot of simple intuitive explanation when introducing
new concepts or formulating important theorems. Similarly, the examples display the variety from very simple ones to those
requesting independent thinking.

We would very much like to help the reader:

o to formulate precise definitions of basic concepts and to prove simple mathematical results;
e to percieve the meaning of roughly formulated properties, relations and outlooks for exploring mathematical tools;
e to understand the instructions and algorithms underlying mathematical models and to appreciate their usage.

These goals are ambitious and there are no simple paths reaching them without failures on the way. This is one of the
reasons why we come back to basic ideas and concepts several times with growing complexity and width of the discussions.
Of course, this might also look chaotic but we very much hope that this approach gives a better chance to those who will
persist in their efforts. We also hope, this textbook should be a perfect beginning and help for everybody who is ready to think
and who is ready to return back to earlier parts again and again.

To make the task simpler and more enjoyable, we have added what we call "emotive icons". We hope they will spirit the
dry mathematical text and indicate which parts should be read more carefully, or better left out in the first round.

The usage of the icons follows the feelings of the authors and we tried to use them in a systematic way. We hope the
readers will assign the meaning to icons individually. Roughly speaking, we are using icons to indicate complexity, difficulty
etc.:

Further icons indicate unpleasant technicality and need of patiance, or possible entertainment and pleasure:



The practical column with the solved problems and exercises should be readable nearly independently of the theory.
Without the ambition to know the deeper reasons why the algorithms work, it should be possible to read mainly just this
column. In order to help such readers, some definitions and descriptions in the theoretical text are marked in order to catch
the eyes easily when reading the exercises. The exercises and theory are partly coordinated to allow jumping there and back,
but the links are not tight. The numbering in the two columns is distinguished by using the different numberings of sections,
i.e. those like 1.2.1 belong to the theoretical column, while 1.B.4 points to the practical column. The equations are numbered
within subsections and their quotes include the subsection numbers if necessary.

In general, our approach stresses the fact that the methods of the so called discrete Mathematics seem to be more important
for mathematical models nowadays. They seem also simpler to get percieved and grasped.

However, the continuous methods are strictly necessary too. First of all, the classical continuous mathematical analysis
is essential for understanding of convergence and robustness of computations. It is hard to imagine how to deal with error
estimates and computational complexity of numerical processes without it. Moreover, the continuous models are often the
efficient and effectively computable approximations to discrete problems coming from practice.

The rough structure of the book and the dependencies between its chapters are depicted in the diagram below. The darker
the color is, the more demanding is the particular chapter (or at least its essential parts). In particular, the chapters 7 and 9
include a lot of material which would perhaps not be covered in the regular course activities or required at exams in great
detail. The solid arrows mean strong dependencies, while the dashed links indicate only partial dependencies. In particular,
the textbook could support courses starting with any of the white boxes, i.e. aiming at standard linear algebra and geometry
(chapters 2 through 4), discrete chapters of mathematics (11 through 13), and the rudiments of Calculus (5, 6, 8).
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All topics covered in the book have been included (with more or less details) in our teaching of large four semester courses
of Mathematics, complemented by numerical seminars, since 2005. In our teaching, the first semester covered chapters 1 and
2 and selected topics from chapters 3 and 4. The second semester fully included chapters 5 and 6 and selected topics from
chapter 7. The third semester was split into two parts. The first one was covered by chapter 8, while the rest of the semester
was devoted to chapter 10 (with only a few glimpses towards the more advanced topics from chapter 9). The last semester
provided large parts of the content of chapters 11 through 13, although the entire graph theory was skipped (since it was
tought elsewhere). Actually, the second semester could be offered in parallel with the first one, while the fourth semester

could follow immediately after the first one. Indeed, some students were advised to go for the second and fourth semester
simultaneously (those in the IT security programme).



CHAPTER 1

Initial warmup

“value, difference, position”

—what it is and how to comprehend it?

/
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A. Numbers and functions

We can already work with natural, integer, rational and

8{{{@\\ real numbers. We explain why rational num-

bers are not sufficient for us (although comput-

" ers are actually not able to work with any other)

and we recall the complex numbers (because

even the real numbers are not adequate for some calculations).

1.A.1.

square root.

Show that the integer 2 does not have a rational

Solution. Already the ancient Greeks knew that if we pre-
scribe the area of square as a? = 2, then we cannot find a
rational a to satisfy it. Why?

Assume we know that (p/q)? = 2 for natural numbers p
and ¢ that do not have common divisors greater than 1 (other-
wise we can further reduce the fraction p/q). Then p? = 2¢>
is an even number. Thus, on the left-hand side p2 is even.
Therefore so is p because the alternative that p is odd would
imply the contradiction that p? is odd. Hence, p is even and
so p? is divisible by 4. So ¢ is even and so ¢ must be even
too. This implies that p and ¢ both have 2 as a common factor,

which is a contradiction. O

The goal of this first chapter is to introduce the reader to
the fascinating world of mathematical thinking.

The name of this chapter can be also understood as an en-
couragement for patience. Even the simplest tasks and ideas
are easy only for those who have already seen similar ones. A
full knowledge of mathematical thinking can be reached only
through a long and complicated course of study.

We start with the simplest thing: numbers.

They will also serve as the first example of how mathe-
matical objects and theories are built. The entire first chapter
will become a quick tour through various mathematical land-
scapes (including germs of analysis, combinatorics, probabil-
ity, geometry).

Perhaps sometimes our definitions and ideas will often
look too complicated and not practical enough. The simpler
the objects and tasks are, the more difficult the mastering of
depth and all nuances of the relevant tools and procedures
might be. We shall come back to all of the notions again and
again in the further chapters and hopefully this will be the
crucial step in the ultimate understanding.

Thus the advice: do not worry if you find some particular
part of the exposition too formal or otherwise difficult — come
back later for another look.

1. Numbers and functions

Since the dawn of time, people want to know “how
. much” about something they have, or
E2y .. ‘how much” is something worth, “how
long” will a particular task take, etc. The

- 7, answer for such ideas is usually some
kind of “number”. We consider something to be a number,
if it behaves according to the usual rules — either according
to all the rules we accept, or maybe 5 only to some of them.
For instance, the result of multiplication does not depend on
the order of multiplicands. We have the number zero whose
addition to another number does not change the result. We
have the number one whose product with another number
does not change the result. And so on.

The simplest example of numbers are the positive inte-
gers which we denote ZT = {1,2,3, ... }. The natural num-
bers consist of either just the positive integers, or the positive
integers together with the number zero. The number zero is



CHAPTER 1.

INITIAL WARMUP

1.A.2. Remark. It can be proved that for all positive natural
numbers n and x the n-th root {/z of x is either natural or it

is not rational, see 1.G.1.

/\ Al diagonals of <cqnares. imational

Next, we work out some examples with complex num-
bers. If you are not familiar with the basic concepts and
properties of complex numbers, consult the paragraphs 1.1.3

through 1.1.4 in the other column.

LA.3. Calculate 2y + 29, 21 - 22, 21, |22, 2, for

a) z21=1—2i,20 =41 — 3;

b) z1 =2, 20 = 1.

Solution.

a) 21 + 22 = 1-3-—-2i+ 41 = —2+2i,21'22 =
1-(=3) =82 +6i+4i=>5+10i,2 =

z 1-(—3)+8i%+6i—4i
PP =55 = = M

*% + ?51

b) z1+20=2+14,21-2 =
2= _9.

(2

1.A.4. Determine

(2+3z)(1+zf)
1— 1\[

Solution. Since the absolute value of the product (ratio) of
any two complex numbers is the product (ratio) of their abso-
lute values and every complex number has the same absolute

value as its complex conjugate, we have that

either considered to be a natural number, as is usual in com-
puter science, or not a natural number as is usual in some
other contexts. Thus the set of natural numbers is either Z+,
orthesetN = {0,1,2,3,...}. Tocount “one, two, three, ...”
is learned already by children in their pre-school age. Later
on, we meet all the integers Z = {...,—2,-1,0,1,2,...}
and finally we get used to floating-point numbers. We know
what a 1.19-multiple of the price means if we have a 19% tax.

1.1.1. Properties of numbers. In order to be able to work
properly with numbers, we need to be care-
ful with their definition and properties. In
mathematics, the basic statements about
properties of objects, whose validity is assumed without the
need to prove them, are called axioms.

We list the basic properties of the operations of addition
and multiplication for our calculations with numbers, which
we denote by letters a, b, ¢, . . .. Both operations work by tak-
ing two numbers a, b. By applying addition or multiplication
we obtain the resulting values a + b and a - b.

PROPERTIES OF NUMBERS

Properties of addition:

(CG1) (a+b)+c=a+ (b+c), forall a,b,c
(CG2) a+b=0b+a, forall a,b

(CG3) there exists O such that forall a, a +0 = a
(CG4) for all a there exists b such that a + b = 0.

The properties (CG1)-(CG4) are called the properties of a
commutative group. They are called respectively associa-
tivity, commutativity, the existence of a neutral element
(when speaking of addition we usually say zero element),
and the existence of an inverse element (when speaking of
addition we also say the negative of a and denote it by —a).

Properties of multiplication:

(R1) (a-b)-c=a-(b-c), foralla,b,c
(R2) a-b=2"b-a, forall a,b

(R3) there exists 1 such that forallal-a = a
(R4) a-(b+c)=a-b+a-c, forall a,b,c.

The properties (R1)-(R4) are called respectively associativ-
ity, commutativity, the existence of a unit element and dis-
tributivity of addition with respect to multiplication. The
sets with operation 4, - that satisfy the properties (CG1)-
(CG2) and (R1)-(R4) are called commutative rings. Two
further properties of multiplication are:

F)

(ID)
The property (F) is called the existence of an inverse element
with respect to multiplication (this element is then denoted

by a~!. For normal arithmetic, this is called the reciprocal
of a, the same as 1 /a or L.

for every a # 0 there exists b such thata - b = 1.
if a-b=0,then either a = 0 or b = 0 or both.
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-—e—n e o

.—ZJI.-_ ——‘4"/0 /3

(2431) (14iv/3)
1—iv3

:1*”‘ 12 + 3i

V13. 0

= |2+ 31
VT =

1.A.5. Simplify the expression (5\/§ + 5i)n forn = 2 and
n =12,
Solution. Using binomial theorem for n = 2 we get

(5v/3 + 5i)° = 75 + 10V/3 - 5i — 25 = 50 + 501/3i.
Taking powers one by one or doing an expansion using bi-
nomial theorem are in the case n = 12 too much time-

consuming. Let us rather write the number in polar form
5v/3 4+ 50 =10 (%2 + 1) =10 (cos § +isin )
and using de Moivre theorem we easily obtain

(5v3 + 51)12 = 10'2 (cos L2 + isin 127) = 10'2. O
1.A.6. Determine the distance d of the numbers z, Z in the
complex plane for

3
2

B
[\S] L)

—15.

z =

Solution. It is not difficult to realize that complex conjugates
are in the complex plane symmetric with respect to the x-axis
and the distance of a complex number from the z-axis equals

its imaginary part. That gives d = 3. ]

1.A.7. Express the number z; = 2 + 3¢ in polar form. Ex-
press the number zo = 3(cos(7/3) +1isin(w/3)) in algebraic
form.

Solution. The absolute value of |z | (the distance of the point

with Cartesian coordinates [2, 3] in the plane from the origin)
is /22 + 32 = 1/13. From the right triangle in the diagram

The property (ID) then says that there exists no “divisors of
zero”. A divisor of zero is a number a, a # 0, such that
there is a number b, b # 0, with ab = 0

1.1.2. Remarks. The integers Z are a good example of a
Y commutative group. The natural numbers are
not such an example since they do not satisfy
(CG4) (and possibly do not even contain the neu-
. tral element if one does not consider zero to be a
natural number). If a commutative ring also satisfies the prop-
erty (F), we speak of a field (often also about a commutative
field).

The last stated property (ID) is automatically satisfied if
(F) holds. However, the converse statement is false. Thus we
say that the property (ID) is weaker than (F). For example, the
ring of integers Z does not satisfy (F) but does satisfy (ID). In
such a case we use the term integral domain.

Notice that the set of all non-zero elements in the field
along with the operation of multiplication satisfies (R1), (R2),
(R3), (F) and thus is also a commutative group. However in
this case, instead of addition we speak of multiplication. As
an example, the set of all non-zero real numbers forms a com-
mutative group under multiplication.

The elements of some set with operations + and - sat-
isfying (not necessarily all) stated properties (for example, a
commutative field, an integral domain) may be called scalars.
To denote them we usually use lowercase Latin letters, either
from the beginning or from the end of the alphabet.

We will use only these properties of scalars and thus our
results will hold for any objects with such properties. This is
the true power of mathematical theories — they do not hold
just for a specific solved example. Quite the opposite, when
we build ideas in a rational way they are always universal. We
will try to emphasise this aspect, although our ambitions are
modest due to the limited size of this book.

Before coming to any use of scalars, we should make a
short formal detour and pay attention to its existence. We
shall come back to this in the very end of this chapter, when
we shall deal with the formal language of Mathematics in gen-
eral, cf. the constructions starting in 1.6.5. There we indicate
how to get natural numbers N, integers Z, and rational num-
bers , while the real numbers R will be treated much later
in chapter 5.

At this point, let us just remark that it is not enough to
pose the axioms of objects. We have to be sure that the given
conditions are not in conflict and such objects might exist.

We suppose the readers are sure about the existence of
the domains N, Z, Q and can handle them easily. The real
numbers are usually understood as a dense and better version
of Q, but what about the domain of complex numbers?

As is usual in mathematics, we will use variables (letters
of alphabet or other symbols) to denote numbers, and it does
not matter whether we know their value beforehand or not.
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we compute sin(¢) = 3/v/13, cos(p) = 2/4/13. Thus p =
arcsin(3/1/13) = arccos(2/v/13) = 56.3°. In total,

(e )
= \/7 (COb (arccos (\/21—3)) + i sin (arcsin (%))) .

Transition from polar form to algebraic form is even simpler:

™ LT V3
IO 6 R e
RN} i

1LA.8. Express z = cos(0 + cos § + isin % in polar form.

Solution. To express number 2 in polar form, we need to find
its absolute value and argument. First we calculate the abso-

lute value:

T\ 2 m
_ 50 “ 7) in2 O
|z \/(005 + cos 3 + sin 3

= (1+;>2+ <?>2=\/§.

For the argument ¢, we have:

i . m(z
cosp = Rlz(l) = 1:;52 = ?, sing = I|z(\) =1
therefore ¢ = 7/6. Thus
z:\/g(cos +L51116) O
A
11
T Z
Sin cT-—"~"-~-=>~
{
[
) |
e eosE [T 7
[
2"

1.A9. Using de Moivre theorem, calculate

(cos % + 4 sin %)31

1.1.3. Complex numbers. We are forced to extend the do-
main of real numbers as soon as we want to see solutions of
equations like 2 = b for all real numbers b.

We know that this equation always has a solution z in
the domain of real numbers, whenever b is non-negative. If
b < 0, then such a real x cannot exist. Thus we need to find
a larger domain, where this equation has a solution.

The crucial idea is to add the new number ¢ to the real
numbers, the imaginary unit, for which we require i2 = —1.
Next we try to extend the definitions of addition and multipli-
cation in order to preserve the usual behaviour of numbers (as
summarised in 1.1.1).

Clearly we need to be able to multiply the new number ¢
by real numbers and sum it with real numbers. Therefore we
need to work in our newly defined domain of complex num-
bers C with formal expressions of the form z = a+1 b, being
called algebraic form of z. The real number a is called the
real part of the complex number z, the real number b is called
the imaginary part of the complex number z, and we write
Re(z) = a, Im(z) = b. It should be noted that if z = a + i b
and w = ¢+ ¢ d then z = w implies both @ = cand b = d.
In other words, we can equate both real and imaginary parts.
For positive o we then get (i - #)? = —1- 22 and thus we can
solve the equations as requested.

In order to satisfy all the properties of associativity and
distributivity, we define the addition so that we add indepen-
dently the real parts and the imaginary parts. Similarly, we
want the multiplication to behave as if we multiply the pairs
of real numbers, with the additional rule that i = —1, thus

(a+ib)+ (c+id)=(a+c)+i(b+d),
(a+1ib) - (c+id) = (ac — bd) + i (bc + ad).

Next, we have to verify all the properties (CG1-4), (R1-
4) and (F) of scalars from 1.1.1. But this is an easy exercise:
zero is the number 0 + 7 0, one is the number 1 + 70, both
these numbers are for simplicity denoted as before, that is, O
and 1. For non-zero z = a + i b we easily check that 27! =
(a® + b*)71(a — ib). All other properties are obtained by
direct calculations.

1.1.4. The complex plane and polar form. A complex
- number is given by a pair of real numbers, there-
fore it corresponds to a point in the real plane
R2. Our algebraic form of the complex numbers
: z = x + 1y corresponds in this picture to un-
derstandlng the z-coordinate axis as the real part while the
y-coordinate axis is the imaginary part of the number. The
absolute value of the complex number z is defined as its dis-
tance from the origin, thus |z| = /22 + y2.

The reflection with respect to the real axis then corre-
sponds to changing the sign of the imaginary part. We call
this operation z — z = x — iy the complex conjugation.

Let us now consider complex numbers of the form z =
cos ¢ + 1 sin ¢, where ¢ is a real parameter giving the angle
between the real axis and the line from the origin to z (mea-
sured in the positive, i.e. counter-clockwise sense). These
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Solution. We obtain
m . m\31
(cos g + 7s1n g)

31w 31w s T V3 o1
=cos ——+isin — = cos ——+isin — = ———17 —.
6 6 6 6 2 2

|

1.A.10.

plex numbers?

Is the “square root” well defined function in com-

Solution. No, it is only defined as a function with domain be-
ing non-negative real numbers and the image being the same
set.

In the complex domain, for any complex number z (ex-
cept zero) there are two complex numbers such that their
square is equal z. Both can be called square root and they
differ by sign (square root of —1 is according to this defini-

tion ¢ as well as —17). 0

1.A.11. Complex numbers are not just a tool to obtain

“weird” solutions to quadratic equations. They

0.\
05(5 1" )

are necessary to determine solutions to cubic

equations, even if these solutions are real. How

can we express solution to the cubic equation

4 ar? +br4+c=0
in real coefficients a, b, c? We show a method developed in
sixteenth century by Ferro, Cardano, Tartaglia and possibly
others. Substitute x := ¢t — a/3 (to remove the quadratic part

from the equation) to obtain the equation:
t*+pt+q=0,
¢+ (2a® — 9ab)/27. Now

introduce unknowns u, v satisfying the conditions u + v =
t and 3uv + p = 0. Substitute the first condition into the

previous equation to obtain

where p = b — a?/3 and ¢ =

u® + 03 + (3uv + p)(u+v) +q=0.

Now use the second equation to eliminate v. This yields

p3

27
which is a quadratic equation in the unknown s = u?®. Thus

s/ q ¢ p
= —= 4+ —_— —_—
“ ¢ 2 V7 Tar

By back substitution, we obtain

u® 4+ qu® — - =0,

xr=—-p/3u+u—a/3.

In the expression for u there is cube root. In order to obtain

all three solutions we need to work with complex roots. The

numbers describe all points on the unit circle in the complex
plane. Every non-zero complex number z can be then written
as
z = |z|(cos + isinp).

For given z # 0, ¢ is unique if 0 < ¢ < 27. The number ¢
is called the argument of the complex number z and this form
of z is called the polar form of the complex number. This
way of writing the complex numbers is very convenient for
understanding the multiplication.

Consider the numbers z = |z| (cos ¢ + @ sinp) andw =
|w| (cos ) + i sin) and calculate their product

z-w = |z|(cos p + i sin )|w|(cos + i sin))
= |z||w|(cos ¢ cos ¢ — sin psinyp
+ i (cos psin ¢ + sin g cos ¥))
= |z][w|(cos(p + ) + i sin(p + ¢)).

The last equality is a result of the addition formulas for
trigonometric functions (we shall deal with them in more de-
tail later in our discussion of rotations in the plane, see the
page 38.

Division is equally easy. If z = |z|(cos p +isin ¢) # 0,
then w = |z|~!(cos ¢ — isiny) satisfies 2w = wz = 1,
hence we can write w = 27! = 1/z.

We can summarize (and iterate the application of the pre-
vious formula on the product of the number 2z with itself):

PoLAR FORM AND DE MOIVRE THEOREM

Consider two complex numbers z = |z|(cos¢ + i sin @)
and w = |w|(cost + i sin) in polar forms. Then if n is
an integer, positive or negative,

zw = |2] |w|(cos(¢ + 9) + i sin(p + 7))
" = |z|"(cos(ny) + i sin(nep)).

1.1.5. Functions. In most tasks we do not deal just with
numbers, i.e. with individual values of scalars.
More often the values are associated to each of
the elements in a set of objects.

Formally we talk about a mapping f : A —
B assigning to each element x in the domain set A the value
f(x) in the codomain set B. The set of all images f(z) € B
is called the range of f.

The set A or B can be a set of numbers, but there is noth-
ing to stop them being sets of other objects. The mapping
f, however it is described, must unambiguously determine a
unique member of B for each member of A.

In another terminology, the member x € A, is often
called the independent variable. Then y = f(x) € B, is
called the dependent variable. We also say that the value
y = f(z) is a function of the independent variable = in the
domain of f.

For now, we shall restrict ourselves to the case where the
codomain B is a subset of scalars and we shall talk about
scalar functions.
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equation 23

= a, a # 0, with the unknown x has exactly
three solutions in the domain of complex numbers (the fun-
damental theorem of algebra, see (12.2.8) on page 820). All
these three solutions are called cube roots of a. Therefore the
expression /a has three meanings in the complex domain.
If we want a single meaning for that expression, we usually

consider it to be the solution with the smallest argument.

1.A.12. Show that the roots &1, &2, ...
"™ = 1 form the vertices of the regular n-gon in the plane of

, & of the equation

the complex numbers.

Solution. The argument of the roots is given by de Moivre
theorem, namely the argument multiplied by n has to be a
multiple of 27, the absolute value has to be one, so the roots
are & = cos(k2X) + isin(k2%),k = 1,...,n, which are

indeed the vertices of a regular polygon. ]

1.A.13. Show that the roots &1, &o, . ..
" = 1 satisfy

, & of the equation

Z & =0.
im1

Solution. Let &; be the root with the smallest positive argu-
ment. The other roots satisfy &, = £F (see the previous ex-
ample), thus
e YT S
;@11:[151*&51_1 =0,

where we have summed up the geometric sequence &, . . ., &,.

|
More examples about complex numbers can be found in

the end of the chapter, starting at 1.G.1.

1.A.14. Solve the equation

2422 —2—-1=0.

Solution. This equation has no rational roots (methods to
determine rational roots will be introduced later, see (27?)).
Substitution into formulas obtained in 1.A.11 yields p =
b—a?/3=-7/3,q= —T7/27. It follows that

/28 4 124/—147

6

We can theoretically choose up to six possibilities for u (two

u =

for the choice of the sign and three independent choices of the

The simplest way to define a function appears if A is a
finite set. Then we can describe the function f by a table or
a listing showing the image of each member of A. We have
certainly seen many examples of such functions:

Let f denote the pay of a worker in some company in
certain year. The values of independent variable, that is, the
domain of the function, are individual workers x from the set
of all considered workers. The value f(z) is their pay for the
given year. Similarly we can talk about the age of students or
their teachers in years, the litres of beer and wine consumed
by individuals from a given group, etc.

Another example is a food dispensing machine. The do-
main of a function f would be the button pushed together with
the money inserted to determine the selection of the food item

Let A = {1,2,3} = B. The set of equalities f(1) =
1, f(2) = 3, f(3) = 3, defines a function f : A — B
Generally, as there are 3 possible values for f(1), and the
same for f(2), and f(3), there are 27 possible functions from
A into B in total.

But there are other ways to define a function than as a
table. For example, the function f can denote the area of a
planar region. Here, the domain consists of subsets of the
plane (e.g. all triangles, circles or other planar regions with a
defined area). The range of f consists of the respective areas
of the regions. Rather than providing a list of areas for a finite
number regions, we hope for a formula allowing us to com-
pute the functional value f(P) for any given planar region P
from a suitable class.

Of course, there are many simple functions given by for-
mulas, like the formula f(x) = 3z + 7 with A = B=Ror
A=B=N,

Not all functions can be given by a formula or list. For
example, let f(¢) denote the speed of the car at time ¢. For
any given car and time ¢, we know there will be the functional
values f(t) denoting its speed. Which can of course be mea-
sured approximately, but usually not by a formula.

Another example: Let f(n) be the n'" digit in the deci-
mal expansion of 7 = 3.1415. ... So for example f(4) = 5.
The value of f(n) is defined but unknown if n is large enough.

The mathematical approach in modelling real problems
often starts from the indication of certain dependencies be-
tween some quantities and aims at explicit formulas for func-
tions which describe them. Often a full formula is not avail-
able but we may obtain the values f(x) at least for some in-
stances of the independent variable z, or we may be able to
find a suitable approximation.

We shall see all of the following types of expressions of
the requested function f in this book:

e exact finite expression (like the function f(z) = 3z + 7
above);

e infinite expression (we shall come to that only much later
in chapter 5 when introducing the limit processes);

e description of how the function’s values change under a
given change of the independent variable (this behaviour
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cubic root). But we obtain only three distinct values for z. By

substitution into the formulas, one of the roots is of the form

14
t/3(28 — 84iv/3)

/28 — 84iv/3
6

1
— = 1.247,
3

similarly for the other two (approximately —0.445 and
—1.802). As noted before, we see that even if we have used
complex numbers during the computation, all the solutions

are real. O

B. Difference equations

Difference equations (also called recurrence relations)
=, are relations between elements of a sequence,
Zﬁlfo \\ where an element of the sequence depends on
! previous elements. To solve a difference equa-

74

(that is, arbitrary) element of the sequence.

tion means finding an explicit formula for n-th

If an element of the sequence is determined only by the
previous element, we call it a first order difference equation.
This is a common real world problem, for instance when we
want to find out how long will repayment of a loan take for
fixed monthly repayment, or when we want to know how
much shall we pay per month if we want to repay a loan in

a fixed time.

1.B.1.
€30 000. Michael wants to take out a loan and repay it with a

Michael wants to buy a new car. The car costs
fixed month repayment. The car company offers him a loan to
buy the car with yearly interest of 6%. The repayment starts
at the end of the first month of the loan. Michael would like
to finish repaying the loan in three years. How much should
he pay per month?

Solution. Let P denote the sum Michael has to pay per month.
After the first month Michael repays P, part of it is a repay-
ment of the loan, part of it pays the interest. Let dj, stand for
the loan after k£ months and write C' = 30 000 for the price of
the car, and u = 0 06 for the monthly interest rate. We know
dy = C = 30000 and after the first month there is

di=C—-P+u-C.
In general, after the k-th month we have

(1) dp =dp_1 — P+ udy_1 = (1 + u)dk,1 —P.

will be displayed under the name difference equation in
a moment and under different circumstances later on);
approximation of a not computable function with a
known one (usually including some error estimates —
this could be the case with the car above, say we know
it goes with some known speed at the time ¢ = 0, we
break as much as possible on a known surface and we
compute the decrease of speed with the help of some
mathematical model);

finding only the probability of possible values of the func-
tion. For example the function giving the length of life
of a given group of still living people, in dependence of
some health related parameters.

1.1.6. Functions defined explicitly. Let us start with the

7 . most desirable case, when the function values
are defined by a computable finite formula. Of
A =~ course, we shall be interested also in the effi-
Clency of the formulas, i.e. how fast the evaluations would
be. In principle, real computations can involve only a finite
number of summations and multiplications of numbers. This
is how we define the polynomials, i.e. function of the form
f(x) = an-a™+ - - +ay-x+ag, where ag, . . ., a,, are known
scalars, x is the unknown variable whose value we can insert.
z" =1z ---x means the n- times repeated multiplication of
the unit by x (m particular, z° = 1), and f(z) is the value of
the indicated sum of products. This is fairly well computable
formula for each n € N. The choice n = 0 provides the
constant ag.

The next example is more complicated.

FACTORIAL FUNCTION

Let A = Z% be the set of positive integers. For each n &
77, define the factorial function by

nl=nn—-1)Mn-2)...3-2-1.
For convenience we also define 0! = 1. (We will see why this

is sensible later on). It is easy to see that n! = n - (n — 1)!
foralln > 1.

Soll=1,21=2-1=2,31=3-2-1=6, 6! = 720 etc.

The latter example deserves more attention. Notice that
we could have defined the factorial by setting A = B = Nand
giving the equation f(n) =n- f(n — 1) forall n > 1. This
does not yet define f, but for each n, it does determine what
f(n) is in terms of its predecessor f(n — 1). This is some-
times called a recurrence relation. After choosing f(0) = 1,
the recurrence now determines f(1) and hence successively
£(2) etc., and so a function is defined. It is the factorial func-
tion as described above.

2. Difference equations

The factorial function is one example of a function

which can be defined on the natural numbers
// .
/by means of a recurrence relation.
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Using the relation (1) from paragraph 1.2.3 we obtain dj,

given by (we write a = 1 4+ u)

k1
dk:doa’f—P(a >
a—1
Repaying the loan in three years means d3g = 0, thus
(1 + u)3%u
pP= —_—
30000 <(1 )1

(12.06/12)%6(0.06/12) \ .
(12.06/12)36 — 1 ) =912.7.

Note that the recurrence relation (1) can be used for our

= 30000 (

case as long as all y(n) are positive, that is, as long as Michael

still has to repay something.

1.B.2. Consider the case from the previous example. For
how long would Michael have to pay, if he repays €500 per

month?

Solution. Setting as before a = (1 + %) = 1.005, C =
30000 the condition dj, = 0 gives the equation

" 25 200P
C  200P—-C°

P _
a—1

By taking logarithms of both sides, we obtain
_ In(200P) —In(200P — C)
N Ina

k

3

which for P = 500 gives approximately & = 71.5, thus
Michael would be paying for 72 months (the last repayment
would be less than €500). ([l

1.B.3. Determine the sequence {y,, }52_;, which satisfies the

following recurrence relation

O

Linear recurrences can naturally appear in geometric

3y,
yn+1:%+1,n21, g = 1.

problems:

1.B.4. Suppose n lines divide the plane into regions. What
is the maximum number of regions that can be formed in this
way?

Solution. Let the number of regions be p,,. If there is no line
in the plane, then the whole plane is one region, thus pg = 1.
If there are n lines, then adding an (n + 1)-st line increases
the number of regions by the number of regions this new line
intersects. If no lines are parallel and no three lines intersect
at the same point, the number of regions the (n + 1)-st line
crosses is one plus the number of its intersections with the
previous lines (the crossed area will then be divided into two,
thus the total number increases by one at every crossing).

11

Such a situation can often be seen when
formulating mathematical models that describe real systems
in economy, biology, etc. We will observe here only a few
simple examples and return to this topic in chapter 3.

1.2.1. Linear difference equations of first order. A gen-
eral difference equation of the first order (or first order re-
currence) is an expression of the form

fn+1) = F(n, f(n)),

where I is a known function with two arguments (indepen-
dent variables). If we know the “initial” value f(0), we can
compute f(1) = F'(0, £(0)), then f(2) = F(1, f(1)) and so
on. Using this, we can compute the value f(n) for arbitrary
n € N,

An example of such an equation is provided by the facto-
rial function f(n) = n! where:

(n+1D)!'=Mnm+1)-n!

In this way, the value of f(n + 1) depends on both n and the
value of f(n), and formally we would express this recurrence
in the form F(z,y) = (z + 1)y.

A very simple example is f(n) = C for some fixed scalar
C and all n. Another example is the linear difference equa-
tion of first order

(D fln+1)=a-f(n)+0b,

where a # 0 and b are fixed numbers.

Such a difference equation is easy to solve if b = 0. Then
it is the well-known recurrent definition of the geometric pro-
gression. We have

F(1) =af(0), f(2)=af(1)=a’f(0),

Hence for all n we have

f(n) = a"f(0).

This is also the relation for the Malthusian population growth
model. This is based on the assumption that population size
grows with a constant rate when measured at a sequence of
fixed time intervals.

We will prove a general result for first order equations
with variable coefficients, namely:

2 f(n + 1) = ap - f(n) +bp.

We use the usual notation for sum ), and the similar
notation for the product [[. We use also the convention that
when the index set is empty, then the sum is zero and the
product is one.

and so on.

1.2.2. Proposition. The general solution of the first order dif-
ference equation (2) from the previous paragraph with the ini-
tial condition f(0) = yo is for n € N given by the formula

n—1 n—2 n—1
D fln) = (H Cli) Yo + H ai | bj +bn-1.
=0 =0 \i=j+1



CHAPTER 1.

INITIAL WARMUP

The new line has at most n intersections with the already-
present n lines. The segment of the line between two intersec-
tions crosses exactly one region, thus the new line crosses at

most n + 1 regions.

ADDING
A FOURTH

Thus we obtain the recurrence relation

Pn+1 = Pn + (TI, + 1)

for which py = 1. We obtain an explicit formula for p,, either

by applying the formula in 1.2.2 or directly:
Pn :pn71+n:pn72+(n_1)+n
=ppst+(n—2)+n—-1)+n

n
':po+2i
=1

nn+1)
;=

n?+n+2

1
+ 2

O
Recurrence relations can be more complex than those of
first order. We show an example of combinatorial problem,

for whose solution a recurrence relation can be used.

1.B.5. How many words of length 12 that consist only of
letters A and B, but do not contain a sub-word
@ BBB, are there?

4

, 7 Solution. Let a,, denote the number of words of
length n consisting of letters A and B but with-
out BBB as a sub-word. Then for a,, (n > 3) the following

recurrence holds

Gp = Qp—1 + ap—2 + ap-_3,

since the words of length n that satisfy the given condition
either end with an A, or with an AB, or with an ABB. There
are a,_1 words ending with an A (preceding the last A there

12

PROOF We use mathematical induction. The result
s clearly holds for n = 1 since f(1) = agyo + bo-

&J‘& Assuming that the statement holds for some
f ‘ \

‘) fixed n, we compute:
£

n—1 n—1
fn+1)=a, (H a7> Yo + Z IT @) b +bn
=0 \i=j+1

+ by

(1)

as can be seen directly by multiplying out.

n

H a; bj+bn,

i=j+1

n—1
Yo + Z

O

Note that for the proof, we did not use anything about the
numbers except for the properties of commutative ring.

1.2.3. Corollary. The general solution of the linear differ-
ence equation (1) from 1.2.1 with a # 1 and initial condition

f(0) =yois

ey

_an

b.
a

Fln) = a"yo + -

Proor. If we set a; and b; to be constants and use the
general formula 1.2.2(1), we obtain

‘We observe that the expression in the bracket is
(1+a+---+a""1). The sum of this geometric progres-

sion follows from
l—a"=(1-a)(l+a+--

n—2

1+ Za”_j_l

Jj=0

f(n) = a™yo + b(

4 a™ b, O

The proof of the former proposition is a good example of
a mathematical result, where the verification is quite easy, as
soon as someone tells us the theorem. Mathematical induc-
tion is a natural method of proof.

Note that for calculating the sum of a geometric progres-
. sion we required the existence of the inverse element
for non-zero scalars. We could not do that with in-
A tegers only. Thus the last result holds for fields of
scalars and we can thus use it for linear difference
equations where the coefficients a, b and the initial condition
f(0) = yop are rational, real or complex numbers. This last re-
sult also holds in the ring of remainder classes Zj, with prime
k (we will define remainder classes in the paragraph 1.6.7).

It is noteworthy that the formula (1) is valid with inte-
ger coefficients and integer initial conditions. Here, we know
in advance that each f(n) is an integer, and the integers are
a subset of rational numbers. Thus our formula necessarily
gives correct integer solutions.

Observing the proof in more detail, we see that 1 —a™ is
always divisible by 1 — a, thus the last paragraph should not
have surprised us. However it can be seen that with scalars
from Z,4 and say a = 3, we fail since 1 — a = 2 is a divisor
of zero and as such does not have an inverse in Zy.

b
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can be an arbitrary word of length n — 1 satisfying the condi-
tion). Analogously for the two remaining groups. Further, it
is easily shown that a; = 2, a2 = 4, and a3 = 7. Using the

recurrence relation we can then compute
a1p = 1705.

We could also derive an explicit formula for n-th element
of the sequence using the theory, which we will develop in the
chapter 3. ]

1.B.6. Partial difference equations. The recurrence rela-
tion in the next problem has a more complex form in com-
parison to the form we have dealt with in our theory. So we
cannot evaluate the arbitrary member in our sequence P ;)
explicitly. We can only evaluate it by a subsequent computing
from previous elements. Such an equation is called partial dif-
ference equation, since the terms of the equation are indexed
by two independent variables (k, [).

The score of a basketball match between the teams of
Czech Republic and Russia after the first

quarter is 12 : 9 for the Russian team. In

= how many ways could the score have devel-

oped?

Solution. We can divide all
possible evolutions of the
quarter with the final score
k : I into six mutually exclu-
sive possibilities, according to
which team scored, and how
much was it worth (1, 2 or 3
points). If we denote by P 1)
the number of ways in which
the score could have devel-
oped for a quarter that ended
with k : [, then for k,1 > 3 the
following recurrence relation
holds:

Py = Pr-s3y) + Pr—20) + Pr—1) + Pira—1) +
P1—2) + P(g,—3). Using the symmetry of the problem,
P1y = Py k- Further, for k > 3:

P2y = Pir—3,2) + Pr—2,2) + P—1,2) + Pke,1) + Pr,0)5
P,y = P31 + Pe—2,1) + Pr—1,1) + Pr,0),

Pi,0) = Pli-3,0) + Plk—2,0) + Plr—1,0)

13

The linear difference equation 1.2.1(1) can be neatly in-
terpreted as a mathematical model for finance,
#~/ e.g. savings or loan payoff with a fixed interest
rate a and fixed repayment b. (The cases of sav-
ings and loans differ only in the sign of b).
Wlth varying parameters a and b we obtain a similar
model with varying interest rate and repayment. We can imag-
ine for instance that n is the number of months, a,, is the inter-
est rate in the nth month, b,, the repayment in the nth month.

1.2.4. A nonlinear example. When discussing linear dif-
ference equations, we mentioned a very primi-
i tive population growth model which depends di-
@’u/ rectly on the momentary population size p. At
% firstsight, it is clear that such a model witha > 1
leads to a very rapid and unbounded growth.

A more realistic model has such a population change
Ap(n) = p(n + 1) — p(n) only for small values of p, that
is Ap/p ~ r > 0. Thus if we want to let the population grow
by 5% for a time interval only for small p, then we choose
r to be 0.05. For some limiting value p = K > 0 the pop-
ulation may not grow. For even greater values it may even
decrease, for instance if the resources for the feeding of the
population are limited, or if individuals in a large population
are obstacles to each other etc.

Assume that the values y, = Ap(n)/p(n) change lin-
early in p(n). Graphically we can imagine this dependence
as a line in the plane of the variables p and y. This line passes
through the point [0, 7], so that y = r when p = 0 This line
also passes through [K, 0], since this gives the second condi-
tion, namely that when p = K the population does not change.
Thus we set

Cp+
= —— T.
y=-—7P

By setting y = y,, = Ap(n)/p(n) and p = p(n) we obtain

By multiplying, we obtain a difference equation of first order
with p(n) present as both a first and a second power.

ey

p(n+1) =p(n) (1 - %p(n) + r).

Try to think through the behaviour of this model for var-
7 . ious values of r and K. In the dlagram we
can see the results for parameters » = 0.05
AL =" (that is, five percent growth in the ideal state),

K = 100 (resources limit the population to the size 100),

and as p(0) = 2 we have initially two individuals.
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which, along with the initial condition, gives FPg,0) = 1, P ( M/} NON-LNEAR. PEPENDENCE.
Paoy = L Peoy = 2, Paoy =4 Puyy =2 Peyy = r
Paay + Poyy + Peo) = 5 Pez = o + Fug +
P21y + P2,0) = 14. Hence by repeatedly using the above oo~ === =--=---2
equations, we obtain eventually JoT
Pling) = 497178513, bo
g 4o

We will discuss recurrent formulas (difference equations) M,

of higher order with constant coefficients in chapter 3. i . . )
Er 50 7'00 Ea Zloo n

C. Combinatorics

In this section we use natural numbers to describe some

=", Q indivisible items located in real life space, and

%{!/Qi\ =\ deal with questions as how to compute the num-
1

ber of their (pre)orderings, choices, and so on.

A

4 In many of these problems, “common sense” is

sufficient. We just need to use the rules of product and sum
in the right way, as we show in the following examples:

1.C.1.
six apples. In how many ways can she divide the fruits among

Mother wants to give John and Mary five pears and

them? (We consider the pears to be indistinguishable. We
consider the apples to be indistinguishable. The possibility
that one of the children gets nothing is not excluded.)

Solution. The five pears can be divided in six ways (it is de-
termined by the number of pears given to John, the rest goes
to Mary.) The six apples can be divided in seven ways. These
divisions are independent. Using the rule of product, the total
number is 6 - 7 = 42. ]

1.C.2. Determine the number of four-digit numbers, which
either start with the digit 1 and do not end with the digit 2, or
that end with the digit 2 but do not start with the digit 1 (of

course, the first digit must not be zero).

Solution. The set of numbers described in the statement con-
sists of two disjoint sets. The total number is then obtained
by summing the number of numbers in these two sets. In the
first set there are numbers of the form “1XXY” where X is
an arbitrary digit and Y is any digit except 2. Thus we can
choose the second digit in ten ways, independently of that the
third digit in ten ways and again independently the fourth digit
in nine ways. These three choices then uniquely determine a
number. By multiplication, there are 10-10-9 = 900 of such
numbers. Similarly in the second set we have 8-10-10 = 800

numbers of the form “YXX?2” (for the first digit we have only
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Note that the original almost exponential growth slows
down later. The population size approaches the desired limit
of 100 individuals. For p close to one and K much greater
than r, the right side of the equation (1) is approximately
p(n)(1 + r). That is, the behaviour is similar to that of the
Malthusian model. On the other hand, if p is almost equal to
K, the right side of the equation is approximately p(n). For
an initial value of p greater than K the population size will
decrease. For an initial value of p less than K the population
size will increase.!

3. Combinatorics

A typical “combinatorial” problem is to count in how
2 many ways something can happen. For instance,
"' in how many ways can we choose two different
sandwiches from the daily offering in a grocery
Z shop?

In this situation we need first to decide what we mean
by different. Do we then allow the choice of two "identical™’
sandwiches? Many such questions occur in the context of
card games and other games.

The solution of particular problems, usually involves ei-
ther some multiplication of particular results (if the individual
possibilities are independent) or some addition (if their ap-
pearance is disjoint). This is demonstrated in many examples
in the problem column (cf. several problems starting with
1.C.1).

1.3.1. Permutations. Suppose we have a set of n (distin-
guishable) objects, and we wish to arrange them in some or-
der. We can choose a first object in n ways, then a second
in n — 1 ways, a third in n — 2 ways, and so on, until we
choose the last object for which there is only one choice. The
total number of possible arrangements is the product of these,
hence there are exactly n! = n(n —1)(n —2)...3-2-1
distinct orders of the objects. Each ordering of the elements
of a set S is called a permutation of the elements of S. The
number of permutations on a set with n elements is n!.

This model is called the discrete logistic model. Its continuous ver-
sion was introduced already in 1845 by Pierre Francois Verhulst. Depending
on the proportions of the parameters 7, K and p(0), the behaviour can be
very diverse, including chaotical dynamics. There is much literature on this
model.
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eight ways, since the number cannot start with zero and one
is forbidden). By addition, the solution is 900 4+ 800 = 1700
numbers. |

In the following examples we will use the notions of com-

binations, and permutations (possibly with repetitions).

1.C.3. During a conference, 8 speakers are scheduled. De-
termine the number of all possible orderings in which two

given speakers do not speak one right after the other.

Solution. Denote the two given speakers by A and B. If B
follows directly after the speaker A, we can consider it as a
speech by a single speaker AB. The number of all orderings
where B speaks directly after A is therefore 7!, the number of
permutations of seven elements. By symmetry, the number
of all orderings where A speaks directly after B is also 7!.
Since the number of all possible orderings of eight speakers
is 8!, the solution is 8! — 2 - 7!. O

1.C.4. How many rearrangements of the letters of the word
PROBLEM are there, such that

a) the letters B and R are next to each other,

b) the letters B and R are not next to each other.

Solution. a) The pair of letters B and R can be assumed to
be a single indivisible “double-letter”. In total we have six
distinct letters and there are 6! words of six indivisible letters.
We have to multiply this by two, since the double-letter can
be either BR or RB. Thus the solution is 2 - 6!.

b) The events in b) form the complement to the part a) in
the set of all rearrangements of the seven-letters. The solution

is therefore 7! — 2 - 6!. O

1.C.5.
cups on 5 shelves, given that all 10 cups fit on any shelf?

In how many ways can an athlete place 10 distinct

Solution. Add 4 indistinguishable items, say separators, to
the cups. The number of all distinct orderings of cups and sep-
arators is 14!/4! (the separators are indistinguishable). Each
placement of cups into shelves corresponds to exactly one or-
dering of cups and separators. It is enough to say that the cups
before the first separator in the ordering are placed in the first
shelf (preserving the order), the cups between the first and
the second separator in the second shelf, and so on. Thus the

required number is 14!/4!. O

1.C.6. Determine the number of four-digit numbers with ex-
actly two distinct digits. (Recall that the first digit must not
be 0.)

We can identify the elements in S by numbering them
(using the digits from one to n), that is, we identify .S with the
set S = {1,...,n} of n natural numbers. Then the permu-
tations correspond to the possible orderings of the numbers
from one to n. Thus we have an example of a simple mathe-
matical theorem and this discussion can be considered to be
its proof.

NUMBER OF PERMUTATIONS

Proposition. The number p(n) of distinct orderings of a fi-
nite set with n elements, is given by the factorial function:

(1 p(n) = n!

Suppose S is a set with n elements. Suppose we wish to
choose and arrange in order just k of the members of S, where
1 < k < n. This is called a k-permutation without repetition
of the n elements. The same reasoning as above shows that
this can be done in

v(n,k)=nn—1)(n—-2)---(n

n!

ways. The right side of this result also makes sense for & = 0,
(there is just one way of choosing nothing), and for £ = n,
since 0! = 1.

Now we modify the problem, this time where the order
of selection is immaterial.

1.3.2.

Combinations. Consider a set S with n elements. A
> k-combination of the elements of S is a selec-
tion of k elements of S, 0 < k < n, when order
does not matter.

For k > 1, the number of possible results
of a subsequentlal choosing of our k elements, is n(n —
1)(n —2)---(n — k 4+ 1) (a k-permutation). We obtain the
same k-tuple in k! distinct orders. Hence the number of k-
combinations is

nn—1)(n—-2)---(n—k+1) n!
k! (n—k)E!
If & = 0, the same formula is still true, since 0! = 1, and
there is just one way to select all n elements.
COMBINATIONS

Proposition. The number c(n, k) of combinations of k-th
degree among n elements, where 0 < k < n, is

(1)
o(n, k) = (Z) _

We pronounce the binomial coefficient ( ) as “n over k”
or “n choose k”. The name stems from the binomial expan-
sion, which is the expansion of (a+b)™. If we expand (a+b)",
the coefficient of a*b"~* is the number of ways to choose a

n(n—1)... _
k(k—1)...1 (n—

(n—k+1) n!
BIEE
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Solution. First solution. If 0 is one of the digits, then there
are 9 choices for the other digit, which must also be the first
digit. There are three numbers with a single 0, three num-
bers with two 0’s, and just one number with three 0’s. Thus
there are 9(3+3+1)=63 numbers which contain the digit O.
Otherwise, choose the first digit for which there are 9 choices.
There are then 8 choices for the other digit and 3+3+1 num-
bers for each choice, making 9-8- (343 +1) = 504 numbers
which do not contain the digit 0. The solution is 504+63=567
numbers.

Second solution. The two distinct digits used for the num-
ber can be chosen in (120) ways. From the two chosen digits
we can compose 2¢ — 2 distinct four-digit numbers (we sub-
tract the 2 for the two four digit numbers which use only one
of the chosen digits). In total we have (%) (2* —2) = 630
numbers. But in this way, we have also computed the num-
bers that start with zero. Of these there are () (2% — 1) = 63.
Thus the solution is 630 — 63 = 567 numbers. O

1.C.7. There are 677 people at a concert. Do some of them

have the same (ordered) pair of name initials?

Solution. There are 26 letters in the alphabet. Thus the num-
ber of all possible name initials are 262 = 676. Thus at least

two people have the same initials. |

1.C.8. New players meet in a volleyball team (6 people).
How many handshakes are there when everybody shakes once
with everybody else? How many handshakes are there if ev-
erybody shakes hands once with each opponent after playing
a match?

Solution. Each pair of players shakes hands at the introduc-
tion. The number of handshakes is then the combination
c(6,2)
shakes hands six times (with each of six opponents). Thus
O

= (§) = 15. After a match each of the six players

the required number is 62 = 36.

1.C.9.

for five people, if only two of them have a driving licence? In

In how many ways can five people be seated in a car

how many ways can 20 passengers and two drivers be seated

in a bus for 25 people?

Solution. For the driver’s place we have two choices and the
other places are then arbitrary, that is, for the second seat we
have four choices, for the third three choices, then two and
then 1. That makes 2.4! = 48 ways. Similarly in the bus we
have two choices for the driver, and then the other driver plus
the passengers can be seated among the 24 seats arbitrarily.
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k-tuple from n parentheses in the product (from these paren-
theses, we take a, from the others, we take b). Therefore we
have

n

2 a+b)" = (n>akb"k.
@ (a+1) kZ:O k
Note that only distributivity, commutativity and associativity
of multiplication and summation was necessary. The formula
(2) therefore holds in every commutative ring.

We present a few simple propositions about binomial co-
efficients — another simple example of a mathematical proof.
If needed, we define ( ) = 0 whenever k < Oor k > n.

1.3.3. Proposition. For all non negative integers n, we have

(2) (ZE) = (:) + (kj—l) 0<k<n-—1
(3) Yoo (1) =27
@) S0 k(T) = n2n .

Proor. The first formula in the proposition is immediate
directly from the formula 1.3.2(1). If we expand the right-
hand side of (2), we obtain

n!

n n n!
(k) + <k+1> T S A (e § T gy g
_ (E+1)n!+ (n—k)n!
Tkt Dl — k)
B (n+1)!
RCEICET]

which is the left-hand side of (2).

In order to prove (3), we use mathematical induction
again. Mathematical induction consists of two
steps. In the initial step, we establish the claim
- £ for n = 0 (in general, for the smallest n the
claim should hold for). In the inductive step we assume that
the claim holds for some n (and all smaller numbers). We use
this to prove that this implies the claim for n + 1. The prin-
ciple of mathematical induction then asserts that the claim
holds for every n.

The claim (3) clearly holds for n = 0, since (8) =1=
20 It holds also for n = 1. Now assume that the claim holds
for some n > 1. We must prove the corresponding claim for
n + 1 using the claims (2) and (3). We calculate

(0260 ()
-y (Z)Ji(:) —on 4 on = gnt,

k=-1 k=0

Note that the formula (3) gives the number of all subsets
of an n-element set, since ( ) is the number of all subsets of
size k. Note also that (3) follows from 1.3.2(2) by choosing
a=b=1.

To prove (4) we again employ induction, as we did in (3).
For n = 0 the claim clearly holds. The inductive assumption
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24
21

these seats the people can be seated in 21! ways. The solution

is2- (3411)21! = 274! ways. O

First choose the seats to be occupied, that is, ( ) Among

1.C.10. Determine the number of distinct arrangements
which can arise by permuting the letters in each
individual word in the sentence “Pull up if I pull

up” (the arising arrangements and words do not

have to make any sense).

Solution. Let us first compute the number of rearrangements
of letters in individual words. From the words “pull” we
obtain 4!/2 distinct anagrams (permutation with repetition
P(1,1,2)), similarly “up” and “if”” yields two. Therefore, us-
ing the rule of product, we have 47! ~2'2~1-45! -2 = 1152, Notice,
that if the resulting arrangement should be a palindromic one

again, there would be only four possibilities. |

1.C.11.

five holes (into every hole one ball), if we have four identical

In how many ways can we insert five golf balls into

white balls, four identical blue balls and three identical red
balls?

Solution. First solve the problem in the case that we have five
balls of every colour. In this case it amounts to free choice of
five elements from three possibilities (there is a choice out of
three colours for every hole), that is permutations with repe-

titions (see ). We have
V(3,5) = 3°.

Now subtract the configurations where there are either balls
of one colour (there are three such), or exactly four red balls
(there are 2-5 = 10; we first choose the colour of the non-red
ball — two ways — and then the hole it is in — five ways). Thus
we can do it in

3°—3-10=1230

ways. |

1.C.12.
envelopes five identical 10-bills and five identical 100-bills

In how many ways can we insert into three distinct

such that no envelope stays empty?

Solution. First compute the number of insertions ig-
noring the non-emptiness condition. It is an example
of 3-combinations with repetition from 5 elements,
and since we insert the 10-bills and 100-bills indepen-
dently, we have c(7,2)? (;
the insertions such that exactly one envelope is empty

2
) ways. Now subtract

and then the insertions such that two are empty. We have
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says that (4) holds for some n. We calculate the correspond-
ing sum for n+ 1 using (2) and the inductive assumption. We
n

) E( ) )
S ien () + ()

Zk
>

k=0
=2" 42"t 42"t = (n £ 1)2™

n+1
= Z k
k=0

n

This completes the inductive step and the claim is proven for
all natural n. (]

The second property from above allows us to write down
all the binomial coefficients into the Pascal triangle.” Here,
every coeflicient is obtained as a sum of the two coefficients
situated right “above” it:

n=20: 1

n=1: 1 1

n=2: 1 2 1

n=3: 1 3 3 1
n==4: 1 4 6 4 1
n=>5: 1 5 10 10 5 1

Note that in individual rows we have the coefficients of in-
dividual powers in the expression (2). For instance the last
given row says

(a+b)° = a® + 5a*b + 10a>b? + 100> + 5ab* + b°.

1.3.4. Choice with repetitions. The ordering of n elements,
- where some of them are indistinguishable, is
called a permutation with repetitions.
Among n given elements, suppose there are
=& p; elements of the first kind, ps elements of the
second kind, ..., pi of the k-th kind, where p; + po + --- +
pr = n. Then the number of permutations with repetitions
of these elements is denoted as P(p1, ..., pk).
We consider the orderings which differ only in the order
of indistinguishable elements to be identical. Elements of the
ith kind can be ordered in p;! ways, thus we have

PERMUTATIONS WITH REPETITIONS

The number of permutations with repetitions is

n!
P(p, ..

yPe) = —V
)= -

pr!

Let S be a set with n distinct elements. We wish to select
k elements, 0 < k < n from S with repetition permitted.
This is called a k-permutation with repetition. Since the first
selection can be done in n ways, and similarly the second can

2Although the name goes back to Blaise Pascal’s treatise from 1653,
such a neat triangle configuration of the numbers ¢(n, k) were known for
centuries earlier in China, India, Greece, etc.
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C(2,7)2-3(C(1,6)2 —2) -3

(;)2—3(62 —2)—3 =336. also be done in n ways etc. The total number V (n, k) of k-

(] Ppermutations with repetitions is n*. Hence

1.C.13. For any fixed n € N, determine the number of all
solutions to the equation
1 +To+ -+ xTp=n

in the set of non-negative integers.

Solution. Every solution (71, ...,7x), Zle r; = n can be
uniquely encoded as a sequence of separators and ones, where
we first write 7; ones, then a separator, then r ones, then
another separator, and so one. Such sequence then clearly
contains n ones and £ — 1 separator. Every such sequence
clearly determines some solution of the given equation. Thus

there are exactly that many solutions as there are sequences,
that is, ("+k71). O

1.C.14. In how many ways could the English Premier
League have finished, if we know that no two of the three
teams Newcastle United, Crystal Palace and Tottenham
Hotspur are “adjacent” in the final table? (There are 20

teams in the league.)

Solution. First approach. We use the inclusion-exclusion
principle. From the number of all possible resulting tables
we subtract the tables where some two of the three teams are
adjacent and then add the tables where all three teams are ad-

jacent. The number is then
3
20! — <2> -20-191+ 3! 18! =18!- 16 - 17.

Second approach. Let us consider the three teams to be
“separators”. The remaining teams have to be divided such
that between any two separators there is at least one team.
The remaining teams can be arbitrarily permuted, as can the

separators. Thus we have
1
<38) -171-31=18!-17 - 16.
ways.

D. Probability

We present a few simple exercises for classical proba-

My, bility, where we are dealing with some exper-

I
z%/@ <, iment with only a finite number of outcomes
A ' (“all cases™) and we are interested in whether or
oA
flr not the outcome of the experiment belongs to

a subset of possible outcomes (“favourable outcomes”). The
probability we are trying to determine then equals the number

18

k-PERMUTATIONS WITH REPETITIONS

V(n, k) = nF.

If we are interested in a choice of k elements without tak-
ing care of order, we speak of k-combinations with repetitions.
At first sight, it does not seem to be easy to determine the
number. We reduce the problem to another problem we have
already solved, namely combinations without repetitions:

COMBINATIONS WITH REPETITIONS

Theorem. The number of k-combinations with repetitions
from n elements equals for every k > 0and n > 1

)

k
Proor. Label the nelementsasay,as,--- ,a,. Suppose
each element labeled a; is selected k; times,
. » 0 < k; < k,sothat ky+ka+- - -+k, = k. Each
" such selection can be paired with the sequence
e of symbols * and | where each * represents one
selection of an element and individual boxes are separated by
| (therefore there are n — 1 of them).
The number of * in the ith box is equal to k;, so we obtain
the sequence

*...* ‘*...*'
——
k2

N——"

k1 kn

The other way around, from any such sequence we can
determine the number of selections of any element (e.g. the
number of * before first | determines k).

Having altogether k symbols * and n — 1 separators | we

see that there are

possible sequences and therefore also the same number of the
required selections. O

n+k—1
k

n+k—1
n—1

4. Probability

Now we are going to discuss the last type of function de-
. scription, as listed in the very end of the
E2y .. subsection 1.1.5. Thus, instead of assign-
2~ ing explicit values of a function, we shall
- = try to describe the probabilities of the in-
dividual options.

1.4.1. What is probability? As a simple example we can
use common six-sided dice throwing, with sides labelled as

1,2, 3,4, 5, 6.
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of favourable outcomes divided by the total number of all out-
comes. Classical probability can be used when we assume, or
know, that each possible outcome has the same probability of

happening (for instance, fair dice throwing).

1.D.1.

in a number greater than 4?

What is the probability that the roll of a dice results

Solution. There are six possible outcomes (the set
{1,2,3,4,5,6}). Two are favourable ({5,6}). Thus
the probability is 2/6 = 1/3. O

1.D.2. We choose randomly a group of five people from a
group of eight men and four women. What is the probability

that there are at least three women in the chosen group?

Solution. We divide the favourable cases according to the
number of men in the chosen group: there can be either two
or one. There are eight groups with five people of which
one is a man (all women have to be present in such groups,
thus it depends only on which man is chosen). There are
c(8,2)-c(4,3) = (5)(3) of groups with two men (we choose
two men from eight and then independently three women
from four. These two choices can be independently combined
and thus using the rule of product we obtain the number of
such groups). The total number of groups with five people is
c(12,5) = (152). The probability, being the quotient of the
number of favourable outcomes to the total number of out-

comes, is then

0.

1.D.3. From a deck with 108 cards (2 x 52 4 4 jolly jok-
ers) we draw without returning 4 cards randomly. What is

the probability that at least one of them is an ace or a joker?

Solution. We can easily determine the probability of the com-
plementary event, that is, in the 4 drawn cards there is none
of the 12 cards (8 aces and 4 jokers). This probability is given

by the ratio of the number of choices of 4 cards from 96 and

96) / (108) )

the number of choices of 4 cards from 108, that is, ( P’ 1

The complementary event thus has the probability

(%)

4

("¥")

= 0.380.

O
We give an example for which the use of classical proba-

bility is not suitable:

19

If we describe the mathematical model of such throwing with
a “fair” dice, we expect by symmetry that every side occurs
with the same frequency. We say that “every side occurs with
the probability 1/6”.

But throwing some less symmetric version of a dice with
six faces, the actual probabilities of the individual results
might be quite different. Let us build a simple mathemati-
cal model for this. We shall work with the parameters p; for
the probabilities of individual sides with two requirements.
These probabilities have to be non-negative real numbers and
their sum is one, i.e.

p1+p2+p3+ps+ps+ps=1.

At this time, we are not concerned about the particular choice
of the specific values p;, they are given to us. Later on, in
chapter 10, we shall link probability with mathematical sta-
tistics and then we shall introduce methods how to discuss
reliability of such a model for a specific real dice.

1.4.2. Classical probability. Letus come back to the mathe-
matical model for the fair dice. We consider the sample space
2 =1{1,2,3,4,5,6} of all possible elementary events (each
of them corresponding to one possible result of the experi-
ment of throwing the dice). Then we can consider any event
as a given subset A of §2. For example A = {1,3,5} de-
scribes the result of getting odd number on the resulting side
(we count the labels on the sides of the dice). Similarly, the
set B= A°={2,4,6} = 2\ Ais the complementary event
of getting even numbered points. The probability of both A
and B will be 1/2. Indeed, |A|/|{2 = 1/2, where |A| means
the number of elements of a set A.
This leads to the following obvious generalization:

CLASSICAL PROBABILITY

Let {2 be a finite set with n = |{2| elements. The classical
probability of the event corresponding to any subset A C (2
is defined as

Such a definition immediately allows us to solve prob-
lems related to throwing several fair dice simultaneously. In-
deed, we may treat this as throwing independently one dice
many times and thus multiplying the probabilities. For exam-
ple, the event of getting an odd sum of points on two dice is
given by adding the probabilities of having an even number
on the first one and odd number on the second one and vice
versa. Thus the probability will be twice 1/2 - 1/2, which is
1/2 as expected.

1.4.3. Probability space. Next, we formulate a more gen-
- eral concept of probability covering also the un-

fair dice example above.
We shall need a finite set {2 of all possible
k- states of a system (e.g. results of an experiment),
which we call the sample space.




CHAPTER 1. INITIAL WARMUP

1.D.4. Whatis the probability that the reader of this exercise
wins at least 25 million euro in EuroLotto during the next

week?

Solution. Such a formulation is incomplete, it does not give
us enough information. We present a “wrong” solution. The
sample space of possible outcomes is two-element: either the
reader wins or not. A favourable event is one (win), thus the

probability is 1/2. This is clearly a wrong answer. ]

Remark. In the previous exercise the basic condition of the
use of classical probability was violated — every elementary
event must have the same probability. In fact, the elemen-
tary event has not been defined. EuroLotto has a daily draw
with a jackpot of €25 000000 for choosing 5 correct num-
bers 1,...,50. There is no other way to win €25 000 000
than to win a jackpot on some of the day during the week.
The elementary event would be that a single lotto card with 5
numbers wins a jackpot. Assuming that the reader submits k

lotto cards every day of the week, the probability of winning

at least one jackpot during the week is % = s

1.D.5. There are 2n seats in a row in a cinema. We ran-
domly seat n men and n women in the row. What is the prob-
ability that no two persons of the same sex sit next to each

other?

Solution. There are (2n)! possible seatings. The number of
seatings satisfying the given condition is 2(n!)2. For we have
two ways for choosing the positions for men (thus also for
women) — either all men sit on odd-numbered places (thus the
women sit on even-numbered places), or vice versa. Among
these places, both men and women are seated arbitrarily. The
resulting probability is thus

2(n!)?

p(n)_ (QTL)'
In particular, p(2) = 0.33, p(5) = 0.0079, p(8) =
0.00016. 0

1.D.6. Five persons enter an elevator in a building with
eight floors. Each of them leaves the elevator at any floor
with the same probability. What is then the probability, that

i) all of them leave at sixth floor,
ii) all of them leave at the same floor,
iii) each of them leaves at a different floor.

Solution. The sample space of possible events is the space of
all possible ways of leaving the elevator by 5 people. There
are 8° of them.

20

Further, the space of all possible events is given as the set
A of all subsets in (2. Finally, we need the function describing
the probabilities of occurrence of individual events:
PROBABILITY FUNCTION

Let us consider a non-empty fixed sample space (2. event.
The probability function P : A — R satisfies

(D P()=1
(2) 0 < P(A) forallevents A
(3) P(AUB) = P(A)+ P(B) whenever AN B = ().

Notice that the intersection A N B describes the simul-
taneous appearance of both events, while the union A U B
means that at least one of events A and B appear. The event
A€ = 02\ Ais called the complementary event.

ProBABILITY

PIAVB)=P(A)+P(BA)

There are some further straightforward consequences of
the definition for all events A, B:

4 P(A)=1-P(A°)

(5) P) =0

(6) P(A) <1 forall events A

(7N P(A) < P(B) whenever A C B
(8) P(AuB)=P(A)+ P(B)— P(ANB)

The proofs are all elementary. For example, A U (A°) = 2
and thus (3) implies (4).

Similarly, we can write A = (A \ B) U (AN B) and
AUB = (A\B)U(B\ A)U(ANB) with disjoint unions of sets
on the right hand sides. Thus, P(A) = P(A\B)+P(ANB)
and P(AUB) = P(A\ B)+ P(B\ A) + (AN B) by (3),
which implies the last equality. The remaining three claims
are even simpler.

All these properties correspond exactly to our intuition
how probability should behave. Probability should be always
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In the first case there is only one favourable outcome,
thus the probability is 8%. In the second case there are eight
favourable outcomes, thus the probability is 8%. In the third
case, the number of favourable outcomes is given by a five-
element variation of eight elements (we choose five floors
among eight where some person leaves the elevator and then
we choose the order in which they leave the chosen floors).
The probability is then (see 1.3.2 and 1.3.4)

8-7-6-5-4
—————— =0.205078125.
8 0

1.D.7. Randomly choose a positive integer smaller than 10°.
What is the probability that it will consist only of the digits
0, 1,5 and that it will be divisible by 57 (Recall that the first
digit must not be 0.)

Solution. There are 10° — 1 positive integers smaller than
10°. Numbers satisfying the condition must begin with either
1 or 5, and end with O or 5. Thus there are 2 - 3% - 2 five digit
favourable numbers. There are 2 - 32 - 2 four digit favourable
numbers, 2-3-2 three digit favourable numbers, 2-2 two digit

favourable numbers, and one one digit favourable number. In
total there are 2+ (32 + 32+ 31 +1)-2+1=2-(3* - 1) +
1 = 2-3* — 1 favourable numbers. According to classical

2371 = 0,0016. OJ

probability, we obtain the probability as

1.D.8. From a sack with five white and five red balls, we
draw in succession three balls at random without returning
the balls back to the sack. What is the probability that two of

them are white and one is red?

Solution. Divide the event into a union of three disjoint
events, according to in which turn we draw the red ball. The
probability that the red ball is drawn as third, second, or first,
respectively, is : 1% . % . g, 150 . g . %, 15—0 . % . %. In total %
Another solution. Consider the number of all possible triples
of drawn balls, (10) There are (g) ( ) of triples with exactly
two white balls (two white balls can be drawn in (g) ways,
and one red ball can join them in five ways). The required
probability is then (3) - (“;’)/ (130) =

order, in which the balls were drawn, because every order has

%. We could forget the

the same probability of being drawn. Thus there is 3! more
both, favourable as well as total events and their ratio remains

unchanged. |

1.D.9. From a hat where there are five white, five red and

six black balls we draw balls randomly (and do not return the
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areal number between zero and one. The event {2 includes all
possible results of the experiment, so it must have probability
one. No result appears with probability zero, the probabilities
of disjoint events should add, etc.

Of course, the classical probability on the sample space
{2 is an example of a probability function. The fact that the set
of all events A is closed upon union, intersection and taking
the complement has been essential in our exposition above.
This will continue in all our discussion on probability in the
sequel. Thus we could talk about more general spaces of
events A in the sets of all subsets in the sample space. We
will return to this and more serious generalizations in chapter
10.

1.4.4. Summing probabilities. By using mathematical in-

{1, duction, the additivity of probability is easily ex-

tended to any (finite) number of mutually exclusive
22 events A; C 2,1 = 1,...,n. Thatis,

=2 M

whenever A, NA; =0, forall i # j, 4,5 = 1,...,n. Indeed,
1.4.3(3) is the result for n = 2. If we assume the validity
of the formula for some fixed n, then the union of any n + 1
events Ay, A1, ..., A, can be split into the union of Ay and
AjU. .. A,,. Then by the induction assumption, together with
1.4.3(3) again, the result follows.

In general, the summing of probabilities of event occur-
rences is much more difficult. The problem is that whenever
the events are mutually compatible, the possible results in
their intersection are counted multiple times.

We have seen the simplest case of two mutually compat-
ible events A and B in 1.4.3(8). For classical probability, it
reduces just to counting elements in subsets. Indeed, those
elements that belong to both the sets A and B count in the
formula P(AU B) = P(A) + P(B) — P(AN B) twice and
thus we have to subtract them once.

Now, we look at the general case. The approach of

interactive inclusion and exclusion (potentially
: » 100 many) elements in some count is a stan-

dard method in combinatorics known as the

inclusion-exclusion principle. We shall exploit
thls method in our general finite probability spaces.

As we shall see, this is an example of a mathematical
theorem, where the hard part is to understand (and find) the
formulation of the result. The proof is then relatively simple.

The diagram explains the situation for three sets A, B, C'
for classical probability:

P(AUBUC) = P(A)+ P(B)+ P(C) — P(AN B)
—P(ANnC)—P(BNC)+P(ANnBNCQO).

zEIA

Clearly, the probabilities are given by first counting the ele-
ments in each set and adding. Then we subtract the sum of
those in intersections of pairs of sets, since those elements
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drawn balls back). What is the probability that the fifth drawn
ball is black?

Solution. We will solve a more general problem, the proba-
bility that the i-th drawn ball is black. This probability is the
same for all 7, 1 < 7 < 16 — we can imagine that we draw
all balls one by one, and every such sequence (from the first
drawn ball to the last one) consisting of five white, five red and

six black has the same probability of being drawn. Thus we

16!
5!-5!-6!

of such sequences. The number of sequences where there is

can use classical probability. There are P(5,5,6) =

a black ball on the i-th place, the rest arbitrary, equals to the
number of arbitrary sequences of five white, five red and five
black balls. That is, P(5,5,5) = % Thus the probability
is

P(5,5,5) 15! 6! 3
P(5,5,6)  5!5!5!" 6!5!5! 8

|

1.D.10. Inclusion-exclusion principle. A secretary has to

Wz, send six letters to six different people. She puts the

‘/
#
é; )
\

intended letter?

>
7

letters in the envelopes randomly. What is the prob-

ability that at least one person receives the correct

Solution. We compute the probability of the complementary

event — no person receives the correct letter.

The sample space corre-
sponds to all possible order-
ings of six envelopes. If we de-
note both the letters and the en-
velopes by numbers from one
to six, then all the favourable
events (no letter is assigned
to the corresponding envelope)
correspond to such orderings

of six elements, where the i-th
element is not at the i-th place
¢i=1,...,6).

These are the orderings without a fixed point. We compute
the number of such orderings using the inclusion-exclusion
principle. If we denote by M; the set of permutations such
that ¢ is a fixed point (note that permutations in M; can also
have other fixed points), then the resulting number d of per-

mutations without a fixed point is

d=6l—|MU--U M|
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are counted twice. But we must then add in the number of
elements in the intersection of all three.

INCLUSION-EXCLUSION FRINCIPLE .

We shall now follow the same idea in order to write down
the formula in the following theorem. It seems plausible that
such a formula should work with proper coefficients of the
sums of probabilities of intersections of more and more events
among Ay, ..., Ay, at least in the case of classical probabil-
ity. The reader will perhaps appreciate that a quite straightfor-
ward mathematical induction will verify the theorem in full
generality.

1.4.5. Theorem. Ler Ay,..., A, € A be arbitrary events
over the sample space (2 with a set of events A. Then

k k—=1 k
P(UleAi) = ZP(Ai) - Z Z P(A;NA;j)
i=1 i=1 j=i+1
k—2 k-1 k
+ > P(AiNA; N Ay

i=1 j=i+10=j+1

+ (=D)*1P(A N Ay NN Ap).

Proor. For k = 1 the claim is obvious. The case k =
® 2 is the same as the equality 1.4.3(8), which we
have already proved.
Assume that the theorem holds for any num-
= ber of events up to k, where k£ > 1. Now we can
work in the induction step with the formula for £ + 1 events,
where the union of the first k of them are considered to be the
A in the equation 1.4.3(8) and the remaining event is consid-
ered to be the B:

P A) = P((UFE_14;) U Agyq)

— é((—l)“l >

P(Ai M- mAij))
1<iy << <k
+ P(Alc-H) - P((Al y---u Ak) N Ak+1).

This already resembles the formula for & + 1 summed events.
But in the first term, expressions containing Ay, are missing.
Also absent is a term allowing for the probability that all the
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The number of elements in the intersection M;, N -
k=1,..

is ﬁxed, the remaining 6 —k can be ordered arbitrarily). Using

N M;,,

,6,is (6 — k)! (the order of the elements i1, . . . , ix

the inclusion-exclusion principle we have

- zﬁj(—n’““ (Z) (6 —k)!

k=1

My U - U Mg|

and thus for the number d we obtain the relation

d 6! —26:(—1)k+1 (Z) (6 —k)!

The probability that no person receives “his” letter is then

i (-1F _ 53
kT 144°
k=0

The probability we were asked for is

S
kT 144
k=0

O

Remark. Notice that the answer does not change much with
a growing number of letters. For n letters, the probability that
the secretary does not assign any of them in correct order is

“(=Dk 1
Z<k!) e

k=0

As we will see later, the sum converges to the value 1/e. In
a similar way the exercise 1.G.45 can be solved.

The following exercise is a simple model, which esti-
mates the probability of death of a person in a traffic accident.

1.D.11. Approximately 1200 persons die per year at the
\ roads of the Czech Republic. Determine
3 " the probability that some person of a cho-

sen group of 500 people dies in the fol-
lowing ten years in a traffic accident. For simplicity, assume
that every person has the same “chance” of dying in traffic

accident in one year and that this probability is 1200/107.

Solution. Let us first count the probability that one randomly
chosen person does not die in ten years in a traffic accident.
The probability that he/she does not die in a year is (1 — {35 ).
The probability that he/she does not die in ten years is then
(1- 165
500 people does not die is again using the product rule (the
25)7900_ The probability of the

)10_ The probability that in ten years none of the given

events are independent) (1 —
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events happen. On the other hand, the last expression should
not be there. We can replace it by the expression

—P((A1NApp1) U=+ U (A N Agp))

and for this we can again use the induction, that is, the formula
in the statement of the theorem. With a little patience (and a
piece of paper long enough to write down all the expressions)
we can check that this adds all the missing pieces. ]

1.4.6. Inclusmn exclusion principle. As we have men-
tioned already, a special case of the previous
theorem is the one of classical probability.
There the probability of an event A is strictly

—~ proportional to the number of elements in A

(Wthh is just divided by the total size n of the sample space).

Thus, in the formula from the previous theorem, all the

probabilities give the sizes of the subsets involved, up to a

common factor %

In this way we can extract from the theorem 1.4.5 the
following claim for the size of a general finite set M and its
subsets A1, ..., Ak. As usual we let | M| denote the number
of elements of the set M.

Of course for every finite set M and its subsets,

|M\ (U1 A3)] = [M] = | UL Adl.

Now we use the previous theorem, and express the size of
the union on the right side, and we obtain the theorem that is
usually called

PRINCIPLE OF INCLUSION-EXCLUSION

nay))

The meaning of this result for the special case n = 3
can be visualized easily, see the diagram before the theorem
1.4.5.

M\ (Ui,

+zk:((— > 4N

j=1 1<ir<-+<ij <k

Ai)| = M|

1.4.7. Independent events. Next, we wish to express possi-
ble dependencies among events in a given sample space {2
with the probability function P. We say that the events A and
B are stochastically independent if

P(ANB) = P(A) - P(B).

This definition may remind us of our experiences in
combinatorics when counting possibilities for independent
choices. For example, dealing with a fair dice, we can de-
fine events A “odd number occurs”, B “the result is at least
3” and C “the result is at most 3”. The probabilities are
P(A) = %,P(B) = %,P(C) = % PANnBNQO) =

t=1-2.1=P(A)- P(B) - P(C), and taking pairs we

have P(ANC) =+ £ 1.1 p(AnB) =1 =12
P(BNC) = % # % % Notice, that the stochastlcal de-

pendance of the pairs A, C' and B, C corresponds well to our
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complementary event, that is, some of the chosen people dies,

5000
(1 — 12) = 0.4512.

is then

]

Remark. The model we have used in the previous exercise
to describe the given situation is only approximate. The com-
plication is in the condition that every person in the sample
has the same probability of dying, which is derived based on
the total number of deaths per year. But the number of deaths
changes yearly and even if it did not, the population changes.
We show one of the possible inaccuracies by a different ap-
proach to the solution: if 1200 persons per year dies, then in
ten years 12000 persons die. The probability that a certain
person dies in ten years can thus be estimated by 12000/107.
The probability that a specific person does not die in ten years
is then (

of (1 — 105 2)10). In total we analogously obtain the estimate

— W) (first two members of binomial expansion

of the probability
19\ 500
1— 11— — = 0.4514.
(- 1w)
We see that both estimates are very close to each other.
The effort to use mathematical knowledge for winning in
various gambling games is very old. We look at a very simple

example.

1.D.12. Alex has $2500 left over from organizing a summer
camp. Alex added $50 from his savings and decided to go
playing roulette. Alex bets only on colour. The probability of
winning when betting on colour is 18/37. He begins to bet
$10, and if he loses, in the next bet, he doubles the bet that
he made in the previous round. (This is only if he has enough
money. If not, he ends the game even if he has some money
left.) If he wins, in the next round he bets again $10. What is
the probability that using this strategy he wins another $25507?
As soon as he has already won such an amount, he ends the

game.

Solution. First count how many times in a row Alex can loose.
If he begins with a bet of $10, then for n bets he needs

10+20+~--+10.2”1_10-<Z2>10 —1).

The number 2550 is of the form 10(2™ — 1) for n = 8. Alex
can thus bet eight times in a row no matter what the result is.
For nine bets he would need 10(2% — 1) = $5110 and during

the game he will never have such an amount, since as soon
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intuition (e.g. there are more odd numbers between the values
2, 3 than between the numbers 4, 5, 6).
This example also shows that we have to be careful with
more events. In general, mutually independent sets are de-
fined in this way:

Deﬁnition. Consider an arbitrary probability space
—, (£, A, P) and k events Ay,..., Ay in that
space. We say that these events are stochas-
b —_ tically independent (with respect to the prob-
ablhty function P), if for any chosen events A;,,..., 4;,,
1 < /¢ < k we have

P(A;,n---NA;,) =P(A;y) -

Every subset of a set of stochastically independent events
is also stochastically independent. Further, for any two
stochastically independent events we compute

P(ANB) = P(A\ B) = P(A) — P(ANB) =
= P(A)(1 - P(B)) = P(A)P(B").

From there we can show that by exchanging one or more
events in a set of stochastically independent events by their
complements, we again obtain a set of stochastically indepen-
dent sets.

Sometimes we need to compute the probability that at
least one of the stochastically independent set of events oc-
curs. That is, we want to compute P(A4; U---U Ag). In such
a situation we can use the De Morgan laws for sets,

(UierAi)© = NicrAf
(MierAi)© = User A5.

.- P(A;).

‘We obtain

P(AjU---UA) =1—P(ASN---NAS)
=1-—(1—-P(A1))-...- (1= P(A4y))
k

=1-JJ - P4y).

Jj=1

1.4.8. Conditional probability. Often we want to restrict
s our attention only to events, which lie in a sub-
space H C (2. This means that the events in
question will be the intersections A N H of the
= original events A with the subset H. Thus our
new probablhtles should be proportional to P(A N H). We
would like to have H in the role of the new sample space.

As an example, we might look again at the model of a
fair dice and ask the question “what is the probability that by
throwing two dice the result is twice 5, if we know that the
sum of the results is 10?”. Of course, we are now having only
the possibilities 4 + 6 (two times) and 5 + 5 (once). So the
probability should be % much greater then the probability %
of the same event without any further condition.

Similar situations are reflected in the following defini-
tion:
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as he has $5100, he stops. Thus in order for him to fail, he
must lose eight times in a row. The probability of losing on a
single betis 19/37. So the probability of losing eight times in
arow is (19/37)8. The probability that in these eight games
he wins $10 (using his strategy) is thus 1—(19/37)%. In order
to win $2500, he needs to win 255 times $10. Again using the

product rule the probability of winning is

"t 255
1-( 5 = 0.29.
(1-()) o

Thus the probability of winning is lower than betting every-

thing at once on colour. ]

1.D.13.

cise assuming that Alex has the same strategy as before, but

Individually you can try to solve the previous exer-

ends only when he has no money (if he cannot afford to dou-
ble the bet when he lost the previous but still has some money,
he begins again with $10).

Now we consider “conditional” probability (see (1.4.8)).

1.D.14. What is the probability that when rolling two dice
the sum is 7, if we know that neither of the rolls resulted in a
27

Solution. Let B be the event that neither of the rolls results
into 2, and let A be the event “sum is 7. The set of all possible

outcomes is again denoted by {2. Then
|ANB]

P(ANB) [7] |AN B
P(A|B) = = = .
(41B) P(B) 1Bl | B|
[£2]
The number 7 can appear as a sum in four ways if there is no
2, that is, =5-5=25. Thus
4
P(A|B
P(AIB) = .

Note that P(A) = %, that is, A and B are not independent.
O

1.D.15. Michael has two mailboxes, one at gmail.com and

///j} the other at hotmail.com. His username is the

same at both servers, but the passwords are dif-
ferent. He does not remember which password
corresponds to which server. When typing in the
password for accessing his mailbox, he makes a typo with
probability 5% (that is, if he tries to type in a specific pass-
word, he types what he intended with probability 95%). At
the server hotmail.com, Michael typed in the username and
a password, but the server told him that something is wrong.
What is the probability that he chose the correct password but

25

CONDITIONAL PROBABILITY

Definition. Let [ be an event with non-zero probability in
the sample space {2 with the probability function P. The
conditional probability P(A|H) of the event A given H is
defined by the formula
P(ANH)

P(H)

The event H is sometimes called the hypothesis.

P(A|H) =

As it is obvious from the definition, the hypothesis [
with non-zero probability and the event A are (stochastically)
independent if and only if P(A) = P(A|H). The definition
also directly implies the “theorem for product of probabilities”
— if we have two events A1, As satisfying P(A; N As) > 0,
then

P(A; N Ay) = P(A2)P(A1|As) = P(A)P(As|Ay).

All these numbers express (in a different manner) the prob-
ability that both events A; and A, occur. For instance, in
the last case we first look whether the first event occurred.
Then, assuming that the first has occurred, we look whether
the second also occurs. Similarly, for three events Ay, Ag, A3
satisfying P(A; N A3 N A3) > 0 we obtain

P(A; N Ay N A3) = P(A1)P(As| A1) P(A5|A; N Ay).

The probability that three events occur simultaneously can be
computed as follows. Compute the probability that the first
occurs, then compute the probability that the second occurs
under the assumption that the first has occurred. Then com-
pute the probability that the third occurs under the assump-
tion that both the first and the second have occurred. Finally,
multiply the results together.

In general, if we have k events Aq,...,
P(A;N---N Ag) > 0, then the theorem says

P(AiN--NAg) = P(A1)P(Az|Ay)- - -P(Ag|A1N: - -NAK_1).

Notice that our condition that P(A4; N---N Ag) > 0 implies
that all the hypotheses in the latter formula have got non-zero
probabilities and thus all the conditional probabilities make
sense. Indeed, each A; is at least as big as the intersection
and thus its probability is at least as big, thus non-zero, see
1.4.3(7).

Ay, satisfying

1.4.9. Geometrlc probability.

2 In practical problems, the sample space
' may not be a finite set. The set A of all events
may not be the entire set of all subsets in {2. To
generalise probability to such situations is be-
yond our scope now, but we can at least give a simple illustra-
tion.

Consider the plane R? of pairs of real numbers and a sub-
set {2 with known area (2. Events are represented by subsets
A C {2 For the event set A we consider some suitable sys-
tem of subsets for which we can determine the area. An event
A then occurs if a randomly chosen point from {2 belongs to
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just mistyped? (Assume that the username is always typed
correctly and that making a typo cannot turn wrong password

into a good one.)

Solution. Let A be the event that Michael typed in a wrong
password at hotmail.com. This event is the union of two dis-

joint events:

Aj : he wanted to type in the correct password and mistyped,
As : he wanted to type in the wrong password (the one from

gmail.com) and either mistyped it or not.
We are looking for a conditional probability P(A;|A) which,
according to the formula for conditional probability, is:

P(A]A) = P(A1NA)  P(AY) P(Ay)

P(A)
where we have used P(A4; U Ay) = P(A;) + P(As) since
Aj and Aj; are disjoint. We just need to determine the prob-
abilities P(A;) and P(A3). The event A; is the intersec-
tion of two independent events: Michael wanted to type in
a correct password and Michael mistyped. According to
the problem statement, the probability of the first event is
1/2 and the probability of the second event is 1/20. In to-
tal P(A;) = 1 &
since the events are independent). Further we have (directly
from the problem statement) P(Ay) = 1. In total P(A) =

P(Ay) + P(A2) = 45 + 5 = 25. We can evaluate

= ﬁ (we multiply the probabilities,

P(4) & 1
PiAil4) = P(A) 2 =5y
40

The method of geometric probability can be used in the
case that the given sample space consists of some region of
a line, region, space (where we can determine (respectively)
length, area, volume, ...). We assume that the probability, is
equal to the ratio of the area of the subregion to the area of

the sample space.

1.D.16. From Edinburgh Waverley station trains depart ev-

ery hour (in the direction to Aberdeen). From
Aberdeen to Edinburgh they also depart every

hour. Assume that the trains move between

these two stations with an uniform speed 72
km/h and are 100 meters long. The trip takes 2 hrs in either
direction. The trains meet each other somewhere along the

route. After visiting an Edinburgh pub, John, who lives in Ab-

erdeen, takes the train home and falls asleep at the departure.

During the trip from Edinburgh to Aberdeen he wakes up and

o P(AluAQ) - P(A1)+P(A2)7

the subregion determined by A, otherwise the event does not
oceur.

Consider the problem of randomly choosing two num-
bers a < b in the interval [0,1] C R. All values a and b
are chosen with equal probability. The question is “what is
the probability that the interval (a, b) has length at least one
half?” The choice of points (a, b) is actually the choice of a
point [a, b] inside of the triangle {2 with vertex points [0, 0],
[0,1], [1,1] (see the diagram).

We can imagine this as a description of a problem where
a very tired guest at a party tries to divide a sausage with two
cuts into three pieces for himself and his two friends. What
is the probability that the middle part will be at least half of
the sausage?

Thus we need to determine the area of the subset which
corresponds to points with b > a + %, that is, the interior of
the triangle A bounded by the points [0, 3], [0,1], [§, 1]. We
find P(4) = (1/8)/(1/2) = L.

Similarly, if we ask for the probability that some of the
three guests will get at least half of the sausage, then we have
to add the probabilities of two other events: B sayinga > 1/2
and C givenas b < 1/2. Clearly they correspond to the lowest
and the most right top triangles and thus they have got proba-
bilities 1/4, too. Thus the requested probability is 3/4. Equiv-
alently we could have asked for the complementary event “all
of them get less than a half” which clearly corresponds to the
middle triangle and thus has probability 1/4.

Try to answer on your own the question “what is the min-
imal prescribed length £ such that the probability of choosing
an interval (a,b) of length at least ¢ is one half?”

1.4.10. Monte Carlo methods. One efficient method for
» computing approximate values is simulation by the
) _relative occurrence of a chosen event.

We present an example. Let {2 to be the unit
square with vertices at [0,0], [1,0],[0,1], and [1,1].
Let A be the intersection of {2 with the unit disk centred at the
origin. Then area A = iﬂ'. Suppose we have a reliable gen-
erator of random numbers a and b between zero and one. We
then compute relative frequencies of how often a? + b? < 1.

26
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randomly sticks his head out of the train for five seconds, on
the side of the train where the trains travel in the opposite di-
rection. What is the probability that he loses his head? (We

are assuming that there are no other trains involved.)

Solution. The mutual speed of the oncoming trains is 40 me-
tres per second, the oncoming train passes John’s window for
two and a half seconds. The sample space of all outcomes is
thus the interval (0, 7200). During John’s trip two trains pass
by John’s window in the opposite direction. Any overlap of
the 2.5 seconds of the passing time interval with the 5 second
time interval when John’s head might be sticking out is fatal.
Thus, for each train, the space of “favourable” outcomes is an
interval of length 7.5 seconds somewhere in the sample space.
For two trains, it is double this amount. Thus the probability
of losing the head is 15/7200 = 0.002. O

1.D.17.
town B once a day at a random time between eight a.m. and

In a certain country, a bus departs from town A to

eight p.m. Once a day in the same time interval another bus
departs in the opposite direction. The trip in either direction
takes five hours. What is the probability that the buses meet,
assuming they use the same route?

Solution. The sample space is a square 12 x 12. If we denote
the time of the departure of the buses as x and y respectively,
then they meet on the trail if and only if |z — y| < 5. This in-
equality determines the region in the square of “favourable
events”. This is a complement to the union of two right-
angled isosceles triangles with legs of length 7. Its area in to-
tal is 49, so the area of the “favourable part” is 144—49 = 95,

The probability is p = % = 0.66.

u KoLoZhyA - UZHorOD

|

1.D.18. A rod of length two meters is randomly divided into
three parts. Determine the probability that at least one part is

at most 20 cm long.

Solution. Random division of a rod into three parts is given

by two points of the cut, x and y (we first cut the rod in the
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That is, that [a,b] € A. Then the result (after a large num-
ber of attempts) should approximate the area of a quarter unit
circle, that is 7 /4 quite well.

./img/0214_eng.png

Of course, the well-known formula for the area of a circle
with radius 7 is 772, where 7 = 3.14159 . ... Itis an interest-
ing question — why should the area of a circle be a constant
multiple of the square of its radius? We will be able to prove
this later. Experimentally, we can hint at this by the approach
as above using squares of different sizes.

Numerical approaches based on such probabilistic prin-
ciple are called Monte Carlo methods.

5. Plane geometry

So far we have been using elementary notions from the
geometry of the real plane in an intuitive way.
Now we will investigate in more detail how to
——_~ deal with the need to describe “position in the
plane” and to find some relation between positions of distinct
points in the plane.

Our tools will be mappings. We will consider only map-
pings which, to (ordered) pairs of values (x,y), assign pairs
(w,z) = F(z,y). Such a mapping will consist of two func-
tions w(x, y) and z(x, y), each depending on two arguments
z,y. This will also serve as a gentle introduction to the part of
mathematics called Linear algebra, with which we will deal
in the subsequent three chapters.

1.5.1. Vector space R?. We view the “plane” as a set of pairs
of real numbers (z,y) € R?. We will call these pairs vectors
in R2. For such vectors we can define addition “coordinate-
wise”, that is, for vectors u = (x,y) and v = (2/,y') we
set

utv=(z+a,y+y).

Since all the properties of commutative groups hold for indi-
vidual coordinates, these hold for our new vector addition too.
In particular there exists a zero vector 0 = (0,0), such that
v + 0 = v. We use the same symbol 0 for the vector and for
the number zero on purpose. The context will always make it
clear which “zero” it is.
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distance x from the origin, we do not move it and again cut
it in the distance y from the origin). The sample space is a
square C' with side 2 m. If we place the square C so that
its two sides lie on axes in the plane, then the condition that
at least one part is at most 20 cm determines in the square a
subregion O:

O={(z,y) eClz<20vVz>180Vy <20Vy > 180

V]z —y| < 20}.
As we observe, this subregion has area 100 times the area of
the square.
TWO HETER. BAR e
20
H=X=-2.
1 4
1
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E. Plane geometry

Let us start with several standard problems related to

lines in plane:

1.E.1. Write down the general equation of the line p : © =
2—ty=1+3tteR.
Solution. By eliminating ¢, the solution is 3z +y — 7 = 0.

O

1.LE.2. We are given a line

p: [2,0] +1(3,2), t € R.

Determine the general equation of this line. Determine its
intersection with the line

q: [-1,2]+s(1,3), s €R.

Solution. The coordinates of the points on the first line are
given by the parametric equations as * = 2 + 3t and y =
0 + 2¢. By eliminating ¢ from the equations we obtain the
equation:

2 — 3y —4=0.
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Next we define scalar multiplication of vectors. For a €
Rand u = (z,y) € R?, we set

a-u=(az,ay).

Usually we will omit the symbol - and use the juxtaposition

of the symbols a v to denote the scalar multiple of a vector.
We can directly check other properties for scalar multipli-

cation by a or b and addition of vectors u and v. For instance

(ab)u.

We use the same symbol + for both vector addition and scalar
addition.
Now we take a very important step. Define vectors e; =
. (1,0) and ez = (0, 1). Every vector can then be writ-
ten uniquely as
o\

a(u+v)=au+av, (a+bu=au+du, albu) =

u=(x,y) =xze; +yes.

The expression on the right is called a linear combinations of
vectors eq and es. The pair of vectors e = (e, e3) is called a
basis of the vector space R?,

If we choose two non-zero vectors u, v such that neither
of them is a multiple of the other, then they too form a basis
of R2.

LINEAR COMBINATION

T hese operations are easy to imagine if we consider the
vectors v to be arrows starting at the origin
__ 0 = (0,0) and ending at the position (z,y) in
the plane.

The addition of two such arrows is then
given by the parallelogram law: Given two arrows starting
at the origin, their sum is the arrow given by the diagonal ar-
row (also starting at the origin), of the parallelogram with the
two given arrows as adjacent sides. Multiplication by a scalar
a corresponds to stretching the arrow to its a-multiple. This
includes negative scalars, where the direction of the vector is
reversed.

1.5.2. Points in the plane. In geometry, we should distin-

- guish between the points in the plane (as for in-
stance the chosen origin O above), and the vec-
tors as the arrows describing the difference be-
tween two such points. We will work in fixed
standard coordinates, that is, with pairs of real numbers, but
for better usage we will always strictly distinguish vectors
written in parentheses and denoted for a moment by bold face




CHAPTER 1. INITIAL WARMUP

We obtain the intersection of p with the line ¢ by substituting
the points of ¢ in parametric form into the equation for p:

2(-14+s5)—3(243s) —4=0.

Here we obtain s = —12/7 and from the parametric equation
of ¢ we obtain the coordinates of the intersection P:

19 22
P=|-=-=|.
S

1.E.3. Determine the intersection of the lines

prx+y—4=0, q:z=-14+2t,y=2+1t tcR.

Solution. Eliminate ¢ to obtain ¢ : x — 2y = —5. Then solve
for x and y. The intersection has coordinates x = 1, y = 3.
O

1.E4. Find the equation of the line p, which goes through
the point [2, 3] and is parallel with the line 2 — 3y + 2 = 0.
Find a parametric equation of the line ¢ which goes through
the points [1, 3] and [—2, 1].
Solution. Every line parallel to the line x — 3y +2 = 0 is
given by the equation

r—3y+c=0
for some ¢ € R. Since the line ¢ goes through the point [2, 3],
¢ = 7 by putting x = 2 and y = 3. We can immediately give
a parametric equation of the line ¢

g:[L3]+t(1—(-2),3—1)=[13]+£(3,2), t € R.
O

1.E.5. Consider the following five lines. Determine if any

two of the lines are parallel to each other.

p1:2x+3y—4=0, p:x—y+3=0,

3
p3 : —2x + 2y = —6, p4:fazf§y+2:07

psrx=2+t,y=—-2—-t teR

Solution. It is clear that

-2 (—x— %y+2) =2z + 3y — 4.
Thus p; and p4 describe the same line. ps can be rewritten
as —2x + 2y — 6 = 0, thus the lines p2 and p3 are parallel

and distinct. By eliminating ¢, the line ps has an equation

z + y = 0, which is not parallel to any other line. g
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letters like u, v, instead of brackets (which we use for coor-
dinates of points in the plane. Points are denoted by capital
latin letters).

Even if we view the entire plane as pairs of real numbers
in R?, we may understand adding two such couples as follows.
The first couple of coordinates describes a point P = [z,y],
while the other one denotes a vector u = (u1, uz). Their sum
P +u corresponds to adding the (arrow) vector u to the point
P. If we fix the vector u, we call the resulting mapping

P=lryl = Ptu=z+u,y+u)

the shift of the plane (or translation) by the vector u.

Thus, the vectors in R? can be understood in more ab-
stract way as the shifts in the plane (sometimes called the free
vectors in elementary geometry texts).

The standard coordinates on R?, understood as pairs of
real numbers are not the only ones. We can put a coordinate
system on the plane with our choosing.

7 ,p

r A
’Illﬂgf Z
ZZ 7 —
-

COORDINATES IN THE PLANE RQ

Choose any point in the plane, and call it the origin O. All
other points P in the plane can be identified with the vectors
(arrows) O P with their tails at the origin.

Choose any pointo_th)er than O and call it £;. This de-
fines the vectore; = OF; = (1,0). Choose any other point
FE so that O, E, E5 are distinct and not collinear. This de-
fines the vector eo = OF5 = (0,1).

Then every point P = (a,b) in the plane can be de-
scribed uniquely as P = O + ae; + bes for real a, b, or in
vector notation, OP = ae; + be,.

Translation, by adding a fixed vector, can be used either
to shift the coordinate system (including the origin), or to
shift sets of points in the plane. Notice that the vector corre-
sponding to the shift of the point P into the point () is given
as the difference ) — P (in any coordinates). Thus we shall

—Q-P.

For each choice of coordinates, we have two distinct lines
for the two axes. The origin is the point of intersection. Other
way round, each choice of two non-parallel lines, together
with the scales on each of them defines coordinates in the
plane. They are called affine coordinates.

Clearly each nontrivial triangle in the plane with vertices
O, E, E5 defines coordinates where this triangle is defined

also use this notation for the vector P
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1L.E.6. Determine the line p which is perpendicular to the
line ¢ : 62 — 7y 4+ 13 = 0 and which goes through the point
[—-6,7].

Solution. Since the direction vector of p is perpendicular to

q, we can write the result immediately as
p:rx=—-6+6t,y=7-"Tt, teR.
O

LE.7. Give an example of numbers a,b € R, such that the
vector u is a normal to AB where A = [1,2], B = [2b,}],
u=(a—0,3).

Solution. The direction of AB is (2b — 1, b — 2) (this vector
is always nonzero), and therefore the vector (2 — b, 2b — 1) is
normal to AB. Setting

2—-b=a—b 2b—1=3,

we obtaina = b = 2. O

1.E.8. Determine the relative position of the lines p, g in the
planeforp: 2z —y—5=0,q: 2+ 2y — 5 = 0. If they are
not parallel, determine the coordinates of the intersection.

Solution. Eliminating y yields (4z—2y—10)+(z+2y—5) =
0, from which = 3, and hence y = 1. Hence [3, 1] is the

(unique) intersection and the lines are not parallel. O

1.E.9. Planar soccer player shoots a ball from the point F' =
[1,0] in the direction (3, 4) hoping to hit the goal which is a
line segment from the point A = [23,36] to B = [26, 30].
Does the ball fly towards the goal?

Solution. The ball travels along the line [1, 0] + ¢(3,4). The
line AB has the parametrization [23, 36] + u(3, —6), where
B =[23,36] + 1 (3, —6). The intersection of these lines is
given by equations 1 + 3¢t = 23 4 3u and 4¢ = 36 — 6u, with
the solutiont = 8, u = 2/3. As0 < 2/3 < 1 the intersection
is in the segment AB. The ball hits the goal.

Another solution. It is sufficient to consider only the
slopes of the vectors Fj4 (3,4), FB. Since % > % > %,

the player scores. ]

1L.E.10. Consider the plane R? with the standard coordinate
system. A laser ray is sent from the origin [0, 0]

in the direction (3, 1). It hits the mirror line p

given by the equation

p: [4a 3] + t(727 1)

by points [0,0], [1,0], [0,1]. Thus we may say that in the
geometry of plane, “all nontrivial triangles are the same, up
to a choice of coordinates”.

1.5.3. Lines in the plane. Every line is parallel to a (unique)
s line through the origin. To define a line, we
therefore need two ingredients. One is a non-
zero vector which describes the direction of the
Ry== line. Call it v = (vy,v2). The other is a point
Py = [z0,yo] on the line. Every point on the line is then of
the form

P(t):P0+tv, t e R.

PARAMETRIC DESCRIPTION OF A LINE

We may understand the line p as the set of all multiples of
the vector v, shifted by the vector (g, yo). This is called the
parametric description of the line:

p={PcR?% P=Py+tv, tcR}.

The vector v is called direction vector of the line p.

LINE. EQUATION

P=~A+t.r

v
G

In the chosen coordinates, the point P(t) = [z(t), y(¢)]
is given as
x=z(t)=z9+tvi, y=y(t)=yo+tve
We can eliminate ¢ from these two equations to obtain
—V2T + V1Y = —U2Lg + V1Yo-

Since the vector v = (v1,v2) is non-zero, at least one of the
numbers v1, v is non-zero. If one of the coordinates v or vs
is zero, then the line is parallel to one of the coordinate axis.

IMPLICIT DESCRIPTION OF A LINE

The general equation of the line in the plane is

D
with @ and b not both zero. The relation between the pair
of numbers (a, b) and the direction vector of the line v =
(v1,v2)

2

azx + by = c,

avy + bvy = 0.

We can view the left hand side of the equation (1) as a
function z = f(z,y) mapping each point [z, y] of the plane
to a scalar and the line corresponds to the prescribed constant
value of this function. We shall see soon that the vector (a, b)
is perpendicular to the direction of the line.

30
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and then it is reflected (the angle of incidence equals the angle
of reflection). At which points does the ray meet the line g,
given by

q: [7,—10] +t(—1,6)?

Solution. In principle, there could be none, one or two inter-
sections of a ray with a line. First, we inspect possible inter-
section of the line ¢ with the ray, before the ray touches the
mirror line p. In the standard way, we find the intersection
of the line ¢ with the line of the initial movement of the ray:
[0,0] ++ £(3,1). The intersection point is [0,0] + 21(3,1) =
[9%, 21]. The ray meets the mirror at the point [6, 2], that is
[0,0] +2(3,1). As0 < 21
meets the line ¢ before the reflection point.

< 2 we conclude, that the ray

Let us concentrate now on the rebound ray. The angle be-
tween the line p and the direction of the ray can be calculated
using 1.5.7 as

cosp = (_27 1) i (37 1) __N4

V5v/10

therefore ¢ = —45°. The rebounded ray is thus perpendicu-

lar to the entering ray and its direction is (1, —3). (Be careful

with the orientation! The vector of the direction can also be

obtained via reflection (axial symmetry) of the vector perpen-
dicular to the line p.)

The ray meets the mirror at the point [6, 2], thus the re-

flected ray has the equation
[6,2] +t(1,-3), t > 0.

The intersection of the line given by the rebounded ray with
the line g is at the point [4, 8]. This point lies on the opposite
side of the line p to both the incident and reflected rays. (t =
—2). Thus the rebound ray does not meet the line q.
All together, there is one intersection of the ray with the
91 91

line ¢, namely |75, ==]. O

Remark. The reflection of a ray in three-dimensional space

is studied in the exercise 3.F.4.

1.E.11.

with a constant speed of 1 meter per second in the direction

A line segment of length 1 started moving at noon

(3,2) from the point [—2, 0]. Another line segment of length
of 1 has started moving also at noon from the point [5, —2]
in the direction (—1,1), but with double speed. Will they
collide? (Segments are oriented in direction of their move-

ments.)
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Suppose we have two lines p and g. We ask about their
intersection p N ¢. That is a point [z, y] which satisfies the
equations of both lines simultaneously. We write them as

ax+by=r
3) _
cx + dy = s.
Again, we can view the left side as a mapping F', which to
every pair of coordinates [z, y] of the point P in the plane
assigns a vector of values of two scalar functions f; and fo
given by the left sides of the particular equations (3). Hence
we can write our two scalar equations as one vector equation
F(v) =w,wherev = (z,y) and w = (7, 5).
Notice that the two lines are not parallel if and only if
they have a unique point in their intersection.

1.5.4. Linear mappings and matrices. Mappings F’ with
=, which we have worked with when describing
intersection of lines have one very important

: - property in common: they preserve the opera-
tions of addition and multiplication with vectors and scalars,
that is they preserve linear combinations:

Fla-v+b-w)=a-F(v)+0b-F(w)
forall a,b € R, v,w € R?. We say that F is a linear map-
ping from R? to R?, and write F': R? — R2, This can be also
described with words — linear combination of vectors maps
to the same linear combination of their images, that is linear
mappings are those mappings which preserve linear combina-
tions.

We have already encountered the same behaviour in the
equation 1.5.3(1) for the line, where the linear mapping in
question was f : R? — R and its prescribed value c. That
is also the reason why the values of the mapping z = f(z,y)
are on the image depicted as a plane in R>,

We can write such a mapping using matrices. By a ma-
trix we mean a rectangular array of numbers, for instance

() o)
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Solution. Lines along which the segments are moving can be
described parametrically:

p : [-2,00+7(3,2),

The equation of the line p is
2z — 3y +4=0.

Substituting the parametric equation of the line ¢ yields the
intersection point P = [1, 2].

Now we choose a single parameter ¢ for both lines so that
the corresponding point on p and on g respectively, describes
the position of the initial point of the first and second line seg-
ment respectively at the time ¢. At time O the initial point of
the the first line segment is at [—2, 0], the second is at [5, —2].
During time ¢ (measured in seconds) the first segments trav-
els ¢ units of length in the direction (3,2), the second seg-
ments travels 2¢ units of length in the direction (—1, 1). Thus
the corresponding parameterisations are:

(3,2)
(-1,1)

The initial point of the first segment enters the point [1, 2] at

p o [-2,0]+¢

qg : [5,—-2]+2t

time t; = /13 s, the initial point of the second segment at
time to = /2 s — more than a half second sooner. At the time
to+ % =2+ % < t1 the ending point of the second segment
moves away from P. Thus when the initial point of the first
segment enters the point P, the ending point of the second

segment is already away and the segments do not collide. [J

We return for a while to complex numbers. The complex

plane is basically a “normal” plane, where we have something

extra:
1.E.12. Interpret multiplication by the imaginary unit ¢ and
=, complex conjugation as geometrical transfor-

7 AN
%ﬁ//@g\ <, mations in the plane.

1
2!~ Solution. The imaginary unit ¢ corresponds to
4 the point (0,1). Notice that multiplying any

number z = a + ¢ b by the imaginary unit ¢ gives the result

i-(a+1ib)=-b+ia.

Under the interpretation in the plane, this is a rotation around
the origin of the segment joining the origin to the point z
through a right angle counterclockwise (cf. 1.1.4).

We speak of a (square 2 x 2 ) matrix A and (column) vector
v. Multiplication of matrices, row by column, is defined as

follows:
_fa b z\ _ [(ax+by
= (0a) () - (@)

We introduce some more tools for vectors and matrices.
Our goal is to compute with matrices in a similar way as we
do it with scalars.

We define the product C = A - B of two square ma-
trices A and B applying the above formulas to individual
columns of the matrix B and writing the resulting column
vectors again as columns in the matrix C.

In order to multiply two vectors v and w in a similar way,
&\ we can write the vector w as a row of numbers

" (the transposed vector) w” . Then the product of
) wl and v is

g ,‘,_::?
wl.v= (7‘ s) . (;) =rx + sy.

We call this the scalar product of vectors v and w.
We can easily check the associativity of multiplication
(do it for general matrices A, B and a vector v in detail):

(A-B)-v=A-(B-v).

Instead of a vector v we can write any matrix C' of correct
size. In a similar way, distributivity also holds:

A-(B+C)=A-B+A-C,

But the commutativity does not hold. For example,

(o)1)= o) 6 D)6 o) =6 0)

This last product also shows the existence of divisors of zero.

Notice that the mapping defined by multiplication of vec-
tors with a fixed matrix is a linear mapping, i.e. it respects
linear combinations. With matrices and vectors we can write
the equations for lines and points respectively as

Wov=(a ) (5) =
()0

1.5.5. Determinant of matrix. The procedure of finding the
intersection of lines described in 1.5.3 fails in some special
cases. For instance the intersection of two parallel lines is
either empty (when the lines are parallel but distinct) or the
line itself (when the lines are identical). This condition occurs
when the ratios a/c and b/d are the same, that is

1 ad — bc = 0.

Note that this expression already takes care of the cases,
where either c or d is zero.

The expression on the left in (1) is called the determinant
of the matrix A. We write it as

a b
det A = e d

’adbc.
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Taking the complex conjugate is a reflection through the =~ Our discussion can be now expressed as follows:

axis of real numbers: Proposition. The determinant is a real valued function det A
2=(a+ib) s (a—ib) =2 defined for all square 2x2 m'am'ces A The (vectf)r) equation
A v = u has a unique solution for v if and only if det A # 0.

O So far, we have worked with pairs of real numbers in

{\,\\ the plane. Equally well we might pose exactly
(-9, the same questions for points with integer co-
w//// ordinates and lines with equations with integer
o 7/ coeflicients. Notice that the latter requirement
is equivalent to considering rational coefficients in the equa-
tions. We have to be careful which properties of the scalars
complex numbers), then the given vectors correspond to com-  we exploit.
plex numbers 1 + 4, 2 + 4 and 3 + 4. We are to find the In fact, we needed all the properties of the field of scalars
when discussing the solvability of the system of two equations
— try to think it through. At least, we can be sure that the in-
tersection of two non-parallel lines with rational coefficients
(1+i)(2+14)(3+1) = (1+3i)(3+1i) = 104, which is a s a point with rational coefficients again. The case of integer
purely imaginary number with argument 7/2. So the sum we coefficients and coordinates is more difficult. We shall come
] back to this in the next chapter. In particular we shall see that
the equation (1) with fixed integer coefficients a, b, ¢, d has a

unique integer solution for all integer values (r, s) if and only
We refer to 1.5.4 for the basic concepts. if the determinant is 1.

1.LE.13. Determine the sum of the three angles, which are
between the vectors (1, 1), (2,1) and (3, 1) respectively and

the x-axis in the plane R2.

Solution. If we view the plane R? as the Gauss plane (of

sum of their arguments. According to de Moivre’s formula

this equals the argument of their product. Their product is

are looking for is /2.

Next, we shall exercise the matrix calculus in the plane.

b First we experience the operations of

" 1.5.6. Aﬂine mappings. We now investigate how the ma-

_ trix notation allows us to work with simple map-
pmgs in the affine plane. We have seen that

: —_ matrix multiplication defines a linear mapping.
1LE.14. Simplify (A — B)T - 2C - u, where Shlftlng R2 by a fixed vector w = (r,s) € R? in the affine

addition and multiplication on matrices,

then we come to geometric tasks.

0 5 2 0 plane can be also easily written in matrix notation:
A= o) B=10

2 -9 3 P=(")pPrw= ("""}
=l 5 ) =) v y+s
If we add a fixed vector to the result of a linear mapping then
we have the expression

-2 5 -2 -1
v = A v+w= .
4 4 y cx +dy+s
20:( )

Solution. By substituting in

8 10 In this way we have described all affine mappings of the plane
and by matrix multiplication we obtain to itself.
9 1 4 4 3 Such mappings allow us to recompute coordinates which
(A-BT .20 u = ( 51 ) . (8 10) : (2) arise by different choices of origins or bases. We shall come
back to this in detail later.
—52 ;
- ( 64 > ' HEETING FOINT [2/1]2
e T
1.E.15. Give an example of matrices A and B for which s g -
(A — .A—B.B: 4 Yy
() (A+B)-(A—-B)#A-A—B-B; 5{,_‘/‘;?; Y
(b) (A+B)-(A+B)#A-A+2A-B+B-B. i g

Solution. For any two square matrices A and B we have \4

(A+B)-(A-B)=A4-A-A-B+B-A-B-B. 1.5.7. The distance and angle. Now we consider distance.

The identity We define the length of the vector v = (x,y) to be
(A+B)-(A-B)=A-A-B-B vl = Va2 + y2.
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is thus obtained if and only if —A - B + B - A is the zero Immediately we can define notions of distance, angle and ro-
matrix, that is if and only if the matrices A and B commute. tation in the plane.

An example of such matrices are thus pairs of matrices, which DISTANCE IN THE PLANE

do not commute (the matrix of product is changed when we  The distance between the points P, () in the plane is given

change the order of multiplied matrices). We can choose for  as the length of the vector PQ, i.e. ||Q—P||. Obviously, the
distance does not depend on the ordering of P and @ and it

instance
1 9 43 is invariant under shifts of the plane by any fixed vector w.
A= (3 4) , B= (2 1) , The Euclidean plane is an affine plane with distance de-
fined as given above.
since with this choice is
A.B— 8 5 B.A— 13 20 EUCLIDEAN DISTANCE
—\20 13)° T\5 87
bJ I//
Notice that for any pair of square matrices A, B ) P
(A+B)-(A+B)=A-A+A-B+B-A+B-B.

It follows that *

llorll =P~ QI = Vaz+ &

Q& 1 o

ifand only if A- B = B - A, as in the first case. | Angles are a matter of vectors rather than points in Eu-
R clidean geometry. Let u be a vector of length
~' 1, at angle  measured counter-clockwise from
the vector (1,0). In coordinates, u is at the
Z unit circle and has first and second coordinates
7. (x) ( Tx — 3y )  syeR, cos ¢, sin ¢ respectively (this is one of the elementary defini-

(A+B) - (A+B)=A-A+2A-B+B-B

LE.16. Decide whether the mappings F,G : R? — R2
given by

Y —2z 4 by tions of the sine and cosine functions). That is,
2 2y — 4
G:(§>H<4itgz+3>’ nyeR u = (cos g, singp).
are linear This is compatible with —1 < sin ¢ < 1 satisfying

2 | (i 32
. (cosp)” + (sinp)” = 1.
Solution. For any vector (z,y)7 € R? we can express

ANGLE BETWEEN VECTORS

F ((m)) = ( 72 _53> . (x) , The angle between two vectors v and v’ can be in general
y B y described using their coordinates v = (z,y), v/ = (2/,y’)

S(G)-G 306G e

(D) COSp = —————.
vl - IVl

This implies that both mappings are affine. Recall that an

affine mapping is a linear one if and only if the zero vector
ppine Y ANGLE BETWEEN VECTORS
maps to zero. Since

()-0) <(0)- () =

the mapping F is linear, the mapping G is not. Let us mention & (F

_ 1) -
that f(z) = Az and g(x) = Az + b respectively, where o —
x,b € R™ A is asquare matrix n X n, are general forms of a Iy
linear and affine mappings respectively. 0 In our special case v = (1, 0), the more general equation

ives
g o

1.E.17. Compute the lengths of the sides of the triangle with Cosp = Bzl
vertices A = [2,2], B = [3,0], C = [4,3]. which is just the definition of the function cos ¢. The general

case can be always reduced to this special one. First we notice
that the angle ¢ between two vectors u, v is always the same
lul] = Va2 + 62, u=(uy,up) € R? as the angle between the normalized vectors iru and ov.

(vl

Solution. Using the formula for the length of a vector

34
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we obtain the results

AB| = |4 - B = V2 =3 + (2 0)?
B = |IB - Al = VB -4+ (037
ACI = |4 -l = VE -4+ 2 —3)

I
556

[\]

1.E.18. Determine the angle between the two vectors

(@ u=(-3,-2),v=(-2,3);
() u=1(2,6),v=(-3,-9).

Solution. The sought angle 0 < ¢ < 7 can of course be com-
puted from the formula (1) in 1.5.7. But note that the vector
(=3, —2) can be obtained by changing the coordinates of the
vector (—2,3) and multiplying one of them by the number
—1. But these operations are used when we want to obtain
the vector normal to a vector of direction of a given line (or
vice versa). Vectors in the case (a) are thus perpendicular, that
is ¢ = /2. In the case (b), since —3 - (2,6) = 2- (-3, -9),
the vector w is a multiple of the vector v. If one vector is a
positive multiple of another, the angle between these two is
zero. If it is a negative multiple, as in our case, the angle is .

|

1.E.19. Determine the angle ¢ between the two diagonals
AszA7 and AsAqo of a regular dodecagon (polygon with
twelve sides) AgA1As ... Aqq.

Solution. The angle does not depend neither on the size
nor on the position of the given dodecagon. Choose the do-
decagon inscribed in a circle with diameter 1.

We can put Ay to [1,0] and then the vertices can be
identified with the twelfth roots of 1 in the com-
plex plane. We can write Ay = cos(2kn/12) +
isin(2km/12). Especially A3 = cos(7/2) +

isin(n/2) = i ~ [0,1], A5 = cos(57/6) +
isin(5m/6) = =2 4 1i ~ [~ L3 11 A7 = cos(77/6) +
isin(7m/6) = —§ — 30~ [—?,—%], and A;p =

cos(bm/3) = isin(bn/3) =1/2 — z§ [1/2, —é}
Using the formula (1) in 1.5.7 we finish the computation:
1

cosp = . m,
that is ¢ = 75°.

Alternative solution. This problem can be solved via method
of synthetic geometry only. Denote the centre of the regular

dodecagon by S and the intersection of the diagonals A3 A7
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Thus we can restrict ourselves to two vectors on the unit circle.
Then we can rotate our coordinates in such a way that the first
of the vectors will become (1,0). This means, it is enough
to show that the scalar product is invariant with respect to
rotations.

We have already seen the expression xz’ + yy’ in the
definition of the angle. We called it the scalar product of
vectors. In the special case, when the scalar product is zero,
we say that the vectors are perpendicular. Of course the best
example of perpendicular vectors of length 1 are the standard
basis vectors (1,0) and (0, 1).

Notice that our formula for the angle between the vectors
is symmetric in the two vector arguments, thus the angle ¢ is
always between 0 and 7.

We can easily imagine that not all affine coordinates are
adequate for expressing the distance and thus for use in the
Euclidean plane. Indeed, although we may choose any point
O as the origin again, we want also that the basis vectors e; =
OF; and eo = OF), perpendicular and of length one. Such
basis will be called orthonormal. We shall see that the angles
and distances computed in such coordinates will always be the
same no matter which coordinates are used.

1.5.8. Rotation around a point in the plane. The matrix
of any given mapping F' : R? — R? is easy to guess. If the
result of applying the mapping is the matrix with columns
(a,c) and (b,d), then the first column (a,c) is obtained by
multiplying this matrix with the basis vector (1,0) and the
second is the evaluation at the second basis vector (0, 1).

ROTATION AROUND A POINT IN THE FIANE-

We can see from the picture that the columns of the ma-
trix corresponding to rotating counter-clockwise through the
angle 1) are computed as follows:

(¢ 2) (o) = (S0) wa (2 2) (3) = ()

The counter-clockwise direction is called the positive direc-
tion, the other direction is the negative direction.



CHAPTER 1. INITIAL WARMUP

and A5A19 by T. Now |£A7A5A19] = 45° (this is the in-
scribed angle which corresponds to the central angle A7 S5A,
30°
(again the inscribed angle corresponding to the central angle
A5SAs, which is 60°). Thus the angle A5T A7 is then equal
to a complement of the aforementioned angles to 180°, that is
105°. The deviation we are looking for is then 180° —105°
75°.

which is a right angle), furthermore |£A5A7As3]

O

1.E.20. Consider a regular hexagon ABCDEF' with ver-
tices labeled in the positive direction, centre at the point
S = [1,0] and the vertex A at [0,2]. Determine the coor-
dinates of the vertex C.

Solution. The coordinates of the vertex C' can be obtained

by rotating the point A around the centre S of the hexagon
through the angle 120° in the positive direction:

cos120°  —sin 120°
¢ (sm 120°  cos 120° > (A-95+5
1 V3 -1
- (2 )5+
2 2
= [8-va-1-4]. -
1.E.21. An equilateral triangle with vertices [1, 0] and [0, 1]

lies entirely in the first quadrant. Find the coor-

dinates of its third vertex.

V3 1

Solution. The third coordinate is [% +5,5+
@] (we are rotating the point [1, 0] through 60°
around [0, 1] in the positive direction). O

1.E.22. An equilateral triangle has vertices at A = [1,1]
and B = [2,3]. Its other vertex lies in the same half-plane
as the point S = [0,0]. The triangle is rotated by 60° in
the positive direction around the point S, to produce a new
triangle. Determine the coordinates of the vertices of the new

triangle.

Solution. The points we are looking for have coordinates
~5VEVE= 15— VB IV 3L 1= VA VE ]
O

1.E.23. Find two matrices A such that

M:( ﬁ)

Hint: which geometric transformation in the plane is given by

2
the matrix 429

1
2
V3
2

1
2
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ROTATION MATRIX

Rotation through a given angle ¢ in the positive direction
about the origin is given by the matrix R:

V_(:c)'_)R W__(cosz/} —sin
=y bV =

siny  cosvy
Now, since we now know how the matrix of the rota-
tion in the plane looks like, we can check
that rotation preserves distances and an-
gles (defined by the equation (1) in 1.5.7).
Denote the image of a vector v as
) b

and similarly w' = Ry - w for w = (r,5)7, and w’
(r',s")T. We can check that

x
Y

/

o)

T cosy — ysiny
xsiny + ycos

/

|[v'|| = ||v]|, and that

x'r + y’s’ =xr +ys.

The previous expression can be written using vectors and
matrices as follows:

(Ry - W) (Ry -v) =wlv.

The transposed vector (Ry, - w)” equals w” - R], where R])
is the so-called transpose of the matrix 2. That is a matrix,
whose rows consist of the columns of the original matrix and
similarly the columns consist of the rows of the original ma-
trix. Therefore we see that the rotation matrices satisfy the
relation RZ - Ry = I, where the matrix I (sometimes we
denote this matrix just as 1 and mean by this the unit in the
ring of matrices) is the unit matrix

8

This leads us to a derivation of a remarkable claim — the
matrix F' with the property that F'- Ry, = I (we will call such
a matrix the inverse matrix to the rotation matrix Ry) is the
transpose of the original matrix. This makes sense, since the
inverse mapping to the rotation through the angle v is again a
rotation, but through the angle —1/. That is, the inverse matrix

of Ri equals the matrix

Ry = (

It is easy to write the rotation around a point P = O +w,
P = [r, s] again using a matrix. One just has to note that
instead of rotating around the given point P, we can first shift
P into the origin, then do the rotation and then do the inverse

10
0 1

(—v)
sin(—)

— sin(—1)
cos(—)

Ccos Y
—siny

sin v

cos Y



CHAPTER 1. INITIAL WARMUP

Solution. A? is the matrix of rotation through 60° in the pos-

itive direction, thus the matrices we are looking for are

V3
A=+ ,

1
2

which are the matrices of rotation through 30° or through

210°. O

|
w‘%wh—t

1.E.24. Reflection. Find the matrix of reflection in the plane
through the line y = « (that is, find the matrix of the axial

symmetry).

Solution. The given reflection sends x-axis into y axis and
vice versa. Thus the reflection applied to a vector just trans-

poses its coordinates, therefore the sought matrix is

0 1

1 0/)°
A matrix of any linear mapping in R? can be computed also in
standard way: it is given by images of the vectors (1, 0) (first

column) and (0, 1) (second colummn). In our case the images
are (0,1) and (1,0). O

1.LE.25. Determine which linear mappings from R? to R?
are given by the following matrices (that is, describe the geo-

metrical meaning of the matrices):
1 0 -1 0
A1_<O 0)7 A2_<0 1)7
V2o
Az = é .
2

Solution. Let (z,y)” stand for an arbitrary real vector. For

Tl

the matrix A; we have

AT I 0\ (z\ _ (=
Yy 0 0 y)  \0)’
which means that the linear mapping given by this matrix is

the projection on the x axis. Similarly we can see that the

matrix Ay determines the reflection with the respect to the y

()= ) 6)=()

The matrix Az can be expressed in the form

cosp —sing
sing  cosep

for ¢ = 7 /4, thus it gives the rotation of the plane around the

axis, since

origin through the angle 7 /4 (in the positive direction, that is

counter-clockwise). O
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shift. We calculate:

v:(z)Hv—wHRw-(v—w)
=Ry - (v—w)+w

_ (cosw(x—r)—sinz/)(y—s)—kr)
sing) (x —r)+cosp(y—s))+s/)°

ROTATION COMPOSED  WitH A SHIFT

1.5.9. Reflection. Another well-known example of a length
) preserving mapping is reflection through a line.
~=%=, 1t is enough to understand reflection through a
7 line that goes through the origin O. All other
reflections can be derived using shifts and rota-

We look first for a matrix Z, of reflection with re-
spect to the line through the origin and through the point
(cos 1), sintp). Notice that

(’ N\ (ab)

] Ne \

4 \
'(10) \
A
(41"9
9>(2)-(12)(2)
(%)% (0—1 b
Any line going through the origin can be rotated so that it has

the direction (1,0) and thus we can write general reflection
matrix as

Zy=Ry-Zo- R_y,

where we first rotate via the matrix R_,, so that the line is
in “zero” position, reflect with the matrix Zy and return back
with the rotation R.
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1.LE.26. Show that the composition of an odd number of
point reflections in the plane is again a point symmetry.

Solution. The point reflection in the plane across the point
S is represented with the formula X — S — (X — 5), that
is X — 25 — X. By repeated application of three point re-
flections across the points S, T and U respectively we obtain
X—25-X—2T—-(25-X) = 2U—-(2T—(25-X)) =
2(U—-T+85)— X, thatis X — 2(U — T+ S) — X, which

is a point reflection across the point U — T + S. Composi-
tion of any odd number of point reflections can be reduced
successively to a point reflection. (In principle, this is done
by mathematical induction, try to formulate it by yourself).

d

1.E.27. Construct a (2n + 1)-gon, if the middle points of

all its sides are given.

Solution. We use the fact that the composition of an odd num-
ber of point reflections is again a point reflection (see the pre-
vious exercise). Denote the vertices of the (2n + 1)-gon we
are looking for by A;, Ao, ..., Agp+1 and the middle points
of the sides (starting from the middle point of A; As) by Si,
Sa, ..

middle points (from 57 to S2,+1), then clearly the point A; is

.y Son41. If we carry out the point reflections across the

a fixed point of the resulting point reflection, thus it is its cen-
tre point. In order to find it, it is enough to carry out the given
point reflection with any point X of the plane. The point A;
then lies in the middle of the line segment XX’ where X’ is
the image of X in that point reflection. The rest of the vertices
Ag, ..., Aspy1 can be obtained by mapping the point A in
3 Son41. ]

In the next exercises, we exploit the properties of the de-

the point reflections across the points St . .

terminant of a matrix, c¢f. 1.5.5 and 1.5.7.

1.E.28. Determine the area of the triangle ABC, if A =
[-8,1], B=[-2,0],C = [5,9].
Solution. We know that the area equals to the absolute value
of the half of the determinant of the matrix, whose first col-
umn is given by the vector B — A and the second column by
the vector C' — A, that is the determinant of the matrix
<—2 —(-8) 5-— (—8))
0-1 9-1 -
A simple calculation yields the result
(2= (=8)-(0-1) -5 (-8) (-1 =
Let us add that the change of the order of the vectors leads to

change in the sign of the determinant (but the absolute value

38

Therefore we can calculate (by associativity of matrix

multiplication):
7. costY —siny 1 0 costy  siny
Y7 \singy  cosyp )] \0 —1) \—siny cose

__(cosy  siny cosy  siny
~ \siny —cosyp) \—siny cose
_ cos? 1) — sin? ¢ 2 sin v cos Y
~\ 2sintpcosyy  —(cos?ep —sin @)
__[cos2y  sin2y
T \sin2¢ —cos2y )’

The last equality follows from the usual formulas for trigono-
metric functions:

sin 21 = 2sin ¢ cos i

1
M cos 2¢p = cos? 1) — sin? 1.
Notice that the product Zy;, - Zj gives:

sin 29 1 0\ [cos2y
—cos2¢p) \0 —1)  \sin2¢

This observation can be formulated as follows:

<COS 24

—sin 29
sin 29 '

cos 21

Proposition. A rotation through the angle 1 can be obtained
by two subsequent reflections through the lines that have the
angle %w between them.

In fact we can prove the previous proposition purely by
{1 geometrical argumentation, as shown in the above pic-
ture (try to be a “synthetic geometer”). If we believe
= &' in this proof “by picture”, then the above computa-
TU" tional derivation of the proposition provides the proof
of the standard double angle formulas (1).

The following is a recapitulation of previous ideas.
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is unchanged) and that the value of the determinant would not
change at all if we wrote the vertices as rows (preserving the
order). Moreover, the determinant formed by vectors B — A
and C' — A is always positive if the vertices A, B, C' are in

the anti-clockwise direction. O

1.E.29. Compute the area S of the quadrilateral given by its
vertices [1, 1], [6,1], [11,4], [2, 4].

Solution. First, denote the vertices (in the counter-clockwise

direction) as

A=[,1], B=1[6,1, C=[11,4], D=[24].

If we divide the quadrilateral ABCD into the triangles ABC
and ACD, we can obtain its area as the sum of the areas of

these two triangles, by evaluating the determinants

g |6-1 11=1_1]5 10
P l1—-1 4—-1]|" |0 3]
4|11 2-1) _J10 1
27 04—-1 4-1| |3 3|’

where in the columns are these vectors B — A, C — A (for dy)
and C — A, D — A (for d>). Then

. dq d>| |5-3-10-0 10-3—-1-3
T2 2| 2 2
15
_ +27:21.
2

(thanks to the order of the vectors are all determinants greater
than zero). Correctness of the result is easy to confirm, since
the quadrilateral ABCD is a trapezoid with bases of lengths
5, 9 and their distance v = 3. O

In the following exercises, we consider non-transparent

0;5?77;»  on figures (triangle, quadrangle) in the R? plane.

‘We will illustrate the power of the concept
of determinant and the oriented area on practi-

cal visibility issues in the plane.

1.E.30. Visibility of the sides of a triangle. Let the triangle
with the vertices A = [5,6], B = [7,8], C = [5, 8] be given.
Determine, which of its sides are visible from the point P =
[0, 1].

Solution. Order the vertices in the positive direction, that is
counter-clockwise: [5, 6], [7, 8], [5, 8]. Using the correspond-
ing determinants we can determine whether the point [0, 1]
lies to the “left” or to the “right” of the sides of the triangle

when we view them as oriented line segments.
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MAPPINGS THAT PRESERVE LENGTH

1.5.10. Theorem. A linear mapping of the Euclidean plane
is composed of one or more reflections if and only if it is
given by a matrix R which satisfies

R= (CCL Z) ab+cd=0, a®+c=0b+d>=1.
This happens if and only if the mapping preserves length. Ro-
tation is such a mapping if and only if the determinant of the
matrix R equals one, which corresponds to an even number
of reflections. When there is an odd number of reflections,
the determinant equals —1.

Proor. We calculate how a general matrix A might
look, when the corresponding mapping
preserves length. That is, we have a map-

ping

z _, (a b\ (z\ _ (az+by
Yy c d y)]  \ex+dy)’
Preserving length thus means that for every = and y, we have

22 4+ 9% = (az + by)? + (cx + dy)?
= (a® 4 *)a? + (b + d*)y? + 2(ab + cd)xy.

Since this equation is to hold for every = and y, the coeffi-
cients of the individual powers 22, y2 and 2y on the left and
right side of the equation must be equal. Thus we have calcu-
lated that the conditions put on the matrix R in the first part
of the theorem we are proving are equivalent to the property
that the given mapping preserves length.

Because a? + ¢? = 1, we can assume that a = cosp
and ¢ = sin ¢ for a suitable angle ¢. As soon as we choose
the first column of the matrix R, the relation ab + ¢d = 0
determines the second column up to a multiple. But we also
know that the length of the vector in the second column is
one, and thus we have only two possibilities for the matrix R,

namely:
cosyp —singp cosy  singp
(singp cos > ’ (singo — cos <p> ’

In the first case, we have a rotation through the angle ¢, in
the second case we have a rotation composed with the reflec-
tion through the first coordinate axis. As we have seen in the
previous proposition 1.5.8, every rotation corresponds to two
reflections. The determinant of the matrix R is in these two
cases either one or minus one and distinguishes between these
two cases by the parity of the number of reflections. ]

Notice, we have now proved our earlier claim on the in-
variance of formulae for distance and angle in any orthonor-
mal coordinates. Moreover, we have seen that all euclidean
affine mappings are generated by translations, and reflections.
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B-P|_|T 7| , |[C-P|_]|5
c-P| |5 7 | A-P |7 |5
A-P|_]5 5|_,
B-P 77 |7

Not all the determinants are positive, that means P is outside
the triangle. In that case, if it is left of some oriented seg-
ment (a side of the triangle), the segment is not visible from
P (think this over).

Because the last determinant is zero, the points [0, 1],
[5, 6] and [7, 8] lie on a line, the side AB is thus not visible.
The side BC is also not visible, unlike the side AC for which

the determinant is negative. ]

1.E.31.
[-2,-2
tion of the point X

Which sides of the quadrangle given by the vertices
], [1,4], [3,3] and [2, 1] are “visible” from the posi-
=[3,7—2]?

Solution. In the first step we order the vertices such that
their order corresponds the counter-clockwise direction. We
choose vertex A = [—2, —2], the order of the remaining ver-
tices is then B = [2,1], C = [3, 3], D = [1, 4] (think, how to
order the points without a picture; you can actually use simi-
lar procedure to what follows). First consider the side AB. It
along with the point X = [3, 7 — 2] determines the matrix

( —-2-3 2—-3 >
—2—(r—=2) 1—(r—2)

such that its first column is the difference A — X and the
second column is B — X. Whether it can be “seen” from the
point [3,7 — 2] (i.e. is left or right of the oriented line AB,

see 1.5.12), is then determined by the sign of the determinant

-2-3 2-3 -5 -1
’—2—(77—2) 1—(r=2) |- 3—m|
—5-3—m)—(-1)(—m) <0.

For the side BC' we analogically obtain
2-3 3—-3 -1 0 |
1—-(r—=2) 3—(7—2)| 3—7 b—m|
—1-b—-m—=0<0.
And for the sides CD and D A we obtain
3-3 1-3 | | o —2|_
3—(r—2) 4—(r—2)| |b—-7 6-—7
0—(=2)-(b—m) >0,
1-3 —2-3 | | -2 -5 _
4—(r—=2) -2—(r—2)| |6—7 -7
—2-(—=m)—(=5)- (6 —7) > 0.

The determinants differ in signs, thus the point X is outside
the given quadrangle and a side is visible (from X), if X is left
of the side. According to our convention of putting vectors

40

1.5. 11 Area of a triangle. At the end of our little trip to
geometry we will focus on the area of planar
__ objects. For us, triangles will be sufficient. Ev-
ery triangle is determined by a pair of vectors
v and w, which, if translated so that they start
from one vertex P of the triangle, determine the remaining
two vertices. We would like to find a formula (scalar function
area), which assigns the number area A(v, w) equal to the
area of the triangle A(v, w) defined in the aforementioned
way. By translating, we can place P at the origin since trans-
lation does not change the area.

We can see from the statement that the desired value is
half of the area of the parallelogram spanned by the vectors v
and w. It is easy to calculate (using the well-known formula:
base times corresponding height), or simply observe from the
diagram that the following holds

area A(v + v/, w) = area A(v,w) + area A(v', w)

area A(av,w) = aarea A(v, w).
40a14f43==ﬁ&4waaqu:7

Same area

Finally we add to the formulation of our problem a condition

area A(v,w) = —area A(w, v),

which corresponds to the idea that we give a sign to the area,
according to the order in which we are taking the vectors.

If we write the vectors v and w into the columns of a
matrix A, then the mapping

A= (v,

satisfies all the three conditions we wanted. How many such
mappings could there possibly be? Every vector can be ex-
pressed using two basis vectors e; = (1,0) and e2 = (0, 1).
By linearity, area A is uniquely determined by these vectors.
We want

w) — det A

area A(ep,eq) = =
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Xjél, XP, Xb, XD into the determinants, the side is visible,
if the corresponding determinant is negative (i.e. X isrightof
the oriented side). Thus from the point X are visible exactly
-],

O

the sides determined by the pairs of vertices A = [—2,
B=[2,1]and B=[2,1],C = [3,3].

1.E.32. Give the sides of the pentagon with vertices at
-2], [-2,2], [1,4], [3,1] and [2, —11/6], which
are visible from the point [300, 1].

points [—2,

Solution. For simplifying the notation, put
A=[-2,-2], B=[2,-11/6], C=[3,1],

D=[1,4], E=[-2,2].
The sides BC and CD are clearly visible from the position
of the point [300, 1]. On the other hand, DE and EA cannot

be seen. For the side AB, we compute

—2-300 2-300
-2-1 -1
This implies that the side can be seen from the point [300, 1].
O

= —302-(—47)—(-298)-(-3) < 0.

F. Relations and mappings

pects of the language of mathematics. We ad-
vise the reader to have a quick look at the defini-

" tions of the basic concepts of various relations

and their properties, beginning in 1.6.1.

1L.F.1.
M are equivalence relations:
iy M ={f:R— R}, where f ~ gif f(0) = g(0).
ii) M ={f:R — R}, where f ~ gif f(0) =g(1).
iii) M 1is the set of lines in the plane, where two lines are

Determine whether the following relations on the set

related if they do not intersect.

iv) M is the set of lines in the plane, where two lines are
related if they are parallel.

v) M = N, where m ~ n if S(m) + S(n) = 20, while
S(n) stands for the sum of the digits of the integer n.

vi) M = N, where m ~ n if C(m) C(n), where
C(n) = S(n) if the sum of the digits S(n) is less than
10, otherwise we define C(n) = C(S(n)). (Thus always
C(n) < 10.)

Solution.
i) We check the three properties of equivalence:
a) Reflexivity: for any real function f, f(0) = f(0).
b) Symmetry: if f(0) = g(0), then also g(0) = f(0).
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In other words, we have chosen the orientation and the scale
through the choice of basis vectors, and we choose the unit
square to have area equal to one.

Thus we see that the determinant gives the area of a par-
allelogram determined by the columns of the matrix A. The
area of the triangle is thus one half of the parallelogram.

1.5.12. Visibility in the plane. The previous description of
0. the value for oriented area gives us an elegant tool
= » for determining the position of a point relative to ori-
A ented line segments. By an oriented line segment we
. mean two points in the plane R? with a selected or-
der. We can imagine it as an arrow from one point to the
other. Such an oriented line segment divides the plane into
two half-planes. Let us call them “left” and “right”. We want
to be able to determine whether a given point is in the left or
right half-plane.

Such tasks are often met in computer graphics when deal-
ing with visibility of objects. We can imagine that an oriented
line segment can be “seen” from the points to the right of it
and cannot be seen from the points to left of it.

, nevidr "deeitu”

/
o C

. /o

We have the line segment AB and are given some point
C. We calculate the oriented area of the corresponding trian-
gle determined by the vectors C' — A and B — A. If the point
C is to the left of the line segment, then with the usual pos-
itive orientation (counter-clockwise) we obtain the negative
sign of the oriented area (showing the non-visibility), while
the positive sign corresponds to the points to the right.

This approach is often used for testing relative positions
in 2D graphics.

6. Relations and mappings

In the final part of this introductory chapter, we return
to the formal description of mathematical struc-
tures. We will try to illustrate them on examples
: we already know. We can consider this part to be
4 an exercise in a formal approach to the objects

e

and concepts of mathematics.

1.6.1. Relations between sets. First we define the Cartesian
product Ax B of two sets A and B. It is the set of all ordered
pairs (a, b) such that a € A and b € B. A binary relation be-
tween the two sets A and B is then a subset R of the Cartesian
product A x B.
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¢) Transitivity: if f(0) = g(0) and g(0) = h(0), then We write a ~p b to mean (a,b) € R, and say that a is
also f(0) = h(0). We conclude that the relation is related to b. The domain of the relation is the subset
an equivalence relation. D={a€cA:3be B, (a,b) € R}

ii) No. The relation is not reflexive, since for instance for the

Here the symbol 3b means that there is at least one such
b satisfying the rest of the claim.

Similarly, the codomain of the relation is the subset

function sin we have sin 0 # sin 1. It is not transitive.
iii) No. The relation is not reflexive (every line intersects
itself). It is not transitive.
iv) Yes. The equivalence classes then correspond to unori- I'={beB:3ac Al (ab) c R}
ented directions in the plane.
v) No. The relation is not reflexive. S(1) + S(1) = 2. Tt is
not transitive.

vi) Yes.

A spemal case of a relation between sets is a mapping
; from the set A to the set B. This is the case
when every element of the domain of the re-
' 7 lation is related to exactly one element of the
O codomain. Examples of mappings known to us are all func-
tions, where the codomain of the mapping is a set of numbers,
LF.2. Let the relation R be defined over R? such that for instance the set of integers or the set of real numbers, or

((a,b), (c,d)) € R for arbitrary a,b,c,d € R if and only the linear mappings in the plane given by matrices. We write

if b = d. Determine whether or not this is an equivalence

relation. If it is, describe geometrically the partitioning it de- f:DCA—-ICB,
termines. fla)=b
Solution. From ((a,b), (a,b)) € R for all a,b € R it is

to express the fact that (a, b) belongs to a relation, and we sa
implied that the relation is reflexive. Equally easy to see is P (a,5) 8 Y

that b is the value of f at a. Furthermore we say that

that the relation is symmetric, since in the equality of the sec- . . o
e mapping f of the set A to the set B is surjective (or onto),

ond coordinates we can interchange the left and right side. ifD=Aand I = B, clarily ?
If ((a,b),(c,d)) € Ra((c,d),(e, f)) € R, thatis,b = d e mapping f of the set A to the set B is injective (or one-

and d = f, we easily get that the transitivity condition to-one), if D = A and for every b € I there exist exactly
((a,b), (e, f)) € R, thatisb = f. The relation R is an equiva- one preimage a € A, f(a) =b.

lence relation, where the points in the plane are related if and ~Expressing a mapping f : A — B as a relation

only if they have the same second coordinate (the line they fFCAxB, f=1{(a f(a);ac Al

determine is perpendicular to the y axis). The corresponding

partition then divides the plane into the lines parallel with the is also known as the graph of a mapp ing f.

T axis. O /‘S nt 4 mapp
is /m‘ /nv;ecéufe
1.F.3. Determine how many distinct binary relations can be
defined between the set X and the set of all subsets of X, if /mafe
domain

the set X has exactly 3 elements.

Solution. First, notice that the set of all subsets of X has .
exactly 23 = 8 elements, and thus the Cartesian product with . o > & net lﬂgtctﬂ/e
X has 8 -3 = 24 elements. Possible binary relations then

correspond to subsets of this Cartesian product, and of those

there are 224, O .

1.F.4. Give the domain D and the codomain I of the rela- .. . .
1.6.2. Composition of relations and functions. For map-

tions pings, the concept of composition is clear. Suppose we have
R = {(a,v), (b,x), (c,z), (c,u), (d,v), (f,y)} two mappings f : A — Band g : B — C. Then their
ti : A — C'is defined
between the sets A = {a,b,c,d,e,f} and B = composition g o | 15 defined as
{z,y,u,v,w}. Is the relation R a mapping? (go f)(a) =g(f(a)).

42
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Solution. Directly from the definition of the domain and the
codomain of a relation we obtain
D ={a,b,c,d,f} C A, I={z,y,u,v} CB.

It is not a mapping since (¢, x), (¢,u) € R, thatis ¢ € D has

two images. ]

1.F.5. Determine for each of the following relations over the

set {a, b, ¢, d} whether it is an ordering and whether it is com-

plete:

Ry = {(a,a),(b,0), (¢, ¢), (d, d), (b, a), (b, ¢), (b,d)},

Ry = {(a,a),(b,b), (¢, ¢), (d, d), (d, a), (a,d)},

Ry = {(a,a), (b,b), (¢, ¢), (d, d), (a,0), (b, ¢), (b, d)},

Ry = {(a,a), (b,0), (¢, ), (a,0), (a, ¢), (a,d), (b, c), (b, d),
(c;d)},

Rs = {(a,a), (b,b), (¢, ), (d, d), (a,b), (a; ), (a, d), (b, ¢),
(b, d), (¢, d)}

Solution. R?; is an ordering, which is not complete (for in-
stance neither (a,c) ¢ Ry nor (¢,a) ¢ Ry).

The relation Ry is not anti-symmetric as it is both
(a,d) € Ry and (d,a) € Ry, therefore it is not an ordering
(it is an equivalence).

The relations R3 and R4 are also not an ordering, since
they are not transitive (for instance (a,b), (b,c¢) € Rs, Ry,
(a,c) ¢ Rs, Ry) and also Ry is not reflexive ((d,d) ¢ Ry).

The relation R is a complete ordering (if we interpret
(a,b) € Rsasa < b,thena < b < ¢ < d). O

1.F.6. Determine whether or not the mapping f is injective

(one-to-one) or surjective (onto), when

@ f:ZxZ—7Z, f((z,y)=z+y—102%
) f:N—-NxN, f(m):(Zm,a:2+10).

Solution. In the case (a) is given a mapping which is surjec-
tive (it is enough to set x = 0) but not injective (it is enough
to set (z,y) = (0,—9) and (z,y) = (1,0)). In the case (b) it
is an injective mapping (both its coordinates, that is functions
y = 2z and y = x? + 10 are clearly increasing over N). The
mapping is not surjective (for instance the pair (1, 1) has no

preimage). ]

L.E.7.

with lines such that people in different parts of the world could

In the following three figures, icons are connected

have assigned them. Determine whether the connection is a
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Composition can also be expressed with the notation used for
arelation as

fCAxB, f={(a f(a));ac A}
gS BxC, g={(bygb));be B}

gofCAxC, gof={(ayg(f(a)));ac A}.

The composition of a relation is defined in a very similar
way. We just add existential quantifiers to the
statements, since we have to consider all possi-
ble “preimages” and all possible “images”. Let

— R C Ax B, S C B x C be relations. Then
SoRCAxC,

SoR=1{(a,c);3be B,(a,b) € R, (b,c) € S}
A special case of a relation is the identity relation
ida = {(a,a) € Ax A;a € A}

on the set A. It is a neutral element with respect to composi-

tion with any relation that has A as its codomain or domain.
*

~

composition of relations :
points Which can be reached

A& a path from left o right
are in the relation

For every relation R C A x B, we define the inverse
relation

R~ ={(b,a);(a,b) € R} C B x A.

Beware, the same term is used with mappings in a more spe-
cific situation. Of course, for every mapping there is its in-
verse relation, but this relation is in general not a mapping.
Therefore we speak about the existence of an inverse mapping
if every element b € B is an image of exactly one element in
A. TIn such a case the inverse mapping is exactly the inverse
relation.

Note that the composition of a mapping and its inverse
mapping (if it exists) is the identity mapping. In general, this
is not so for relations.

1.6.3. Relation on a set. In the case when A = B we speak
about a relation on the set A. We say that the relation R is:

o reflexive, if ida C R, thatis (a,a) € R forevery a € A,

e symmetric, if R~! = R, that is if (a,b) € R, then also
(b,a) € R,

e antisymmetric, if R~ N R C id 4, that is if (a,b) € R
and if also (b,a) € R, then a = b,
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mapping, and whether it is injective, surjective or bijective.

Solution. In the first figure the connection is a mapping
which is surjective but not injective, because both the snake
and the spider are labeled as poisonous. The second figure
is not a mapping but only a relation, since the dog is labeled
both as a pet and as a meal. The third connection is again a

mapping. This time it is neither injective nor surjective. [J

1.E.8. Determine the number of mappings from the set
{1, 2} to the set {a, b, c}. How many of them are surjective

and how many are injective?

Solution. To the element 1 we can assign any of the elements
a,b,c. Similarly for the element 2 we can assign any of the
elements a, b, c. Thus there are exactly 32 mappings of the
set {1, 2} to the set {a, b, c}. None of them can be surjective,
since the set {a,b, ¢} has more elements than the set {1,2}.
The mapping is injective if and only if the elements 1 and 2 are
mapped to different elements. There are three possibilities for
the image of 1, after the image of 1 is given, there remain two
possibilities for the image of 2. Thus the number of injective
mappings of the set {1, 2} to the set {a, b, c} is 6. O

L.F.9. Determine the number of surjective mappings of the
set {1,2,3,4} to the set {1, 2, 3}.

Solution. We can determine the number by subtracting the
number of non-surjective mappings from the number of all
mappings. The number of all mappings is V' (3,4)

Non-surjective mappings have either a one element, or a two

= 34,
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e rtransitive,if RoR C R, thatisif (a,b) € Rand (b,c) €
R implies (a,c) € R.
A relation is called an equivalence relation if it is reflex-
s ive, symmetric and transitive.

A relation is called an ordering if it is reflex-

ive, transitive and antisymmetric. Orderings are
: = usually denoted by the symbol <, that is the fact
that element a is in relation with element b is written as a < b.

Notice that the relation <, that is “to be strictly smaller
than”, is not an ordering on the set of real numbers, since it
is not reflexive.

A good example of an ordering is set inclusion. Consider
the set 2 of all subsets of a finite set A. We have a relation
C on the set 24 given by the property “being a subset”. Thus
X C Zif X isasubset of Z. Clearly all three conditions from
the definition of ordering are satisfied: if X C YandY C X
then necessarily X and Y must be identical. If X C Y C Z
then also X C Z, and reflexivity is clear from the definition.

We say that an ordering < on a set A is complete, if every
two elements a,b € A are comparable, that is, either a < b
orb<a.

If A contains more than one element, there exist subsets
X and Y where neither X C Y nor Y C X, so the ordering
C is not complete on the set of all subsets of A.

The set of real numbers with the usual < is complete.
Thus the subdomains N, Z, Q come equipped with a complete
ordering, too. On the other hand, there is no such natural
ordering on C. The absolute value is only a partial ordering
there (comparing the radii of the circles in the complex plane).

1.6.4. Partitions of an equivalence. Every equivalence rela-
tion R on a set A defines also a partition of the
: ), set A, consisting of subsets of mutually equiva-
lent elements, namely equivalence classes. For
any a € A we consider the set of elements,
whlch are equivalent with a, that is

R, ={b € A;(a,b) € R}.

Clearly a € R, by reflexivity. If (a,b) € R, then R, =
Ry, by symmetry and transitivity. Furthermore, if R, N Ry, #
() then there is an element c in both R, and R}, so that R, =
R. = Ry. It follows that for every pair a, b, either R, = Ry,
or R, and Ry, are disjoint. That is, the equivalence classes are
pairwise disjoint. Finally, A = UgzcaR,. That is, the set A
is partitioned into equivalence classes. We sometimes write
[a] = R., and by the above, we can represent an equivalence
class by any one of its elements.

Existence of scalars. As before, we assume to know

» what sets are, and indicate the construction of the nat-

> ural numbers.

We denote the empty set by () (notice the differ-
1" ence between the symbol O for the zero and the empty

set ) and define

ey

1.6.5.

0:=0, n+1:=nU{n},
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element codomain. There are just three mappings with a one
element codomain. The number of mappings with a two-
element codomain is (g) (2% —2) (there are (g) ways to choose
the codomain and for a fixed two-element codomain there are
24 — 2 ways how to map four elements onto them). Thus the

number of surjective mappings is

3“—@)@4—m—3=36 _

1.F.10. Write down all the relations over a two-element set
{1, 2}, which are symmetric but are neither reflexive nor tran-
sitive.

Solution. The reflexive relations are exactly those which con-
tain both pairs (1, 1), (2, 2). This excludes relations

{(1,1),(2,2)}, {(1,1),(2,2),(1,2)},
{(1,1),(2,2), (2, D}, {(1,1),(2,2),(1,2),(2,1)}.

We claim that the remaining relations, which are symmetric
but not transitive, must contain (1, 2), (2, 1). If such arelation
contains one of these two (ordered) pairs, it must by symmetry
contain also the other. If it contains neither of these pairs, then
it is clearly transitive. From the total number of 16 relations
over a two-element set we have thus selected

{(1,2),2, D}, {(1,2),(2,1), (11},
{(1,2),(2,1),(2,2)}.

It is clear that each of these 3 relations is symmetric but nei-

ther reflexive nor transitive. O

1L.F.11.

the binary notation and a relation such that two numbers are

Consider the set of numbers that have five digits in

related whenever their digit sum has the same parity. Write

down the corresponding equivalence classes.

Solution. We have two equivalence classes (of eight mem-
bers): [10000] = {10000,10011,10101,10110,11001,
11010,11100, 11111} which corresponds to the set

{16,19,21,22,25,26,28,31}

and [10001] =  {10001,10010,10100,11000,10111,
11011,11101, 11110} which corresponds to the set

{17,18,20,24,23,27,29, 30}
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in other words
0:=0,1:={0}, 2:={0,1},...,n+1:={0,1,...,n}.

This notation says that if we have already defined the numbers
0,1,2,...n, then the number n + 1 is defined as the set of all
previous numbers.

We have defined the set of natural numbers N.> Next,
we should construct the operations + and - and deduct their
required properties. In order to do that in detail, we would
have to pay more attention to basic understanding of sets. For
example, once we know what a disjoint union of sets is, we
may define the natural number ¢ = a+b as the unique natural
number ¢ having the same number of elements as the disjoint
union of a and b.

Of course, formally speaking, we need to explain what
does it mean for two sets to have the same number of elements.
Let us notice that in general, having the two sets A and B of
the same “size” should mean that there exists a bijection A —
B. This is completely in accordance with our intuition for
finite sets. However, it is much less intuitive with infinite sets.
For example there is the same amount of all natural numbers
and those with natural square roots (the bijection a — a?),
although the example 1.G.1 could be read as “most of natural
numbers do not have a rational square root”. We say, that
each set which is bijective to natural numbers N is countable.
Sets bijective to some natural number n (as defined above)
are called finite (with number of elements n), while the sets
which are neither finite nor countable are called uncountable.

We can also define a relation < on N as follows: m < n,
if either m € n orm = n. Clearly this is a complete ordering.
For instance 2 < 4, since

2= {@, {@}} € {(Da {@}, {(Z)’ {(Z)}}v {Qv {0}5 {(Dv {(b}}}} =4

In other words, the recurrent definition itself gives the relation
n < n+1. and transitivity then gives n < k for all k obtained
in this manner later.

This ordering of the positive integers or natural numbers
(the number a is strictly smaller than b if a € b) has obviously
got the following striking property: every subset in N or Z*
has a smallest element.

1.6.6. Integers and rational numbers. With the set N of
41 positive integers together with zero, we can always
add two numbers together. Also, adding zero to a
22" number does not change it. We can also define sub-
traction, but the result does not always belong to N.
The basic idea of construction of the integers from the
natural numbers or positive integers is to add to N these miss-
ing results. This can be done as follows: instead of subtrac-
tion, we will work with ordered pairs of numbers. It just re-
mains to define which such pairs are equivalent (with respect

3The concept of natural numbers based on the principle of "increasing
by one" was known to all ancient civilisations, however they always had the
smallest natural number one. The set theoretical approach was developped
in 19th century and there zero got a logical smallest natural number as the
counterpart of the empty set.
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1.F.12. Consider the set of numbers that have three digits in
the ternary notation and a relation such that two numbers are

in the relation whenever they

i) begin with the same two digits in this notation,

ii) end with the same two digits in this notation.
Write down the corresponding equivalence classes.
Solution.

i) We obtain six three-element classes

100] = {100, 101,102} corresponds {9,10,11}

110] = {110,111, 112} corresponds {12, 13,14}
120] = {120,121, 122} corresponds {15,16,17}
200] = {200, 201, 202} corresponds {18, 19,20}
210] = {210, 211, 212} corresponds {21, 22, 23}

[
[
[
[
[
[220] = {220, 221, 222} corresponds {24, 25, 26}.

]
]
]
]
]
]

ii) In this case we have nine two-element classes

100] = {100, 200} corresponds {9, 18}
101] = {101,201} corresponds {10, 19}
102 :{ 02,202} corresponds {11,20}

[100]
[101]
[102]
[110]
[111] = { 11,211} corresponds {13, 22}
[112]
[120]
[121]
[122] =

120] = {120,220} corresponds {15,24}
121] = {121,221} corresponds {16, 25}
122] = {122,222} corresponds {17,26}. 0

1.F.13. Determine the number of equivalence relations over
aset {1,2,3,4}.

Solution. We divide the sought equivalences according to the
types of corresponding partitions (given by number and car-
dinality of equivalence classes), and we count the number of

partitions of a given type:

The type of partition | number of partitions of this type
1,1,1,1 1

2,1,1 )
2,2 3(5)
3.1 (1)
4 1
In total we have 15 different equivalences. O
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to the result of subtraction). The necessary relation is then:

(a> b) ~

Note that the expression in the middle equation may not be-
long to N, but the expression on the right always does. It is
easy to check that it really is an equivalence, and we denote its
classes as the integers Z. We define addition and subtraction
on Z using representatives. For instance

[(a,0)] + [(¢, d)] =

which is clearly independent of the choice of representatives.

It is always possible to choose a representative (a, 0) for
natural numbers a, and a representative (0,a) for negative
numbers —a. This is probably the simplest and easiest choice.

If we define multiplication of integers similarly to
the addition, we have all the properties (CG1)—(CG4) and
(R1)—~(R4), see the paragraph 1.1.1. For multiplication, the
neutral element is one, but for all numbers a other than zero
and £1 there does not exist an integer a ~! with the property
a-a~' = 1. Thus, for multiplication, we are missing the
inverse elements. However, the property of the integral
domain (ID) holds. This means that if the product of two
integers equals zero, then at least one of them has to be zero.

We can construct the rational numbers Q by adding all
the missing multiplicative inverses by a method analogous to
the construction of Z from N. On the set of all ordered pairs
(p,q), ¢ # 0, of integers, we define a relation ~ so that it
models our expectation of the fractions p/q:

(V) <= a—b=d -V < a+b =d +b.

[(a+ ¢, b+ d),

w0~ ®.d") <= pla=1/d <= p-d=p"q
Again, we are not able to formulate the expected behaviour in
the middle equation when we work in Z, but for the equation
on the right this is indeed possible. This relation is a well-
defined equivalence (think it through!). If we formally write
p/q instead of pairs (p, q), we can define the operations of
multiplication and addition by the well-known formulas

p/q-r/s=pr/qs
p/q+r/s=ps/qs+qr/qs = (ps+qr)/qs.

1.6.7. Remainder classes. Another example of equivalence
classes is the remainder classes of integers. For
s a fixed natural number k we define an equiva-
lence ~, so that two numbers a, b € Z are equiv-
= alent if they have the same remainder when di-
v1ded by k. The resulting set of equivalence classes is denoted
as Zji,. This procedure is simplest for & = 2. This yields
Zs = {]0], [1]}, where zero stands for even numbers and one
for odd numbers. It is easy to see that using representatives
we can correctly define addition and multiplication for each
Zy,.
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Remark. In general, the number of partitions of a given n-
element set is given by the Bell number B, satisfying a re-

currence formula

n
Bpy1 = Z (Z) By.

k=0
(devide the partitions according to the cardinality of the set,

to which one fixed element belongs)

1.F.14. Determine the number of orderings of a four-

a0 SCL.
075 R, element set

Solution. We will consider all possible Hasse
diagrams of orderings over a four-element set
M . We count how many different orderings (re-
call that an ordering is a subset of a set M x M) the given

Hasse diagram has. See the diagram:

XXX Io- ]t 'A .v ,{ N N
AEREEE SR AR
Ay -1, LIY|A[¢]H
LTI 4% (%]

In total, there are 219 orderings over a four-element set. [

There are many combinatorics problems which refer to
relations. You can find some of them in the additional exer-
cises after this chapter, starting with 1.G.71.
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REMAINDER CLASSES RINGS AND FIELDS

Theorem. The remainder class 7y, is always a commutative
ring of scalars. It is a commutative field of scalars (that is,
the property (F) from the paragraph 1.1.1 is also satisfied)
if and only if k is a prime.

If k is not prime, then Zy, contains a divisor of zero, thus
it is not an integral domain.

Proor. The second part is easy to see —if x -y = k
for natural numbers z, y, then the result of multiplying the
corresponding classes [x] - [y] is zero.

On the other hand, if x and k are relatively prime, then
according to the Bezout equality, (which we derive later, see
11.1.2), there are natural numbers a and b satisfying

ar + bk =1,
which for corresponding equivalence classes gives
[a] - [2] + [0] = [a] - [z] = 1]

and thus [a] is the inverse element to [z]. O
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G. Additional exercises for the whole chapter

1.G.1. Lett and m be positive integers. Show that the number /% is either integer or is not rational.

g\. Solution. We shall exploit the basic divisibility rules of integers which we shall discuss in detail later in chapter 11.

Show that if the number is not integer, then it cannot be rational. If %/% is not integer, then there exists a prime

\0
\

r and integer s such that r* divides ¢, 7**! does not divide ¢ (this we write as ord,. t = s) and m does not divide s .
Assume that ¥/t = %, D,q € Z,in other words ¢ - ¢"* = p™. Consider ord,. L and ord, R and their divisibility by the number
m. (L and R denote the left-hand and right hand side of the equation respectively). (]

1.G.2. Find the algebraic form of the expressions:
b 25,
. (144)2
ii) Tivans:

1.G.3. Inthe complex plane draw the solutions of the equations:
i) z=|z|,

i) [22+ 1] =1,

iii) Rez = Re(z + 1).

Solution. Draw images! g

1.G.4. Mark the following sets in the complex plane:

i {zeCl|lz—1|=|z+ 1]},
ii) {zeCl|1<|z—1i| <2},
iii) {2 € C| Re(2?) = 1},
iv) {z € C|Re($) < 1}

N
7

Solution.

(i) the imaginary axis, (ii) annulus aroumd ¢,

Al

\7&
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(iii) hyperbola a® — b2 = 1, (iv) exterior of the unit disc centered at 1.

Im

]

1.G.5. Consider an “assignment”, which sends every real number a to a root of 2% + 2 + a = 0. Does it give a function
R — C?

Solution. No, the prescription is not unique, there is always a choice from two numbers, except for a = 1/4. O

1.G.6. Determine the number of ways of placing the white tower and black tower on the chessboards (of size 8 x 8), that

are neither in the same column nor in the row.

Solution. First, we can place the white tower in any of 82 positions. Then we have “to our disposal” 72 positions in which to
place the black tower. The total number of ways is 82 - 72 = 3 136. |

1.G.7. There were six men in the meeting. If all of them shook hands with each other, how many handshakes have happened?

Solution. The number of handshakes equals the number of ways of choosing an unordered tuple among 6 elements, thus the
resultis ¢ (6,2) = (5) = 15. O

1.G.8. Determine in how many ways a four-member committee can be chosen among 15 deputies, if it is not allowed for

two certain deputies to work together.
Solution. The result is
15 13y _
(4) = (5) = 1287,
It can be obtained by first calculating the number of all four-member committees and then subtracting the number of those

committees where the given two deputies are chosen together (in that case, we only choose two more members among the

remaining 13 deputies). 0

1.G.9. In how many ways can we divide 8 women and 4 men in two six-member groups (which are considered unordered)
in such a way that there is at least one man in each group?

Solution. If we forget the last condition, division of 12 people in two six-member groups can be done by just choosing 6
people and put them to the first group, which can be done in (162) ways. The groups are not distinguishable (we do not know
which one is the first one), thus the total number is rather % . (162). In (g) cases all men are in one group (we choose two

women among eight to complete the group). The correct answer is thus

3 () = () =434,
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1.G.10. Determine the number of even four-digit numbers composed of exactly two distinct digits.

Solution. Analogously to 1.C.6, we ignore first the peculiarities of the digit zero. We obtain (3)(2* — 2) +5-5(2% — 1)
numbers (In the first summand, we count the numbers that consist only of even digits. In the second summand we count the
number of even four-digit numbers with one digit even and one digit odd). Again we have to subtract the numbers that start
with zero, of those there are (23 — 1)4 + (22 — 1)5. The final number is thus

2

5 4 _ . 3_ 1y _ (93 _ _ (92 _ _
()(2 2)+5-5(2°—1)—(2°—1)4—(2° —1)5 = 272. .

1.G.11. What is the number of 4-digit numbers composed of digits 1, 3, 5, 6, 7 and 9, where no digit occurs more than once?

Solution. We have 6 distinct letters at our disposal. We ask: how many distinct ordered 4-tuples can be chosen from them?
The resultis v (6,4) =6-5-4 -3 = 360. O

1.G.12. The Greek alphabet consists of 24 letters. How many words of exactly five letters can be composed in it? (Disre-

garding whether the words have some actual meaning or not.)

Solution. For each of the five positions in the word we have 24 possibilities, since the letters can repeat. The result is then
V(24,5) = 24°, O

1.G.13. In along-distance race, where the racers start one after another in given time intervals, there were k racers, among
them 3 friends. Determine the number of starting schedules in which no two of the 3 friends start next to each other. For
simplicity assume k£ > 5.

Solution. Remaining ¥ — 3 racers can be ordered in (k — 3)! ways. For the three friends there are then k — 2 places (the
start, the end and the k — 4 spaces) where we can put them in v (k — 2, 3) ways. Using the rule of (combinatorial) product,

we obtain

k=31 (k-2)-k=3)-(k—4)=F(k-2)!(k—=3) - (k—4). 0
1.G.14. There are 32 participants of a tournament. The organisers have stated that the participants must divide arbitrarily
into four groups, such that the first one has size 10, the second and the third 8, and the fourth 6. In how many ways can this

be done?

Solution. We can imagine that from 32 participants we create a row, where first 10 are the first group, next 8 are the second
group and so on. There are 32! orderings of all participants. Note that the division into groups is not influenced if we change

the order of the people in the same group. Therefore the number of distinct divisions equals

P(10,8,8,6) = tora2t—. u

1.G.15. We need to accommodate 9 people in one four-bed room, one three-bed room and one two-bed room. In how many

ways can this be done?

Solution. If we assign to the people in the four-bed room the number 1, in the three-bed room number 2 and in the two-bed
room number 3, then we create permutations with repetitions from the elements 1, 2, 3, where 1 occurs four times, 2 three

times and 3 two times. Number of such permutations is

P(4,3,2) = 72 = 1260. U

41.31-21

1.G.16. Determine the number of ways how to divide among three people A, B and C 33 distinct coins such that A and B

together have twice as many coins as C.

Solution. From the problem statement it is clear that C' must receive 11 coins. That can be done in (‘i"f) ways. Each of the

remaining 22 coins can be given either to A or to B, which gives 222 ways. Using the rule of product we obtain the result
(1) - 2%, R
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1.G.17. In how many ways can we divide 40 identical balls among 4 boys?

Solution. Let us add three matches to the 40 balls. If we order the balls and matches in a row, the matches divide the balls in
4 sections. We order the boys at random, give the first boy all the balls from the first section, give the second boy all the balls

from the second section and so on. It is now evident that the result is (433) =12341. O

1.G.18. According to quality, we divide food products into groups I, I, III, IV. Determine the number of all possible

divisions of 9 food products into these groups, such that the numbers of products in groups are all distinct.

Solution. If we directly write the considered groups from the elements of I, II, I1I, IV, we create combinations of repeti-
tions of the ninth-order from four elements. The number of such combinations is (192) = 220. O

1.G.19. In how many ways could the table of the first soccer league ended, if we know only that at least one of the teams

Ostrava, Olomouc is in the table after the team of Brno (there are 16 teams in the league).

Solution. Let us first determine the three places where the teams of Brno, Olomouc and Ostrava ended. Those can be chosen
in ¢(3,16) = (136) ways. From 6 possible orderings of these three teams on the given three places only four satisfy the given
condition. After that, we can independently choose the order of the remaining 13 teams at the remaining places of the table.
Using the rule of product, we have the solution

1
( 36> -4 - 13! = 13948526592000.

1.G.20. How many distinct orderings (in a row) at a picture of a volleyball team (6 players), if

i) Gouald and Bamba want to stand next to each other;
ii) Gouald and Bamba want to stand next to each other and in the middle;
iii) Gouald and Kamil do not want to stand next to each other.
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Solution.

i) In this case Gouald a Bamba can be considered a single person, we just multiply then by two to determine their relative
order. Thus we have 2.5! = 240 orderings.
ii) Here it is similar except that the position of Gouald and Bamba is fixed. We have 2.4! = 48 orderings.
iii) Probably the simplest approach is to subtract the cases where Kamil and Gouald stand next to each other (see (i)). We
get 6! — 2.5! = 720 — 240 = 480.

O
1.G.21. Coin flipping. We flip a coin six times.
i) How many distinct sequences of heads and tails are there?
ii) How many sequences with exactly four heads are there?
iii) How many sequences with at least two heads are there? O

1.G.22. How many distinct anagrams (rearrangements of letters) of the word “krakatit”, such that between the letters “k”

there is exactly one other letter.

Solution. In the considered anagrams there are exactly six possibilities of placement of the group two “k”, since the first of
the two “k” can be placed at any of the positions 1 — 6. If we fix the spots for the two “k”, then the other letters can be placed

arbitrarily, that is, in P(1, 1,2, 2) ways. Using the rule of product, we have
. 6!
6-P(1,1,2,2) = 2% _ 1080,
.9 O

1.G.23. How many anagrams of the word BASILICA are there, such that there are no two vowels next to each other and no

two consonants next to each other?

Solution. Since there are four vowels and four consonants in the word, each such anagram is either of the type BABABABA
or ABABABAB. On the given four places we can permute vowels in P,(2,2) = 2‘,‘—;, ways and independently of that also
the consonants (4! ways). Using the rule of product, the result is then 2 - 4! - 2‘,"—;, = 288. O

1.G.24. In how many ways can we divide 9 girls and 6 boys into two group such that each group contains at least two boys?

Solution. We divide the boys and the girls independently: 2°(2° — 7) = 12800. O

1.G.25. Material is composed of five layers, each of them has fibres in one of the possible six directions. How many of such

materials are there? How many of them have no two neighbouring layers which have fibres in the same direction?

Solution. 6° and 6 - 5°. O
1.G.26. For any fixed n € N determine the number of all solutions to the equation

1+ To+--+xp=n

in the set of positive integers.

Solution. If we look for a solution in the domain of positive integers, then we note that the natural numbers z1, ...z are a

solution to the equation if and only if the non-negative integers y; = x; — 1,7 =1, ..., k are a solution to the equation
y1+y2+--Fyp=n—k.

Using 1.C.13, there are (""_1) of them., O

k—1
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1.G.27. There are n forts on a circle (n > 3), numbered in a row with numbers 1,..., n. In one moment of time each of
% the forts shoots at one of its neighbours (fort 1 neighbours also with the fort n). Denote by P(n) the number of all

possible results of the shooting (a result of the shooting is a set of numbers of those forts that were hit, regardless of
N the number of hits taken). Prove that P(n) and P(n + 1) are relatively prime.
Solution. If we denote the forts that were hit by a black dot and the unhit by a white dot, the task is equivalent to the task
to determine the number of all possible colourings of n dots on a circle with black and white colour, such that no two white
dots have “distance” one. For odd n this number is equal to K(n) — the number of colourings with black and white, such
that no two white dots are adjacent (we reorder the dots such that we start with the dot one and proceed increasingly with odd
numbers, and then increasingly with even). For even n this number equals /&(n/2)?, the square of the colouring of /2 dots
on a circle such that no two white are adjacent (we colour independently the dots on even positions and on odd positions).
For K(n) we easily derive a recurrent formula K(n) = K(n — 1) + K(n — 2). Furthermore, we can easily compute that
K(2) =3, K(3) = 4, K(4) = 7, that is, K(2) = F(4) — F(0), K(3) = F(5) — F(1), K(4) = F(6) — F(2), and using
induction we can easily prove that K(n) = F(n + 2) — F(n — 2), where F(n) denotes the n-th member of the Fibonacci
sequence (F'(0) =0, F(1) = F(2) = 1). Since (K(2), K(3)) = 1, we have for n > 3 similarly as in the Fibonacci sequence

(K(n), K(n—1)) = (K(n)—K(n—1), K(n—1)) = (K(n—2), K(n—1)) = --- = 1.

Let us now show that for every even n = 2a is P(n) = K(a)? relatively prime with both P(n + 1) = K(2a + 1) and
P(n —1) = K(2a — 1). For this the following is enough: for a > 2 we have
(K(a), K(2a+ 1)) = (K(a), F(2)K(2a) + F(1)K(2a — 1)) = (K(a), F(3)K(2a — 1) + F(2)K(2a — 2) = . ..
= (K(a),F(a+1)K(a+1)+ F(a)K(a)) = (K(a), F(a+1)) = (F(a+2) — F(a—2),F(a+1))
= (Fla+2)—F(a+1)—F(a—2),F(a+1)) = (F(a) — F(a—2),F(a+1))
= (Fla—1),F(a+1))=(F(a—1),F(a)) =1, and
(K(a), K(2a — 1)) = (K(a), F(2)K(2a — 2) + F(1)K(2a — 3)) = (K(a), F(3)K(2a — 3) + F(2) K(2a — 4))
= = (K(a), F(a)K(a) + F(a — 1)K(a = 1)) = (K(a), F(a = 1)) = (F(a+2) = F(a - 2), F(a — 1))
= (F(a+2)—F(a),F(a—1))=(F(a+2)—F(a+1),F(a—1)) = (F(a),F(a—1)) =1.
This proves the claim. U

1.G.28. How much money do I save in a building savings in five years, if I invest in it 3000 K¢ monthly (at the first day of
the month), the yearly interest rate is 3% and once a year I obtain a state donation of 1500 K& (this donation comes at first of
May)?

Solution. Let x,, be the amount of money at the account after n years. Then (for n > 2) we obtain the following recurrent

formula (assuming that every month is exactly one twelfth of a year)

1 2
ZTn41 = 1.03 z,, 4+ 36000 4 1500 4 0.03 - 3000 (1 + 3 +--+ 12) + 0.03 - 3 1500 = 1.03x, + 38115.
~————
interests from deposits this year ~ interest from the state donation credited at this year

Therefore
n—2 .
z, = 38115 (1.03)" + (1.03)" a1 + 1500,
=0

while z; = 36000 + 0.03 - 3000 (1 + 1 + -+ + L) = 36585, in total

(1.03)* -1

= 38115
i ( 0.03

)+(1.03)4~36585+1500 = 202136.
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Remark. In reality, interests are computed according to the number of days the money is on the account. You should obtain
a real bank statement of a building savings, determine its interest rates and try to compute the credited interests in a year.

Compare the result with the sum that was credited in reality. Compute until the numbers agree ...

1.G.29. What is the maximum number of areas the plane can be divided into by n circles?

Solution. For the maximum number p,, of areas we derive a recurrent formula

Pn+1 = Pn + 2n.

Note that the (n + 1)-th circle intersects n previous circles in at most 2n points (and this can really occur)

APPING THE THIRD CIRCLE

Clearly p; = 2. Thus for p,, we obtain

Pn=DPn-1+2(n—1)=pro+2n—-2)+2(n—-1)=...
n—1
:p1+z2i:n2—n+2.
i=1

1.G.30. What is the maximum number of areas a 3-dimensional space can be divided into by n planes?

Solution. Let the number be r,,. We see that 7o = 1. Similarly to the exercise (1.B.4) we consider n planes in the space,
we add another plane ad we ask what is the maximum number of new areas. Again it is exactly the number of areas the new
plane intersects. How many can that be? The number of areas intersected by the (n + 1)-th plane equals to the number of
areas the new (n + 1)-th plane is divided into by the lines of intersection with the n planes that were already situated in the
space. However, there are at most 1/2 - (n? +n + 2) of those (according to the exercise in plane), thus we obtain the recurrent
formula

n?+n+2

Tn4+1 = Tn 9
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This equation can be again solved directly:

-1+ (n—1)+2 Z_n+2
™ = rn—1+(n ) (n ) :rn—1+n z
2 2
-1 —(n-1)+2 n*-n+2
R G Ve U L BNt IR
2 2
n2 (mn-1)% n (n-1)
= rpgt — —— = 141
r 2+2+ 5 5 5 +1+
n2 (n—-1)% m-3?% n nm-1 (n-2)
I R R B
+14+1+1

= ---:r0+%Zi2—%Zi+Zl
i=1 i=1 i=1

nn+1)2n+1) n(n+1)
= 1+ 12 - 1 +n=
n3+6n+5

6 b
where we have used the known relation

ZiQ _ n(n+1)2n+1)

6 )
i=1
which can be easily proved by mathematical induction. O
1.G.31. What is the maximum number of areas a 3-dimensional space can be divided into by n balls? O

1.G.32. What is the number of areas a 3-dimensional space is divided into by n mutually distinct planes which all intersect
a given point?
Solution. For the number x,, of areas we derive a recurrent formula
Ty = Tp—1 + 2(n — 1),
furthermore x1 = 2, that is,
Tp =n(n—1)+2.

O

1.G.33. From a deck of 52 cards we randomly draw 16 cards. Express the probability that we choose exactly 10 red and 6
black cards.

S

N

@' Solution. We first realize that we don’t have to care about the order of the cards. (In the resulting fraction

’/’ we would obtain ordered choices by multiplying by 16! both nominator and denominator.) The number of all
N possible (unordered) choices of 16 cards from 52 is (?(2)) Similarly, the number of all choices of 10 cards from
26 is equal to (fg) and of 6 cards from 26 is (266). Since we are choosing independently 10 cards from 26 red and 6 cards
from 26 black, using the (combinatorial) rule of product we obtain the result

(19)- (%

Go(e) = 0118,

() U

1.G.34. In abox there are 7 white, 6 yellow and 5 blue balls. We draw (without returning) 3 balls randomly. Determine the

probability that exactly 2 of them are white.

7+6+5)
3

Solution. In total there are ( ways, how to choose 3 balls. Choosing exactly two white allows (g) choices of two white

balls and simultaneously (111) choices for the third ball. Using the rule of product is the number of ways how to choose exactly
two white equal to (7) - ('}'). Thus the result is

(;)'11 -~
™ = 0.283.
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1.G.35. When throwing a dice, eleventh times in a row the result was 4. Determine the probability that the twelfth roll

results in 4.

Solution. The previous results (according to our assumptions) do not influence the result of further rolls. Thus the probability
is 1/6. (]

1.G.36. From a deck of 32 cards we randomly draw 6 cards. What is the probability that all of them have the same colour?
Solution. In order to obtain the result

8
40 - 1934.1074,
(s)

we just first choose one of the 4 colours and realize that there are (z) ways how to choose 6 cards from 8 cards of this colour.
O

1.G.37. Three players are given 10 cards each and two remain (from a deck of 32 cards, where 4 of them are aces). Is it

more likely, that somebody receives seven, eight and nine of spades; or that two aces remain?

Solution. Since the probability that some of the players receives the three mentioned cards equals
29
3 ( 7 )
32y 1
(10)
while the probability that two aces remain equals
4
()
32y 1
(5)
it is more likely that some of the players receives the three mentioned cards. Let us note that proving the inequality
29 4
3 ( 7) > (2)
32 32
(o)~ (5

is possible by transforming both sides, where by repetitive crossing-out (after expanding the binomial coefficients according

to their definition) we easily obtain 6 > 1. (]

1.G.38. We throw n dice. What is the probability that among the numbers that appeared the values 1, 3 and 6 are not

present?

Solution. We can reformulate the exercise that we throw the dice n times. The probability that the first roll does not result
into 1, 3 or 6 is 1/2. The probability that neither the first nor the second roll is clearly 1/4 (the result of the first roll does not
influence the result of the second roll). Since the event determined by the result of a given roll and event determined by the

result of another roll are always (stochastically) independent, the probability is 1/2". (|

1.G.39. Two friends are shooting independently of each other at one target — one shoots, then the second shoots, then the
first, and so on. The probability that the first hits is 0.4, the second friend has the probability of hitting 0.3. Determine the
probability P of the event that after shooting there will be exactly one hit of the target.

Solution. We determine the result by summing the probabilities of two mutually exclusive events — first friend hit the target
and the second has not; and second friend hit the target and first has not. Since the events of hitting are independent (note
that independence is preserved when taking complements) is the probability given by the product of the probabilities of given

elementary elements. That is,

P=04-(1-0.3)+(1-0.4)-0.3=0.46. U
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1.G.40. We flip three coins twelve times. What is the probability that at least one flipping results in three tails?

Solution. If we realize that when repeating the flipping, the individual results are independent, and denote fori € {1,...,12}

by A; the event ,the i-th flipping results in three tails“, we are determining

P (Ejl Ai) =1-(1=P(A1))- (1= P(A2)) -+ (1 = P(A12)).

Foreveryi € {1,...,12}is P(4;) = 1/8, since at every coin of the three the tail is with the probability 1/2 independently
of the results of the other coins. Now we can write the final probability
1- (D).

8 O

1.G.41. In a particular state there is a parliament with 200 members. Two major political parties in this state flip a coin
during an “election” for every seat in the parliament. Each of the parties has associated one side of the coin. What is the

probability that each of the parties gains 100 seats? (The coin is “fair”.)

Solution. There are 22°0 of possible results of the elections (considered to be sequences of 200 results of flips). If each party

is to obtain 100 seats, then there are exactly 100 tails and 100 heads in the sequence. There are (fgg) such sequences (since

the sequence is uniquely determined by choosing 100 members of 200 possible, which will result in, say, tails). The resulting

probability is
@88) 1089(1)!00I
9200 — 9200 0.056.

]

1.G.42. Seven Czechs and five English are randomly divided into two (nonempty) groups. What is the probability that one
group consists of Czechs only?

212

Solution, There are — 1 of possible divisions. If one group consists of Czechs only, it means that all English are in one

group (either in the first or in the second). It remains to divide the Czechs into two nonempty groups, that can be done in

27 — 1 ways. In the end we must add 1 for the division which puts all English in one group and all Czechs in another,

2.(2"-1)+1
212 1
O

1.G.43. From ten cards, where exactly one is an ace, we randomly draw a card and put it back. How many times must we

do this, so that the probability that the ace is drawn at least once, is greater than 0.9?

Solution. Let A; be the event ,at i-th drawing the ace was drawn“. Since the individual events A; are (stochastically)
independent, we know that

PO A) =10 P (0= P(A) (1~ P(4,)
for every n € N. We are looking ;o_r an n € N such that it holds that
P (_(]1 Ai> 1= (1= P(A1)- (1= P(A9))--- (1 = P(A,)) > 0.9,
Clearly is P(A;) = 1/10 for ar:y i € N. Thus it is enough to solve the equation
1— ()" > 009,

from which we can express

log, 0.1
n > Tog. 0.9 kdea > 1.

Evaluating, we obtain that we must do the drawing at least twenty two times. (]
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1.G.44. Texas hold’em. Let us now solve a couple of simple exercises concerning the popular card game Texas hold’em,
whose rules we will not state (if the reader does not know them, she can look them up on the Internet). What is the probability
that

i) the starting combination is a tuple of the same symbols?
ii) in my starting tuple of cards there is an ace?
iii) in the end I have one of the six best combinations of cards?
iv) I win, if I hold in my hand ace and a triple of twos (of any colour), on the flop there is ace and two twos and on the turn
there is a third three and all these four cards have distinct colour? (The last card river is not yet turned)

Solution.

i) The number of distinct symbols is 13 and there are always four of them (one of each colour). Thus the number of tuples

with the same symbols is 13(3) = 78. The number of all possible tuples is (132'4) = 1326. The probability of having

same symbols is then % = 0.06.

ii) One card is the ace, that is four choices, and the second is arbitrary, that is 51 choices. But we have counted twice
the tuples with two aces, of which there are (;1) = 6. Thus we obtain 4 - 51 — 6 = 198 tuples and the probability is
T = 0.15.

iii) Let us compute the probabilities of the individual best combinations:

ROYAL FLUSH: There are exactly only four such combinations — one of each colours. The number of combinations of
five cards are () = 2598960. The probability is thus equal to 1.5 - 1076, Very small :)

STRAIGHT FLUSH: Sequence which ends with the highest card in the range 6 to K, that is eight choices for every
colours. We obtain 535 =1.2-107°.

POKER: Four identical symbols — 13 choices (for every symbol one). The fifth card can be arbitrary, that is 48 choices.
That makes 5zo20e = 2.4 - 1074,

FULL HOUSE: Three identical symbols make 13(3) = 52 choices and two identical symbols make 12(3) = 72 choices.
The probability is gt = 1.4 - 1073

FLUSH: All five cards of the same colour means 4(153) = 5148 choices and the probability is then % =2-1073.

STRAIGHT: The highest card of the sequence is in the range from 6 to Ace, that is 9 choices. The colour of every card

is arbitrary, that makes 9 - 4% = 9216 choices. But we have counted both straight flush and royal flush which we must
subtract.

For determining the probability of one of the six best combinations we don’t have to do that, we just do not count the first
two combinations. Therefore we obtain the probability approximately 3.5- 1072 +2-1072 4+ 1.4- 1073 +2.4- 107 =
7.14-1073.

iv) The situation is clearly pretty good and therefore it will be better to count bad situation, that is, when the opponent has
even better combination. I have at this moment full house of two aces and three two’s. The only combination that could
beat me at this moment is either full house of three aces and two twos or a poker of twos. That means that the enemy
must have either the ace or the last two. If he has the two and any other card, then he clearly wins no matter what card is
river. How many ways are there for this other card in his hand? 3 +4 4 - - - +4 4 2 = 45 (one triple and two aces cannot
be in his hand since I have them). There are (426) = 1035 remaining combination and the probability of such loss is then
0.043. If he has an ace in his hand, then the following can happen. If he holds two aces, then he again wins if two is not
on the river — then I would have split poker. The probability of my (conditional) loss is then Tl% : % = 1073, If the
enemy has in his hand ace and some other card than 2 and A, then it is a draw no matter what is on the river. The total
probability of the win is thus almost 96 %. 0

1.G.45. A volleyball team (with libero, that is, 7 people) sits after a match in a pub and drinks beer. But there is not enough

mugs, and thus the publican keeps using the same seven. What is the probability that
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i) exactly one person does not receive the mug he had last round,
ii) nobody receives the mug he had last round,

iii) exactly three receive the mug they had last round.

Solution.

i) If six people receive the mug they had last round, then clearly the seventh person also receives the mug he had last round,
the probability is thus zero.
ii) Let M is the set of all orderings and event A; occurs when the i-th person receives his mug from last round. We want to
k -
calculate | M — U; A;|. We obtain 7! EZ:O (7,;) = 1854. And the probability is 1554 = 103 = 0.37.

iii) We choose which three receive the mug they had last round — (Z) = 35 choices. The remaining four must receive mugs

from somebody else. That is again the formula from the previous section, specifically it is 4! 22:0 (71671,)16 = 9 choices.
In total we have 9 - 35 = 315 choices and the probability is 5301450 = Tla 0

1.G.46. In how many ways can we place n identical rooks on a chessboard n X n such that every non-occupied position is

threatened by some of the rooks?

Solution. Such placements are a union of two sets: the set of placements where in at least one row there is one rook (therefore
in every row there is exactly one; this set has n™ elements — in every row we choose independently one position for the rook),
and the set of placements where in every column there is at least one (that is exactly one) rook (as before, this set has n™
elements). The intersection of these sets has n! elements (the places for the rooks are chosen sequentially starting in the first
row — there we have n choices, in the second only n — 1 — one column is already occupied. ..). Using the inclusion-exclusion
principle, we obtain

2n"™ — nl.

1.G.47. Determine the probability that when throwing two dice at least one resulted in four, if the sum is 7.

Solution. We solve this exercise using the classical probability, where the condition is interpreted as restriction of the prob-
ability space. The space has due to the condition 6 elements, and exactly 2 of those are favourable to the given event. The
answer is thus 2/6 = 1/3. O

1.G.48. We throw two dice. Determine the conditional probability, that the first die resulted in five under the condition that

the sum is 9. Based on this result, decide whether the events “first dice results in five” and “the sum is 9" are independent.
Solution. If we denote the event “first dice resulted in five” by A and the event “the sum is 9” by H, then it holds

_ P(ANH) _ 35 _

P(A|H) = 50 = 3 =

Note that the sum 9 occurs when the first die is 3 and the second 6, the first is 4 and the second 6, the first is 5 and the second

1
i

is 4, or the first is 6 and the second is 3. Of those four results (that have the same probability) only one is favourable to the

event A. Since the probability of A is clearly 1/6 # 1/4, the events are not mutually independent. O

1.G.49. Let us have a deck of 32 cards. If we draw twice one card, what is the probability that the second drawn card is an

ace, if we return the first card; and when we don’t return the first card (then there are 31 cards in the deck).

Solution. If we return the card in the deck, we are just repeating the experiment, which has 32 possible results (which have
the same probability), and exactly four of them are favourable. Thus we see that the probability is 1/8. In the second case
when we do not return the card, is probability also the same. It is enough to consider that when drawing all the cards one by
one is the probability of the ace as the first card identical to the probability that the ace is the second card. We could also use

conditional probability, that results into

[\
0

3
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1.G.50. Consider families with two children and for simplicity assume that all choices in the set 2 = {bb, by, gb, gg}, where
b stands for ,,boy“ and g stands for ,,girl” (considering the age of the children) have the same probability. Choose random

events
H; — family has a boy, A; — family has two boys.
Compute P (A;|Hy).
Similarly consider families with three children, where
£2 = {bbb, bbg, bgb, gbb, bgg, gbg, ggb, ggg}.
If
H; — the family has both boy and girl, As — the family has at most one girl,
decide whether the events A5 and H, are independent.

Solution. Considering which of the four elements of the set {2 are (not) favourable to the event A; or Hy, we easily obtain

P(ANH P(A
P (A|Hy) = (P(ll?l)l) = p§H3 =

FSIEIST
ol

Further we have to determine whether the following holds:

P(AsN Hy)=P(Ay)- P(Hs).
Again we just have to realize that exactly the elements bbb, bbg, bgb, gbb of the set {2, are favourable to the event As; to
the event Ho the elements bbg, bgb, gbb, bgg, gbg, ggb are favourable and to the event A, N Ho the elements bbg, bgb, gbb.
Therefore

which means that the events A and Hs are independent. O

1.G.51. We flip a coin five times. For every head, we put a white ball in a hat, for every tail we put in the same hat a black
ball. Express the probability that in the hat there is more black balls than white balls, if there is at least one black ball in the
hat.

Solution. Let us have the following two events

A — there are more black balls than white balls in the hat,

H — there is at least one black ball in the hat.

We want to express P(A|H). Note that the probability P (HC ) of the complementary event to the event H is 27° and that
the probability of the event is the same as the probability P (AC) of the complementary event (there are more white balls
in the hat). Necessarily, P(H) = 1 — 27°, P(A) = 1/2. Furthermore P(A N H) = P(A), since the event H contains the

event A (the event A has H as a consequence). Thus we have obtained

— PANH) _ -
PUAIH) = 5 = (g7 — 3t 0

1.G.52. In a box there are 9 red and 7 white balls. Sequentially we draw three balls (without returning). Determine the
probability that the first two are red and the third is white.

Solution. We solve this exercise using the theorem about multiplication of probabilities. First we require a red ball, that
happens with the probability 9/16. If a red ball was drawn, then in the second round we draw a red ball with the probability
8/15 (there are 15 balls in the box, 8 of them are red). Finally, if two red balls were drawn, the probability that a white ball
is drawn is 7/14 (there are 7 white balls and 7 red balls in the box). Thus we obtain

9 8 7 _
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1.G.53. Inthe box there are 10 balls, 5 of them are black and 5 are white. We will sequentially draw the balls, and we do not
return them back. Determine the probability that first we draw a white ball, then a black, then a white and in the last, fourth

turn again a white.

Solution. We use the theorem about multiplication of probabilities. In the first round we draw a white ball with the probability
5/10, then a black ball with probability 5/9, then a white ball with probability 4/8 and in the end a white ball with probability
3/7. That gives

100 9 8 7 84 O

1.G.54. From a deck of 32 cards we randomly draw six cards. Compute the probability that the first king will be chosen as
the sixth card (that is, the previous five cards do not contain any king).

Solution. Using the theorem about multiplication of probabilities we have
28 27 26 25 24 4 - 0.0723.

32 731 °30 29 28 27 O

1.G.55. What is the probability that a sum of two randomly chosen positive numbers smaller than 1 is smaller than 3/7?

Solution. It is clear that it is a simple exercise on geometrical probability where the basic space (2 is a square with vertices
at [0,0], [1,0], [1,1], [0, 1] (we are choosing two numbers in [0, 1]). We are interested in the probability of the event that a
randomly chosen point [z, y] in this square satisfies = + y < 3/7, that is, the probability that the point lies in the triangle A
with vertices at [0, 0], [3/7,0], [0,3/7]. Now we can easily compute
_vad _ (B2 _ 9

PA) =00 = "1 = O
1.G.56. Let a pole be randomly broken into three parts. Determine the probability that the length of the second (middle)
part is greater than two thirds of the length of the pole before the breaking.

Solution. Let d stand for the length of the pole. The breaking of the pole at two points is given by the choice of the points
where we split the pole. Let x be the point which is the first (closer to left end of the pole), and x + y be the point where
the second splitting occurs. That says that the basic space is the set {[z,y]; z € (0,d),y € (0,d — x)}, that is, a triangle
with vertices at [0, 0], [d, 0], [0, d]. The length of the middle part is given by the value of y. The condition from the exercise
statement can be now restated as y > 2d/3, which corresponds to the triangle with vertices at [0,2d/3], [d/3,2d/3], [0, d].
Areas of the considered triangles are d*/2 a (d/3)? /2, therefore the probability is

2

7

322 _ 1

Z =3 O

2

1.G.57. A pole of length 2 m is randomly divided into three parts. Determine the probability of the event that the third part
is shorter than 1, 5 m.

Solution. This exercise is for using the geometrical probability, where we are looking for the probability that the sum of
the lengths of the first two parts is greater than one fourth of the length of the pole. We determine the probability of the
complementary event, that is, the probability that if we randomly choose two points on the pole, both of them are in the first
quarter of the pole. The probability of this event is 1/42, since the probability of picking a point in the first quarter of the pole
is clearly 1/4 and this choice is independently repeated (once). Thus the probability of the complementary event is 15/16. [

1.G.58. Mirek and Marek have a lunch at the school canteen. The canteens opens from 11 to 14. Each of them eats the
lunch for 30 minutes, and the arrival time is random. What is the probability that they meet at a given day, if they always sit

at the same table?

Solution. The space of all possible events is a square 3 X 3. Denote by x the arrival time of Mirek and by y the arrival time
of Marek, these two meet if and only if | — y| < 1/2. This inequality determines in the square of possible events the area

whose volume is 11/36 of the volume of the whole square. Thus that is also the probability of the event. (]
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1.G.59. From Brno Honza rides a car to Prague randomly between 12 and 16, and in the same time interval Martin rides a
car to Brno from Prague. Both stop in a motorest in the middle of the trip for thirty minutes. What is the probability that they
meet there, if Honza’s speed is 150 km/h and Martin’s is 100 km/h? (The distance Praha-Brno is 200 km).

Solution. If we denote the departure time of Martin by « and the departure time of Honza by y, and in order to have fewer
fractions in the following calculations choose a time unit to be ten minutes, then the base space is a square 24 x 24. The
arrival time of Martin to the motorest is  + 6, arrival time of Honza is y + 4. As in the previous exercise, the event that
they meet in the motorest is equivalent to the event that their arrival times do not differ by more than thirty minutes, that is,
|(x 4+ 6) — (y +4)| < 3. This condition determines an area with volume 24% — 1(23? + 19?) (see the figure)

2;,4., e

[24)23]

IX- 42 1£2346>
i /*zx-—'( & aa,éx-r_s’

|
1 24

5

and the probability

242 — 1232 1192) 131
p= G 0.227.
242 576

O

1.G.60. Mirek departs randomly between 10 and 20 o’clock from Brno to Prague. Marek departs randomly in the same
interval from Prague to Brno. The trip takes 2 hours. What is the probability that they meet on the road (they use the same

road)?

Solution. We are solving analogously to the previous exercise. The space of all events is a square 10 x 10, Mirek, departing

at the time z, meets Marek, departing at the time y if and only if |z — y| < 2. The probability is p = % = 2—95 = 0.36.

“fo

|x-9l4 2.

O

1.G.61. Two meter-long pole is randomly divided into three pieces. Determine the probability that a triangle can be built

of the pieces.
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Solution. Division of the pole is given as in the previous exercises by the points of cutting  and y and the probability space
is again a square 2 x 2. In order to be able to build a triangle of the pieces, the lengths of the parts must satisfy the triangle
inequalities, that is, sum of lengths of any two parts must be greater than the length of the third part. Since the sum of the
lengths is 2 meters, this condition is equivalent to the condition that each part must be smaller than 1 meter. Using the cut-
points z and y, we can express this that it cannot simultaneously hold z < 1 and y < 1 or simultaneously z > landy > 1
(this corresponds to the conditions that the border parts of the pole are smaller than 1), and also |z — y| < 1 (the middle part

is smaller than one). These conditions are satisfied by the shaded area in the picture, whose volume is 1/4.

/?/:-x-l"{

E' e — — —— — —

4 /,////y//

0 1

N-.— i
O

1.G.62. Does the equations

@ vy — 3y = 3,
xr, — Q\ﬁxz = —2;
) 4z, —  3zy = 16,
T, - Q\ﬁxg = -7
() 4CE1 + 2:L'2 = 7,
¢ —2(1,'1 — T2 = —3

have a unique solution (that is, exactly one)?

Solution. The set of equation is uniquely solvable if and only if the determinant of the matrix given by the left-hand side
coeflicients is nonzero. Therefore, the coefficients on the right-hand side do not influence the uniqueness of the solution.
Thus we have to have the same answer in (a) and (b). Since

L e e - vy £

4 e en-ee-o

for (a) and (b) there is a unique solution and in (c) there is not. If we multiply the second equation in (c) by —2, we see that

it has no solution at all. g

1.G.63. Determine A - A for

A= ((;f)sgp — e S0) , where p € R.
sinp  cosg

Solution. We know that the mapping

(x)'_)(Cf)sap —smgp>.<x)’ sy €R
y sing  cosgp Y
is the rotation of the plane R? around the origin through the angle ¢ in the positive direction. Since matrix multiplication is

associative, we obtain that the mapping
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(x) . (c.osga smgp) ' (c.osgp smcp) ) (x)7 2y €R
Y singp  cosg sing  cos¢ Y

is a rotation through the angle 2¢. That means that

A-A

cos2¢ —sin2p
sin2¢  cos2¢ )

Note that we could have directly multiplied A - A (and apply the formulas for sine and cosine of double angle). But repeating
the aforementioned method (or using the mathematical induction) yields

A" = <c9snc,9 smmp) , m=23, ...,
sinng  cosng

casier (weset A2 = A- A, A3 =A-A- A, etc). O

1.G.64. The parallelogram identity. The calculation in coordinates can be useful in plane geometry. Let us demonstrate
this on the proof “parallelogram identity”: if u, v € R?, then:

2(llul® + [[0l*) = llu +v]|* + [lu — v]|*.
Thus the sum of the squares of the diagonals of a parallelogram is the sum of the squares of the lengths of the four sides of
the parallelogram.

Solution. Writing both sides of the equation into the coordinates v = (u1,u2), v = (v1,v2) yields:

lu+ ol + [lu — o]
= (ur +v1)? + (uz +v2)* + (w1 = v1)* + (uz — v2)?
= u? + 2uyvy 4 v + ud + 2uovy + v+

+u? — 2uyvy + v} + Ul — 2ugvy + V3

=2(u? +u3 + vl +0d)

= 2([Jull® + [|v]|?).
O
1.G.65. Compute the area S of a quadrilateral given by the vertices
[07 _2]7 [_171]’ [175]a [17_1}~
Solution. In the usual notation
A=10,-2], B=][1,-1], C=][1,5], D=][-1,]1]
and the usual division of the quadrilateral into triangles ABC and ACD with areas S7 and S3 we obtain
1-0 1-0 1-0 -1-0
_ _1 1 =L_ 1 =
S=5+%=3 |14 5+2‘ 2542 142|207~ D+3B+7)=8 0

1.G.66. Determine the area of the quadrilateral ABCD with vertices A = [1,0], B = [11,13],C = [2,5] a D = [-2, —5].

Solution. We divide the quadrilateral into two triangles ABC and ACD. We compute their areas by computing absolute

values of the determinants, see 1.5.11,

1|1 os|[ |11 5
S“f‘m 13H+‘2"3 5
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1.G.67. Compute the area of parallelogram with vertices at [5, 5], [6, 8] at [6, 9].

Solution. Although such parallelogram is not uniquely determined (the fourth vertex is not given), the triangle with vertices
at [5, 5], [6, 8] and [6, 9] must be necessarily a half of every parallelogram with these three vertices (one of the sides of the
triangle becomes the diagonal of the parallelogram). Therefore the area equals the determinant

‘6 -5 6— 5‘ 11

8—5 9-5| |3 4~ LA-13=1

O

1.G.68. Give the area of a meadow, which is determined on the area map by the points at positions [—7, 1], [-1, 0], [29, 0],
[25,1], [24, 2] and [17,5]. (Ignore the measurement units. They are determined by the ratio of the area map to the reality.)

Solution. The given hexagon can be divided into four triangles with vertices at
[-7,1],[-1,0],[17, 5]; [-1,0],[24,2],[17,5];
[-1,0],[25, 1], [24, 2]; [-1,0],[29,0],[25,1].

The areas are 24, 89/2, 27/2 and 15 respectively, which gives the total area as
24+445 +13 5 +15=97. .

1.G.69. Determine the area of a triangle As A3 A1, where AgA; ... Aq1 are the vertices of a regular dodecagon inscribed

in a circle of radius 1.

Solution. The vertices of the dodecagon can be identified with the twelfth roots of 1 in the complex plane. As in ?? we find
out Ay = cos(m/3) +isin(n/3) = 1/2 +iv/3/2, Az = cos(1/2) + isin(r/2) = i, A1; = cos(—m/6) + isin(—7n/6) =
V/3/2 — i/2, that means the that the coordinates of these points in the complex plane are Ay = [1/2,v/3/2], A3 = [0, 1],
Ay = [V3/2, fé] According to the formula for the area of a triangle, the area of the triangle .S is

g LA —An| 13- 4+ 3-8
2 |As — A1 2‘—73 % I 4

O

1.G.70. Determine which sides of the quadrilateral with vertices A = [95,99], B = [130, 106], C' = [40, 60], D = [130, 120],
are visible from the point [2, 0]. O

1.G.71. Determine the number of relations over the set {1, 2, 3,4}, which are both symmetric and transitive.

Solution. Relations of the given properties is an equivalence over some subset of the set {1,2,3,4}. Intotal, 1 +4 -1+ (3) .
2+ (3) -5+ 15 =52, O

1.G.72. Determine the number of ordering relations over a three-element set. O

1.G.73. Determine the numer of ordering relations over the set {1, 2, 3, 4} such that the elements 1 and 2 are not comparable
(that is, neither 1 < 2 nor 2 < 1, where < stands for the ordering relation). O

1.G.74. Determine the number of surjective mappings f from the set {1,2, 3,4, 5} to the set {1, 2,3} such that f(1) = f(2).

Solution. Every such mappings is uniquely given by the images of the elements {1, 3,4, 5}, there are exactly that many
mappings as there are surjective mappings of the set {1, 3,4, 5} to the set {1, 2, 3}, that is, 36, as we know from the previous

exercise. O
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1.G.75. Give all the elements in S o R, if
R=1{(2,4),(4,4),(4,5)} C Nx N,
S={(3,1),(3,2),(3,5),(4,1),(4,4)} CNx N.
Solution. Considering all choices of two ordered tuple
(2,4),(4,1); (2,4),(4,4); (4,4),(4,1); (4,4),(4,4)
satisfying that the second element of the first ordered tuple—which is a member of R—equals the first element of the second

ordered tuple—which is a member of S—we obtain

SoR=1{(2,1),(2,4),(4,1),(4,4)}.

]
1.G.76. Let a binary relation be given
R ={(0,4),(=3,0),(5,7),(5,2),(0,2)}
between sets A = Z a B = R. Express R~! and Ro R™1.
Solution. We can immediately see that
R~ =1{(4,0),(0,-3), (7,5),(2,5),(2,0)}.
Furthermore,
Ro R™' ={(4,4),(0,0), (7, 7),(2,2), (4,2), (7, 2), (2, 7), (2,4)}. 0
1.G.77. Decide whether the relation R determined by the condition:
(@ (a,b) € R < |a| < |b];
(b) (a,b) € R < |a| = |2b|
over the set of integers Z is transitive.
Solution. In the first case R is transitive, because
laf <[bl, [b] <[c| = la| <[c].
In the second case R is not transitive. For instance, consider
(4,2),(2,1) e R, (4,1) ¢ R. .

1.G.78. Find all relations over M = {1, 2}, which are not antisymmetric. Which of them are transitive?

Solution. There are four relations that are not antisymmetric. They are exactly subsets of the set {1,2} x {1,2}, which

contain the elements (1, 2), (2, 1) (otherwise the condition of antisymmetry is satisfied). Of these four only the relation
{(1,1),(1,2),(2,1),(2,2)} = M x M,
is transitive, because not containing tuples (1, 1) and (2, 2) in a transitive relation means that the relation cannot contain both
(1,2) and (2,1). O
1.G.79. We have a set {3,4, 5,6, 7}. Write explicitly the relations
i) a divides b,

ii) Either a divides b or b divides a,

iii) a and b have a common divisor greater than one,

and examine their properties. O
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1.G.80. Is there an equivalence relation, which is also an ordering, over the set of all lines in the plane?

Solution. An equivalence relation (or ordering relation) must be reflexive, therefore every line must be in relation with itself.
Furthermore we require that the relation is both symmetric (equivalence) and antisymmetric (ordering). That means that a
line can be in relation only with itself. If we define the relation such that two lines are in relation if and only if they are
identical, we obtain “very natural” relation which is both equivalence relation and ordering. We just need to check that it is
transitive, which it trivially is. Thus the only relation satisfying the problem statement is the identity over the set of all lines

in the plane. U

1.G.81. Determine whether the relation
R={(k]) €ZxL; k| >|l]}
over the set Z is an equivalence and/or an ordering.

Solution. The relation R is not an equivalence: it is not symmetric (take (6,2) € R, (2,6) ¢ R); it is not an ordering: it is
not antisymmetric (take (2, —2) € R, (—2,2) € R). O

1.G.82. Show that the intersection of any equivalence relation over a set X is again an equivalence relation, and that the

union of two ordering relations over a set X does not have to be an ordering.

Solution. We see that the intersection of equivalence relations is reflexive, symmetric and transitive: all the equivalence
relations must contain the tuple (z, x) for every x € X, therefore the intersection contains that tuple too. If the element (x, y)
is in the intersection, then the element (y, x) is also in the intersection (just use the fact that every equivalence is symmetric).
If tuples (x, y) and (y, z) are in the intersection, then both are in the equivalences also. Since the equivalences are transitive,
they all contain the element (z, z) and thus that element is also in the intersection.

If we chose X = {1, 2} and the ordering relation
R ={(1,1),(2,2),(1,2)}, R:={(1,1),(2,2),(21)}
over X, we obtain the relation
RiURy ={(1,1),(2,2),(1,2),(2,1)},

which is not antisymmetric, thus not an ordering. |

1.G.83. Over the set M = {1,2,...,19,20} there is an equivalence relation ~ such that a ~ b for any a,b € M if and

only if the first digits of the numbers a, b are the same. Construct the partition given by this equivalence.

Solution. Two numbers from the set M are in the same equivalence class if and only if they are in the relation (first digit is

the same). Therefore the partition consists of the sets

{1,10,11,...,18,19},{2,20}, {3}, {4}, {5}, {6}, {7}, {8}, {9}. 0

1.G.84. We are given partition of two classes {b, c}, {a,d, e} of the set X = {a,b, ¢, d,e}. Write down the equivalence

relation R over the set X which gives this partition.

Solution. Equivalence R is determined by the fact that the two elements are in relation if and only if they are in the same par-
tition class (note also that R must be symmetric), and every element is in relation with itself (R must be reflexive). Therefore

R contains exactly
(a,a), (b,b), (¢, c), (d,d), (e, ),
(b,¢), (¢,b), (a,d), (a,e),(d,a),(d,e), (e,a), (e,d).
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1.G.85. Let{a,b,c,d} be a set with a relation
{(a,a), (b,b),(a,b), (b,c), (c,b)}.

What is the minimal number of elements we have to add to the relation in order to make it an equivalence?

Solution. Let us successively ensure the three properties that define an equivalence. Firstit is the reflexivity. We must add the
tuples {(c, ¢), (d,d)}. Second is the symmetry — we must add (b, a) and for the third step we must do the so-called transitive

closure. Since a is in relation with b and b is in relation with ¢, we must add (a, ¢) and (¢, a). O

1.G.86. What is the maximal domain D C R and codomain  C R such that the following mappings are bijective, and
what is then the inverse function?

)zt

i) z— a3

1

iii) x — o]

Solution.
iy D =[0,00) and H = [0,00) oralso D = (—00,0] a H = [0, 00). The inverse function is then x — /.

ii) D = H = R and the inverse function is x — /.
iii) D =R~ {—1}and H = R~ {0}. The inverse function is z — + — 1.

O
1.G.87. Consider a relation R x R. A point is in the relation whenever it holds that
(z—1P2+(@y+1)?*=1
Can we describe the points using the function y = f(x)? Depict the points in the relation.
Solution. We cannot, because for instance y = —1 has two preimages: = 0 and x = 2. The points lie on a circle with the
centre at the point (1, —1) and radius 1. O

1.G.88. Let for any two integers k, [ hold that (k, 1) € R whenever the number 4k — 41 is an integral multiple of 7. Is such
a relation over R an equivalence? Is it an ordering?

Solution. Note that two integers are in the relation R if and only if they have the same remainder under the division by 7.
Therefore it is an example of the so-called remainder class of integers. Therefore we know that the relation R is an equivalence

relation. Its symmetry (for instance, (3, 10), (10,3) € R, 3 # 10) implies that it is not an ordering. O

1.G.89. Leta relation R be defined over the set N = {3,4,5,...,n,n+ 1, ...}, such that two numbers are in the relation
whenever they are relatively prime (that is, the prime decompositions of the numbers do not contain any common number).

Determine whether this relation is reflexive, symmetric, antisymmetric, transitive.

Solution. For a tuple of the same numbers it holds that (n,n) ¢ R. Therefore the relation is not reflexive. It is clear that
when two numbers are relatively prime or not, it does not matter how they are ordered — it is a property of unordered tuples.
Therefore, R is symmetric. From the symmetry we have that it is not antisymmetric (for instance, (3,5) € R, 3 # 5). Since
R is symmetric and (n,n) ¢ R for any number n € N, a choice of two distinct numbers which are in the relation gives that

R is not transitive. O

1.G.90. Determine the number of injective mappings of the set {1, 2,3} to the set {1, 2, 3,4}.

Solution. Any injective mapping among the given sets is given by choosing an (ordered) triple from the set {1,2, 3,4} (the
elements in the chosen triple will correspond in order to images of the numbers 1, 2, 3) and vice versa. Every injective mapping
gives such a triple. Thus the number of injective mappings equals the number of ordered triples among four elements, that is
v(3,4)=4-3-2=24, O
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1.G.91. How many relations are there over an n-element set?

Solution. A relation is an arbitrary subset of the cartesian product of the set with itself. This cartesian product has n?

elements, thus the number of all relations over an n-element set is 2"2. O

1.G.92. How many reflexive relations are there over an n-element set?
Solution. The relation over the set M is reflexive if and only if it has the diagonal relation Ay; = {(a,a), alla € M} asa
subset. As for the rest of the n? — n ordered pairs in the cartesian product M x M, we have independent choice, whether or

not the pair belongs to the relation. In total we have 2n° =" different reflexive relations over an n-element set. (]

1.G.93. How many symmetric relations are there over an n-element set?

Solution. A relation R over the set M is symmetric if and only if the intersection of R with each {(a,b), (b, a), where a #
b, a,b € M} is either the whole two-element set or is empty. There are (72’) two-element subsets of the set M. If we
also declare what the intersection of R and the diagonal relation Ay; = {(a,a), where a € M} should be, then R is
completely determined. In total we are to do (g) + n independent choices between two alternatives: each set of the type
{(a,b), (b,a)| where a,b € M, a # b} is either the subset of R or it is disjoint with R. Every pair (a,a), a € M is either in
R or not. In total we have 2(3) 7 symmetric relations over an n-element set. O

1.G.94. How many anti-symmetric relations over an n-element set are there?

Solution. A relation R over the set M is anti-symmetric if and only if the intersection of R with each set {(a, b), (b,a)},a # b,
a,b € M is either empty or one-element (which means that it is either {(a, b)} or {(b, a)} but not both). The intersection of
R with the diagonal relation is arbitrary. By declaring what these intersections are, the relation R is completely determined.

In total we have 3(3) 27 anti-symmetric relations over an n-element set. (|

1.G.95. Determine the number of ordering relations of the set {1,2, 3,4, 5} such that exactly two pairs of element are incom-
parable. O
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Solution to the exercises
LB3. yn =2(3)" —2.
1.G.2.
0 31+ 5t
ii) 2%91 The first result is obtained by expanding the fraction by 5 — 31.

1.G.21.
i) 25=64
i) (§) =15

iii) No head is one possibility (g) = 1, one head is (f) = 6. Thus there are 7 sequences with at most one head and the resultis 64—7 = 57.

1.G.31. The maximum number yn of areas a plane can be divided into by n circles is yn = yn—14+2(n—1),y1 = 2, thatis, yn = n*—n+2.
For the maximum number p» of areas a space can be divided into by n balls we obtain the recurrent formula pn+1 = pn +yn, p1 = 2,

that is, pn = 2(n® — 3n + 8).

1.G.70. First, we orient the vertices of the given quadrangle in the counter-clockwise order: ABCD. After computing the corresponding

determinants as in the previous exercises we see that only the side CB is visible.

1.G.72. 19.
1.G.73. 87.
1.G.79.
i) (3,3),(4,4),(5,5),(6,6),(7,7),(3,6), check that it is an ordering relation.
ii) again (4,4) fori = 1,...,7 and additionally (3, 6), (6, 3), check that it is an equivalence relation.

iii) (¢,7) forz =1,...,7 and also (3,6), (6,3), (4,6), (6,4). Check that it is not an equivalence, since transitivity does not hold.

1.G.95. Three different Hasse diagrams which satisfy the given condition. In total 5! + 5! 4 5!/4 = 270.

70



CHAPTER 2

Elementary linear algebra

Can’t you count with scalars yet?

— no worry, let us go straight to matrices...

A. Systems of linear equations and matrix manipulation

We approach vector spaces in a clever way. We begin
with something we know — systems of linear equations and

find that the vector spaces are hidden behind them.

In the previous chapter we warmed up by considering
relatively simple problems which did not require any sophis-
ticated tools. It was enough to use addition and multiplication
of scalars. In this and subsequent chapters we shall add more
sophisticated thoughts and tools.

First we restrict ourselves to concepts and operations con-
sisting of a finite number of multiplications and additions to a
finite number of scalars. This will take us three chapters and
only then will we move on to infinitesimal concepts and tools.
Typically we deal with finite collections of scalars of a given
size. We speak about “linear objects” and “linear algebra”.
Although it might seem to be a very special tool, we shall see
later that even more complicated objects are studied mostly
using their “linear approximations”.

In this chapter we will work with finite sequences of
";A\ scalars. Such sequences arise in real-world
’ problems whenever we deal with objects de-
scribed by several parameters, which we shall
— call coordinates. Do not try much to imagine
the space with more than three coordinates. You have to live
with the fact that we are able to depict only one, two or three
dimensions. However, we will deal with an arbitrary number
of dimensions. For example, observing any parameter in a
group 500 students (for instance, their study results), our data
will have 500 elements and we would like to work with them.
Our goal is to develop tools which will work well even if the
number of elements is large.

Do not be afraid of terms like field or ring of scalars K.
Simply, imagine any specific domain of numbers. Rings of
scalars are for instance integers Z and all residue classes Zj.
Among fields we have seen only R, Q, C and residue classes
Zy, for k prime. Zs is very specific among them, because the
equation x = —x does not imply x = 0 here, whereas in
every other field it does.

1. Vectors and matrices

In the first two parts of this chapter, we will work with
vectors and matrices in the simple context of finite sequences
of scalars. We can imagine working with integers or residue
classes as well as real or complex numbers. We hope to il-
lustrate how easily a concise and formal reasoning can lead
to strong results valid in a much broader context than just for
real numbers.
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2.A.1. A colourful example. A company of painters orders
iy, N 810 litres of paint, to contain 270 litres each
The

provider can satisfy this order by mixing the

PP
% |

warehouse). He has

of red, green and blue coloured paint.

colours he usually sells (he has enough in his

o reddish colour — it contains 50 % of red, 25 % of green
and 25 Y% of blue colour;

e greenish colour —it contains 12,5 % of red, 75 % of green
and 12,5 % of blue colour;

e bluish colour — it contains 20 % of red, 20 % of green
and 60 % of blue colour.

How many litres of each of the colours at the warehouse have
to be mixed in order to satisfy the order?

Solution. Denote by

e 1 — the number of litres of reddish colour to be used;
e y — the number of litres of bluish colour to be used;
e z — the number of litres) greenish colour to be used,

By mixing the colours we want a colour that contains 270
litres of red. Note that reddish contains 50 % red, greenish
contains 12,5 % red and bluish 20 % red. Thus the following
has to be satisfied:

0,50 + 0,125y + 0,2z = 270.

Similarly, we require (for blue and green colours respectively)
that

0,25 + 0,75y 4+ 0,2z =
0,25z + 0,125y + 0,6z =

270,
270.
From the first equation x = 540 — 0, 25y — 0, 4z. Substitute
for z into the second and third equations to obtain two linear
equations of two variables 2, 75y + 0,4z = 540 and 0, 25y +
2z = 540. From the second of these we express z = 270 —
0, 125y and substitute into the first one we obtain 2, Ty = 432,
that is, y = 160. Therefore z = 270 — 0,125 - 160 = 250
and hence z = 540 — 0,25 - 160 4 0,4 - 250 = 400.

An alternative approach is to deduce consequences from
the given equations by a sequence of adding them or multi-
plying them by non-zero scalars. This is easily handled in the
matrix notation (which we met when solving equations with
two variables in the previous chapter already). The first row
of the matrix consists of coefficients of the variables in the
first equation, second of the coefficients in the second equa-
tion and third of the coefficients in the third. Therefore the
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Later, we follow the general terminology where the no-
tion of vectors is related to fields of scalars only.

2.1.1. Vectors over scalars. For now, a vector is for us an
ordered n-tuple of scalars from K, where the fixed n € N is
called dimension.

We can add and multiply scalars. We will be able to add
vectors, but multiplying a vector will be possible only by a
scalar. This corresponds to the idea we have already seen in
the plane R2. There, addition is realized as vector composi-
tion (as composition of arrows having their direction and size
and compared when emanating from the origin). Multiplica-
tion by scalar is realized as stretching the vectors.

A vector u = (ay,...,ay,) is multiplied by a scalar ¢ by
multiplying every element of the n-tuple v by c. Addition is
defined coordinate-wise.

BASIC VECTOR OPERATIONS

u+v=_(ar,...,an) + (br,...,by)
= (a1 +b1,...,a,+by)
c-u=c-(ar,...,an) = (c-ay,...,c-ap).
cu =clay,...,an) = (cay,...,ca,).

For vector addition and multiplication by scalars we shall
use the same symbols as for scalars, that is, respectively, plus
and either dot or juxtaposition.

The vector notation convention. We shall not, unlike many
other textbooks, use any special notations for vec-
tors and leave it to the reader to pay attention to
the context. For scalars, we shall mostly use let-

> ters from the beginning of the alphabet, for the
vector from the end of the alphabet. The middle part of the
alphabet can be used for indices of variables or components
and also for summation indices.

In the general theory in the end of this chapter and later,
we will work exclusively with fields of scalars when talking
about vectors. Now we will work with the more relaxed prop-
erties of scalars as listed in 1.1.1.

For vector addition in K", the properties (CG1)—(CG4)
(see 1.1.1) clearly hold with the zero element being (notice we
define the addition coordinate-wise) 0 = (0,...,0) € K,
We are purposely using the same symbol for both the zero
vector element and the zero scalar element. Next, let us notice
the following basic properties of vectors:

VECTOR PROPERTIES

For all vectors v, w € K" and scalars a, b € K we have

(VD) a-(vtw)=a-v+a-w
(V2) (a+b)-v=a-v+b-v
(V3) a-(b-v)=(a-b)-v
(V4) l-v=v
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matrix of the system is
0,5 0,125 0,2

0,25 0,75 0,2
0,25 0,125 0,6

)

The extended matrix of the system is obtained from the matrix
of the system by inserting the column of the right-hand sides
of the individual equations in the system:
0,5 0,125 0,2 | 270
0,25 0,75 0,2 | 270
0,25 0,125 0,6 | 270
By doing elementary row transformations sequentially
(they all correspond to adding rows and multiplication by
scalars with the equations, see 2.1.7) we can eliminate the

variables in the equations, one by one:

0,5 0,125 0,2 | 270 1 0,25 0,4 540
0,25 0,75 0,227 |~ 1 3 0,8]1080 |~
0,25 0,125 0,6 | 270 1 0,5 241080

1 0,25 0,4 | 540 1 0,25 0,4 540

0 2,75 0,4]540 |~ 0o 11 1,6|2160 | ~

0 0,25 2 |540 0 1 8 | 2160

1 0,25 0,4 540 1 0,25 0,4 540
0 1 8 | 2160 |~ 0 1 8 2160 | .
0 11 1,6 2160 0 0 —86,4 | —21600

By back substitution, we compute successively

y = 2160 — 8 - 250 = 160,
z =540 — 0,4 - 250 — 0, 25 - 160 = 400.

Thus it is necessary to mix 400 litres of reddish, 160 litres of

bluish and 250 litres of greenish colour. |

2.A.2. Solve the system of simultaneous linear equations

1 + 2z + 3x3 = 2,
2.1?1 — 3372 — r3 = —37
—3r1 + To + 2x3 = -—3.

Solution. We write the system of equations in the form of the

extended matrix of the system

1 2 3 2
2 -3 —-1|-3
-3 1 2 |1 -3

Every row of the matrix corresponds to one equation. As in
the previous example, equivalent transformation of the equa-

tions correspond to the elementary row operations on the ma-

trix and we use them to transform it into the row echelon form
1 2 3 2 1 2 3 2
2 -3 —-1]|-3 ~ 0 -7 —-7|-7 ~
-3 1 2 | =3 o 7 11| 3
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The properties (V1)-(V4) of our vectors are easily
checked for any specific ring of scalars K, since we need just
the corresponding properties of scalars as listed in 1.1.1 and
1.1.5, applied to individual components of the vectors. In
this way we shall work with, for instance, R", Q", C™, but
also with Z", (Zy)", n =1,2,3,....

2.1.2. Matrices over scalars. Matrices are slightly more
complicated objects, useful when working with vectors.

MATRICES OF TYPE m/N

A matrix of the type m/n over scalars K is a rectangular
schema A with m rows and n columns

ailr a2 a1n
az1 a22 QA2n
A= . .
\aml Am?2 amn/

where a;; € Kforall 1 <4 <m, 1 < j < n. For a matrix
A with elements a;; we also use the notation A = (a;;).

The vector (a1, @2, ---,ai;,) € K" is called the (i-
th) row of the matrix A, i 1,...,m. The vector
(@15,a2j,...,am;j) € K™ is called the (j-th) column of the
matrix A, j=1,...,n.

Matrices of the type 1/n or n/1 are actually just vectors
in K™,

All general matrices can be understood as vectors in
77 K™, we just consider all the columns.
Y l In particular, matrix addition and matrix
multiplication by scalars is defined:

A—i—B:(aij—i—bij), a-A:(a-aij)
where A = (a;;), B = (b;;), a € K.
The matrix —A4 = (faij) is called the additive inverse
to the matrix A and the matrix

0

0
0=1: :

0 0

is called the zero matrix. By considering matrices as mn-
dimensional vectors, we obtain the following:

Proposition. The formulas for A+ B, a-A, — A, 0define the
operations of addition and multiplication by scalars for the
set of all matrices of the type m/n, which satisfy properties
(V1)—(V4).

2.1.3. Matrices and equations. Many mathematical mod-
els are based on systems of linear equations. Matrices are
useful for the description of such systems. In order to see
this, let us introduce the notion of scalar product of two vec-

tors, assigning to the vectors (aq,...,a,) and (x1,...,2,)
their product
(a1,...,an) (z1,...,2,) = @121 + - -+ + apzy.

This means, we multiply the corresponding coordinates of the
vectors and sum the results.
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1 2 3| 2
~ 0 1 111

0 0 1|-1
First we subtracted from the second row twice the first row,
and to the third row we added three times the first row. Then
we added the second row to the third row and multiplied the

second row by —1/4. Now we restore the system of equations

1 + 2z + 33 = 2,

To + x3 = 1,

r3 = —1.
We see immediately that x5 = —1. If we substitute 3 = —1
into the equation xo + 3 = 1, we obtain o = 2. Then
by substituting 3 = —1, 9 = 2 into the first equation, we
obtain r; = 1. O

Systems of linear equations can be written in matrix no-
tation. But is it an advantage, when we can solve the systems
even without speaking about matrices? Yes it is, we can han-
dle the equations more conceptually. We can easily decide
how many solutions a system has. It is much more efficient
in computer assisted computations. Thus we shall get famil-
iar with various operations which can be done with matrices.
As we have seen in previous examples, equivalent operations
with linear equations correspond to elementary row (column)
transformations. Further we have seen that transforming a ma-
trix into a row echelon form, a process called Gaussian elim-
ination, see 2.1.7), solves the system very easily. We demon-
strate this on some examples, where we will see that a system

can have infinitely many solutions or no solution at all.

2.A.3. Solve a system of linear equations

2:61 — o + 31’3 = 07
3.’E1 + 16%2 + 71’3 = 0,
3.%'1 - 5(E2 + 41’3 = 0,
—Txy + Txo2 + —10z3 = O.

Solution. Because the right-hand side of all equations is zero
(such a case is called a homogeneous system) we work with
the matrix of the system only. We find the solution by trans-
forming the matrix into the row echelon form using elemen-
tary row transformations. These correspond to changing the
order of equations, multiplying an equation by a non-zero
number and addition of multiples of equations. Furthermore,
we can always go back and forth between the matrix notation

and the original system notation with variables x;. We obtain:

2 -1 3 2 -1 3
3 16 7 0 35/2 5/2
3 =5 4 [T o —72 —1/2
-7 7 —10 0 7/2 1/2

Every system of m linear equations in n variables

1121 + a12%2 + -+ - + A1p Ty = by

a21%1 + A22%2 + -+ + A2p Ty, = b

am1T1 + AmaZ2 + - + AppTn = bm

can be seen as a constraint on values of m scalar products
with one unknown vector (x1,...,%,) (called the vector of
variables, or vector variable) and the known vectors of coor-
dinates (a;1, ..., @in).

The vector of variables can be also seen as a column in a
matrix of the type n/1, and similarly the values
b1, ...,b, can be seen as a vector u, and that is
= <} again a single column of the matrix of the type
n/1. Our system of equations can then be formally written as
A -z = u as follows:

a11 A1n Z1 b1

Am1 Amn Tn bm
where the left-hand side is interpreted as m scalar products of
the individual rows of the matrix (giving rise to a column vec-
tor) with the vector variable z, whose values are prescribed
by the equations. That means that the identity of the -th co-

ordinates corresponds to the original ¢-th equation

a;1T1 + -+ QinTp = b

and the notation A - x = u gives the original system of equa-
tions.

2.1.4. Matrix product. In the plane, that is, for vectors of
dimension two, we developed a matrix calculus.
‘We noticed that it is effective to work with (see
1.5.4). Now we generalize such a calculus and
we develop all the tools we know already from
the plane case to deal with higher dimensions n.

It is possible to define matrix multiplication only when
the dimensions of the rows and columns allow it, that is, when
the scalar product is defined for them as before:

MATRIX PRODUCT

For any matrix A = (a;;) of the type m/n and any matrix
B = (bjx) of the type n/q over the ring of scalars K we
define their product C' = A - B = (c¢;1;) as a matrix of the
type m/q with the elements

Cik = Zaijbjk, for arbitrary 1 < i <m,1 <k <gq.
=1

That is, the element c;;, of the product is exactly the scalar
product of the ¢-th row of the matrix on the left and of the
k-th column of the matrix on the right. For instance we have

G 2)(CGon)=G1i)

74



CHAPTER 2. ELEMENTARY LINEAR ALGEBRA

From there we see that the second, third and fourth equations

are multiples of the equation 7z + x3 = 0. We continue:

2.1.5. Square matrices. If there is the same number of rows
and columns in the matrix, we speak of a square matrix. The
number of rows or columns is then called the dimension of

2 -1 3 2 -1 3 the matrix. The matrix

0 35/2 5/2 0 35/2 5/2

0 —7/2 —1/2 0 0 0 1 0

0 7/2  1/2 0 0 0 E=0y)={: -
9 _1 3 0 ... 1
0o 7 1 is called the unit matrix, or alternatively, the identity matrix.

~ 0o 0 O ’ The numbers d;; defined in such a way are also called the Kro-

0 0 0 necker delta. When we restrict ourselves to square matrices

Considered as equations, the last two are redundant, and we
are left with just

2.231

+ 0,
+ 0

We substitute for the variable x3 a parameter ¢ € R and ex-

31‘3
Z3

T2
71}2

over K of fixed dimension n, the matrix product is defined
for any two matrices. That is, there is the well defined multi-
plication operation there. Its properties are similar to that of
scalars:

Proposmon On the set of all square matrices of dimension
_ nover an arbitrary ring of scalars K, the multi-

press % plication operation is defined with the following
1 1 1 11 AR =" properties of rings (see 1.1.5):
xo=——ax3=—2-t a x1 == (22— 3x3)=——1t. o o°
7 7 2 7 (01) Multiplication is associative.
If we now substitute t = —7s, we obtain the result in a simple (O3) The unit matrix E = (0;;) is the unit element for multi-
form plication.

(z1, T2, x3) = (11s, 5, =7s), seER.

The whole system has infinitely many solutions. |

2.A.4. Find all solutions of the system of linear equations

(04) Multiplication and addition is distributive.

In general, neither the property (02) nor (Ol) are true. There-
Jore, the square matrices for n > 1 do not form an integral
domain, and consequently they cannot be a (commutative or
non-commutative) field.

3z + 3z3 — bxry = 8§, Proor. Associativity of multiplication — (O1): Since scalars

Ty — Ty + x3 — x4 = =2, are associative, distributive and commutative, we can com-

—2x4 xe + 4dxz — 2xz¢4 = 0, pute for any three matrices A = (a;;) of typem/n, B = (b;i)
201 + a9 — w13 — x4 = —3. of type n/p and C' = (cy) of type p/q:

Solution. The corresponding extended matrix of the system

is

B= (Za,;j.bjk>, C = (Zk:bjk-ckl>,

3 0 3 -5|-8

1 -1 1 —1|-2 (A-B)-C= Z Z“w ir)er) = (O aibjecri),
-2 -1 4 =210 3.k

2 1 -1 —-1]|-3

By changing the order of rows (equations) we obtain

Za” Zbgmz = (> aisbjrenm).
Gk

1 -1 1 -=1]-=2 Note that while computing, we relied on the fact that it does
2 1 -1 —-1|-3 not matter in which order are we performing the sums and
-2 -1 4 =210 ’ products, that is, we were relying on the properties of scalars.
3 0 3 —-5]|-8 We can easily see that multiplication by a unit matrix has
which we transform into the row echelon form: the property of a unit element:
1 -1 1 -1] -2 1 -1 1 —1] -2 1 0 --- 0
(2 1 -1 -1 —3>N<o 3 -3 1 1) aip o Aim 0 1 --- 0
-2 -1 4 -2 o0 0 -3 6 —4|—4 .
3 0 3 —5| -8 0 3 0 -2 -2 A-E= : 1 =A
-2 -1 1 -1 am1 Amm \0 0

1 -1 1 -1 -2
0 3 -3 1 1
0 0 3 -3 -3 | =3 .
0 0 3 -3 0

The system has thus infinitely many solutions, because we

1
1 > ~ < 0 3
-3 0 0 3
-3 0 0 0 0

and similarly from the left,
E-A=A.

have three equations in four variables. These three equa-

It remains to prove the distributivity of multiplication and

tions have exactly one solution for any choice for the variable addition. Again using the distributivity of scalars we can
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x4 € R, Thus for x4 we substitute the parameter £ € R and

go back from the matrix notation to the system of equations

g — X2 + x3 — t = =2
3rs — 3r3 + t = 1,
3l‘3 - 3t = -3

From the last equation we have x3 = ¢t — 1. Substituting for
x3 into the second equation gives
1

3I2—3t+3+t:1, thatis, I2:§(2t—2)
Finally, using the first equation, we have
1 1
xl—g(2t—2)+t—1—t:—2, 4. $1:§(2t—5).

The set of solutions can be written (for £ = 3s) in the form
{(zl, Zo, T3, Tg) = (25 — %, 2s — %, 3s—1, 35) ,S € ]R}

We return to the extended matrix of the system and trans-
form it further by using the row transformations in order to
have (still in the row echelon form) the first non-zero number
of every row (the so-called pivor) equal to one and that all the

other numbers in the column of the pivot are zero. We have

1 -1 1 —1|-2

0 3 -3 1|1

0 0 3 -3|-3

0 0 0 0] o0

1 -1 1 —1]-2

0 1 -1 1/3[1/3
“lo o 1 —-1]-1

0 0 0 010

1 =10 0 ~1

0 1 0 —2/3|-2/3
“lo o 1 -1 | -1

0 0 0 0 0

1 00 —2/3|-5/3

01 0 —2/3|-2/3
“1o0oo0 1 -1 1 ’

000 0 0

because first we have multiplied the second and the third row
by 1/3, then we have added the third row to the second and its
(—1)-multiple to the first. Finally we have added the second
row to the first. From the last matrix we easily obtain the

result
T —5/3 2/3
I3 -1 1
T4 0 1

Free variables are those whose columns do not contain any
pivot (in our case there is no pivot in the fourth column, that

is, the fourth variable is free and we use it as a parameter). O

easily calculate for matrices A = (a;;) of the type m/n,
B = (bjx) of the type n/p, C = (c;i) of the type n/p,
D = (dj) of the type p/q

A-(B+C)= (Z aij(bjk + Cjk))
= ((Zaijbjk) -+ (Zaijcjk,)> =A-B+A-C

(B+C)-D= (Z(bjk + cjk)dkl)

= ((Zk:bjkdij) + (;Cjkdkl)> =B-D+C-D.

As we have seen in 1.5.4, two matrices of dimension two
do not necessarily commute: for example

(60)(0 o)~ o
(o) (b 0)= (6 o)

This gives us immediately a counterexample to the validity of
(02) and (OI). For matrices of type 1/1 both axioms clearly
hold, because the scalars itself have them. For matrices of
greater dimension the counterexamples can be obtained sim-
ilarly. Simply place the counterexamples for dimension 2 in
their left upper corner, and select the rest to be zero. (Verify
this on your own!) 0

In the proof we have actually worked with matrices of
more general types, thus we have proved the properties in
greater generality:

ASSOCIATIVITY AND DISTRIBUTIVITY

Matrix multiplication is associative and distributive, that is,
A-(B-C)=(A-B)-C
A-(B+C)=A-B+A-C,

whenever are all the given operations defined. The unit ma-
trix is a unit element for multiplication (both from the right
and from the left).

2.1.6. Inverse matrices. With scalars we can do the follow-

X _ ing: from the equation a - © = b with a fixed

,___ invertible a we can express x = a~! - b for any

- b. We would like to be able to do this for matri-
= ces too. So we need to solve the problem — how

to tell that such a matrix exists, and if so, how to compute it?
We say that B is the inverse of A if

A-B=B-A=FE.

Then we write B = A~!. From the definition it is clear that
both matrices must be square and of the same dimension n.
A matrix which has an inverse is called an invertible matrix
or a regular square matrix.
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2,A.5. Determine the solutions of the system of equations

3$1
x1
—2IL‘1
2%1

— 29
—  I9
+ X2

_|_
+
+

3.133
Zs3
4.”L'3
T3

51)4
Tq
2%4
Ty

8,
727
0,
-3.

Solution. Note that the system of equations in this exercise
differs from the system of equations in the previous exercise
only in the value 8 (instead of —8) on the right-hand side. If
we do the same row transformations as in the previous exer-

cise, we obtain

3 0 3 -5]|8 1 -1 1 -—1] -2
1 -1 1 —1] -2 2 1 -1 -1|-3
2 -1 4 2|07 |l-2 -1 4 -—=2|o0
2 1 -1 -1|-3 3 0 3 -5 8
1 -1 1 -—1]-2 1 -1 1 -—1]|-2
0 3 -3 1|1 0 3 -3 1|1
~“1o o 3 -3|-3]"{o o 3 -3|-3]"
0 0 3 -3 13 0 0 0 0|16

where the last operation was subtracting the third row from
the fourth. From the fourth equation 0 = 16 follows that the
system has no solutions. Let us emphasize than whenever we
obtain an equation of the form 0 = « for some a # 0 (that
is, zero row on the left side and non-zero number after the
vertical bar) when doing the row transformation, the system
has no solutions. O

You can find more exercises for systems of systems of
linear equations on the page 127

Now we are going to manipulate with matrices to get

more familiar with their properties.

2.A.6. Matrix multiplication. Note that, in order to be able

to multiply two matrices, the necessary
N3, and sufficient condition is that the first
matrix has the same number of columns

as the number of rows of the second matrix. The number of
rows of the resulting matrix is then given by the number of
rows of the first matrix, the number of columns then equals

the number of columns of the second matrix.
12\ (1 -1\ _ (5 1
Dl 3) (e 1)\ 4)
.. L -1\ (1 2\ _(2 -1
D ls -1 3)"\1 7)

1 -1 2 1
iii) G _21 i’) 1 1 -2 -3
3.2 1 0

(12 7T 1 =5
“\3 05 4)
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In the subsequent paragraphs we derive (among other
things) that B is actually the inverse of A whenever just one
of the above required equations holds. The other is then a
consequence.

We easily check that if A=! and B! exist, then there
also is the inverse of the product A - B

6} (A-B)'t=p"'.A""

Indeed, because of the associativity of matrix multiplication
proved a while ago, we have

(B'-AHY.(A-B=B"'- (A1 A).B=F
(A-B)-(B'-AY=A4-(B-B')-A'=E

Because we can calculate with matrices similarly as with
scalars (they are just a little more complicated),
%~/ the existence of an inverse matrix can really help
=/ us with the solution of systems of linear equa-

s tions: if we express a system of n equations for
n unknowns as a matrix product
ai aim 1 b1
A-x= : =)=
am1 Amm Tm bm

and when the inverse of the matrix A exists, then we can mul-
tiply from the left by A~ to obtain

AV u=A"1Y A z=E-z=uz,

that is, A~! - w is the desired solution.

On the other hand, expanding the condition A-A~! = E
for unknown scalars in the matrix A~ gives us n systems of
linear equations for the same matrix on the left and different
vectors on the right. Thus we should think about methods for
solutions of the systems of linear equations.

2.1.7. Equivalent operations with matrices. Let us gain
some practical insight into the relation between systems of
equations and their matrices. Clearly, searching for the in-
verse can be more complicated than finding the direct solu-
tion to the system of equations. But note that whenever we
have to solve more systems of equations with the same ma-
trix A but with different right sides v, then yielding A~* can
be really beneficial for us.

From the point of view of solving systems of equations

= A - x = w, it is natural to consider the matri-

1 ces A and vectors u equivalent whenever they
R ) : :
3 Sﬁ“‘\ give a system of equations with the same solu-
&£.=2 tion set. Let us think about possible operations
which would simplify the matrix A such that obtaining the
solution is easier.

We begin with simple manipulations of rows of equations
which do not influence the solution, and similar modifications
of the right-hand side vector. If we are able to change a square
matrix into the unit matrix, then the right-hand side vector
is a solution of the original system. If some of the rows of
the system vanish during the course of manipulations (that is,
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1 3 1 1 7
iv) [-2 2 -1 3=17]).
3.1 —4 -3 18

1 -2 3

v 3 =313 2 1|=( 7 1),
1 -1 —4
2

vi) (12 =2)-[1]=(-2).
3

Remark. Parts i) and ii) in the previous exercise show that
multiplication of square matrices is not commutative in gen-
eral. In part iii) we see that if we can multiply two rectangular

matrices, then it is possible only in one of the orders. In parts

iv) and v) note that (A - B)T = BT . AT,
2.A7. Let
4 0 -5 7 2 0
A=|2 7 15), B=[o o 3
2 7 13 0 —19 /13

Can the matrix A be transformed into B using only elemen-
tary row transformations (we say then that such matrices are

row equivalent)?

Solution. Both matrices are row equivalent with the three-
dimensional identity matrix. It is easy to see that row equiv-
alence on the set of all matrices of given type is indeed an
equivalence relation. Thus the matrices A and B are row

equivalent. ]

2.A.8. Find a matrix B for which the matrix C = B - A is

in row echelon form, where

3 -1 3 2
5 =3 2 3
A= 1 -3 -5 0
7 =5 1 4

Solution. If we multiply the matrix A successively from the
left by elementary matrices (consider what elementary row
transformations does it correspond to)

001 0 1 000
010 0 -5 1 0 0
Ex=11 000" =10 01 ol
00 0 1 0 0 0 1
1 000 1 000
0 1 0 0 0 1 0 0
Bs=1_3 01 0|l Ba=|0o 01 ol
0 0 0 1 -70 0 1
1 0 00 1 0 0 0
o 13 0 0 (o 1 00
Bs=1o 0o 1 0| ®=|o =21 ol
0 0 0 1 0 0 0 1
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they become zero), then we get some direct information about
the solution. Our simple operations are:

ELEMENTARY ROW TRANSFORMATIONS

e interchanging two rows,

o multiplication of any given row by a non-zero scalat,

e adding another row to any given row.
These operations are called elementary row transformations.
It is clear that the corresponding operations at the level of the
equations in the system do not change the set of the solutions
whenever our ring of coordinates is an integral domain.

Analogically, elementary column transformations of ma-
trices are

e interchanging two columns
o multiplication of any given column by a non-zero scalar,
e adding another column to any given column.

These do not preserve the solution set, since they change the
variables themselves.

Systematlcally we can use elementary row transforma-

7 . tions for subsequent elimination of variables.

" This gives an algorithm which is usually called
A == the Gaussian elimination method. Henceforth,
we shall assume that our scalars come from a integral domain
(e.g. integers are allowed, but not say Z4).

GAUSSIAN ELIMINATION OF VARIABLES

Proposition. Any non-zero matrix over an arbitrary inte-
gral domain of scalars K can be transformed, using finitely
many elementary row transformations, into row echelon
Jorm:
e For each j, if a;; = 0 for all columns k = 1,...
then ai; = 0 forall k > 1,
e if a;_y); is the first non-zero element at the (i — 1)-st
row, then a;; = 0.

' Jr

Proor. The matrix in row echelon form looks like

0
0

alj
0

A1m

a2k a2m

The matrix can (but does not have to) end with some zero
rows. In order to transform an arbitrary matrix, we can use
a simple algorithm, which will bring us, row by row, to the
resulting echelon form:
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1 0 0 0 1 0 00
1o 1 00 0o 14 0 0
E=1o o 1 0] B=lo 0o 1 o]
0 -4 0 1 0 0 0 1
we obtain
0 0 1 0
0 1/12 -5/12 0
B = EsErEsEs EiEsEx By = | | _/2/3 1//3 ol
0 —4/3 -1/3 1
1 -3 -5 0
o- |0 1 9/4 1/4
0 0 0 0
0O 0 0 0

]

2.A9. Complex numbers as matrices. Consider the set of
,a,b e R} Note that

C'is closed under addltlon and matrix multiplica-

tion, and further show that the mapping f : C' —

C, _ab 2 — a + bi satisfies f(M + N) =
F(M)+f(N)and f(M-N) = f(M)-f(N) (on the left-hand

sides of the equations we have addition and multiplication of

matrices, on the right-hand sides we have addition and mul-
tiplication of complex numbers). Thus the set C' along with
multiplication and addition can be seen as the field C of com-
plex numbers. The mapping f is called an isomorphism (of

fields). Thus for instance we have
3 5\ (8 =9\ _ (69 13
-5 3 9 8 ) \-13 69/’
which corresponds to (3 + 5¢) - (8 — 9i) = 69 — 134,
2.A.10. Solve the equations for matrices
1 3 1 2 1 3 1 2
(3 8>'X1_(3 4)’ XQ'(?, 8)_(3 4)'
Solution. Clearly the unknowns X; and X5 must be matrices

of the type 2 X 2 (in order for the products to be defined and
that the result is a matrix of the type 2 x 2). Set

(a1 b1 _ (a2 b2
osoa) ()

and multiply out the matrices in the first given equation. We

bi+3d;\ (1 2
3y +8dy) ~ \3 4)°

obtain

a1 + 3c1
3a1 + 8¢y
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GAUSSIAN ELIMINATION ALGORITHM

(1) By a possible interchange of rows we can obtain a ma-
trix where the first row has a non-zero element in the
first non-zero column. Let that column be column 5. In
other words, ai; # 0, but a;q = 0 for all 4, and all g,
1<qg<y.

Foreach? = 2, . . ., multiply the first row by the element
a;j, multiply i-th row by the element a;; and subtract,
to obtain a;; = 0 on the ¢-th row.

By repeated application of the steps (1) and (2), always
for the not-yet-echelon part of rows and columns in the
matrix we reach, after a finite number of steps, the final
form of the matrix.

@)

3

This algorithm clearly stops after a finite number of steps
and provides the proof of the proposition. (]

The given algorithm is really the usual elimination of
variables used in the systems of linear equations.

In a completely analogous manner we define the column
echelon form of matrices and considering column elementary
transformations instead the row ones, we obtain an algorithm
for transforming matrices into the column echelon form.

Remark. Although we could formulate the Gaussian elim-

. ination for general scalars from any ring, this does

not make much sense in view of solving equations.

A’ Clearly having divisors of zero among the scalars, we

A might get zeros during the procedure and lose infor-

mation this way. Think carefully about the differences be-
tween the choices K = Z, K = R and possibly Zy or Zj.

On the other hand, if we are dealing with fields of scalars,
we can always arrive at a row echelon form where the non-
zero entries on the “diagonal” are ones. This is done by ap-
plying the appropriate scalar multiplication to each individ-
val row. However, this is not possible in general — think for
instance of the integers Z.

2.1.8. Matrix of elementary row transformations. Let us
now restrict ourselves to fields of scalars K, that is, every non-
zero scalar has an inverse.

Note that elementary row or column transformations cor-
respond respectively to multiplication from the left or right
by the following matrices (only the differences from the unit
matrix are indicated):

(1) Interchanging the i-th and j-th row (column)

< i-th row

<— j-th row
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that is,
aq + 3(31 = 1,
by + 3d = 2,
+ 801 = 3,
3b, + 8 = 4.

By adding a (—3)-multiple of the first equation with the third

3@1

equation we obtain ¢; = 0 and then a; = 1. Analogously, by
adding a (—3)-multiple of the second equation to the fourth

equation we obtain d; = 2 and then b; = —4. Thus we have

1 —4
X = (0 ) ) .
We can find the values aq, by, co, do by a different ap-
proach. If A is a square matrix, we write A~! to denote its
inverse, so that A- A~ = A=!. A = E, the unit matrix) It

is easy to check that

a B\ 1 d —b
c d T ad—be\-c a )’

which holds for any numbers a, b, ¢, d € R provided ad—bc #

0. (This is easy to derive; it also directly follows from formula
1in2.2.11). We calculate

1 3\" (-8 3
3 8 S\3 1)
Multiplying the given equations by this matrix from the right
1 2 -8 3
o= ()
-2 1
X2 = (—12 5) '
2.A.11. Solve the matrix equation

(=6

2.A.12. Computing the inverse matrix. Compute

gives

and thus

the inverse of the matrices

4 3 2 1 0 1
A=|5 6 3], B=|3 3 4
3 5 2 2 2 3
Then determine the matrix (AT . B) -

Solution. We find the inverse by the following method: write
next to each other the matrix A and the unit matrix. Then
use elementary row transformations so that the sub-matrix A
changes into the unit matrix. This will change the original
unit sub-matrix to A=, We obtain

(2) Multiplication of the i-th row (column) by the scalar a:

a < i-th row

(3) To row ¢, add row j (columns):

i-th row and j-th column — 1 1

This trivial observation is actually very important, since
the product of invertible matrices is invertible
. ) (recall 2.1.6(1)) and all elementary transforma-
tions over a field of scalars are invertible (the
definition of the elementary transformation it-
self ensures that inverse transformations are of the same type
and it is easy to determine the corresponding matrix).

Thus, the Gaussian elimination algorithm tells us, that
for an arbitrary matrix A, we can obtain its equivalent row
echelon form A’ = P - A by multiplying with a suitable in-
vertible matrix P = Py, - - - P; from the left (that is, sequential
multiplication with k matrices of the elementary row transfor-
mations).

If we apply the same elimination procedure for the
columns, we can transform any matrix B into its column
echelon form B’ by multiplying it from the right by a suitable
invertible matrix @ = Q)1 - - - Q. If we start with the matrix
B = A’ in row echelon form, this procedure eliminates only
the still non-zero elements out of the diagonal of the matrix
and in the end we can transform the remaining elements to
be units. Thus we have verified a very important result which
we will use many times in the future:

2.1.9. Theorem. For every matrix A of the type m/n over a
field of scalars K, there exist square invertible matrices P and
Q of dimensions m and n, respectively, such that the matrix
P - Ais in row echelon form and

1 ... 00 ... 0
P-A-Q=]0 10 0
0 00 0

The number of the ones in the diagonal is independent of the
particular choice of P and Q.

Proor. We already have proved everything but the last
sentence. We shall see this last claim below in 2.1.11. (]
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4 3 2|11 00

5 6 3,0 1 0

35 2|0 01

1 -2 0|1 0 -1
~[5 6 3|01 O

3 5 20 0 1

1 -2 01 0 -1
~[ 0 16 3|-5 1 5

0 11 2|-3 0 4

1 -2 01 0 -1
~( 0 5 1]-2 1 1

0 11 2|-3 0 4

1 -2 0| 1 0 -1
~1 0 5 1|]-2 1 1

0o 1 01 -2 2

100} 3 -4 3
~( 0 0 1]-7 11 -9

01 0|1 -2 2

10 0] 3 -4 3
~1 01 0] 1 -2 2

0 0 1|-7 11 -9

In the first step we subtracted from the first row the third
row, in the second step we added a (—5)-multiple of the first to
the second row and added a (—3)-multiple of the first row to
the third row, in the third step we subtracted from the second
row the third row, in the fourth step we added a (—2)-multiple
of the second row to the third row, in the fifth step we added a
( —

2-multiple of the third row to the first row, and in the last step

5)-multiple of the third row to the second row and added a

we changed the second and the third row. We have obtained

the result
3 —4 3
Al =11 -2 2
-7 11 -9

Note that when calculating the matrix A~! we did not
have to cope with fractions thanks to the suitably chosen row
transformations. Although we could carry on similarly when
doing the next exercise, that is, B!, we will rather do the

more obvious row transformations. We have

10 1|1 0 O
33 4(0 1 0 |~
2 2 3|0 01
101} 1 0O
0 3 1,-3 10 ]~
0 2 1/-2 01
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2.1.10. Algorithm for computing inverse matrices. In the
previous paragraphs we almost obtained the com-
plete algorithm for computing the inverse matrix.
Using the simple modification below, we find ei-

D= ther that the inverse does not exist, or we compute
the inverse. Keep in mind that we are still working over a field
of scalars.

Equivalent row transformations of a square matrix A of
dimension n leads to an invertible matrix P’ such that P’ - A
is in row echelon form. If A has an inverse, then there exists
also the inverse of P’ - A. But if the last row of P’ - A is zero,
then the last row of P’ - A - B is also zero for any matrix B of
dimension n. Thus, the existence of a zero row in the result
of (row) Gaussian elimination excludes the existence of A~1.

Assume now that A~! exists. As we have just seen, the
row echelon form of A will have exclusively non-zero rows
only, In particular, all diagonal elements of P’- A are non-zero.
But now, we can employ row elimination by the elementary
row transformation from the bottom-right corner backwards
and also transform the diagonal elements to be units. In this
way, we obtain the unit matrix E. Summarizing, we find an-
other invertible matrix P” such that for P = P” - P’ we have
P-A=FE

Now observe that we could clearly work with columns
instead of row transformation and thus, under the assumption
of the existence of A1, we would find a matrix Q such that
A - @) = E. From this we see immediately that

P=P-E=P-(A-Q)=(P-4)-Q=E-Q=Q.
That is, we have found the inverse matrix
At=P=Q

for the matrix A. Notice that at the point of finding the matrix
P with the property P - A = E, we do not have to do any fur-
ther computation, since we have already obtained the inverse
matrix.

In practice, we can work as follows:

COMPUTING THE INVERSE MATRIX

Write the unit matrix E to the right of the matrix A, produc-
ing an augmented matrix (A, F). Transform the augmented
matrix using the elementary row transformations to row ech-
elon form. This produces an augmented matrix (PA, PE),
where P is invertible, and P A is in row echelon form. By
the above, either PA = E, in which case A is invertible and
P = PE = A~!, or PA has a row of zeros, in which case
we conclude that the inverse matrix for A does not exist.

2.1.11. Linear dependence and rank. In the previous
practical algorithms dealing with matrices
1 . we worked all the time with row and column
“T\J—.z_j\f additions and scalar multiplications, seeing
them as vectors.
Such operations are called linear combinations. We shall
return to such operations in an abstract sense later on in 2.3.1.
But it will be useful to understand their core meaning right
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1 0 1 1 0 0
03 1]-3 1 0|~
0 0 1/3| 0 -2/3 1
10 1] 1 0 O
01 Lj-1 L+ o0 |~
i S
00 3]0 1
10 0] 1 2 =3
01 0|-1 1 -1 |~
00 f]0 =21
1001 2 -3
01 0/-1 1 -1,
00 1|0 -2 3
that is,
1 2 -3
Blt=|-1 1 -1
0o -2 3
Using the identity

(UTB) =) (4

and the knowledge of the inverse matrices computed before,

we obtain
) 1 2 -3 3 1 =7
(AT"-B) =[-1 1 -1 -4 -2 11
0 -2 3 3 2 =9
—-14 -9 42
=|-10 -5 27
17 10 —-49
|
2.A.13. Compute the inverse of the matrix
1 0 =2
A=12 -2 1
5 —5 2
O
2.A.14. Calculate A% and A~3, if
2 -1 1
A=1-1 2 -1
0 O 1 O
2.A.15. Compute the inverse of the matrix
8§ 3 0 0 0
5 2 0 00
00 -1 0 O
00 0 1 2
00 0 3 5
O

2.A.16. Determine whether there exists an inverse of the ma-

trix
1 1 1 1
1 1 -1 1
= 1 -1 1 -1
1 -1 -1 1

If yes, then compute C 1.
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now. A linear combination of rows of a matrix A = (a;;) of
type m/n is understood as an expression of the form

ClUs; =+« -+ Crllyy,

where ¢; are scalars, u; = (aj1,...,a;,) are rows of the
matrix A. Similarly, we can consider linear combinations of
columns by replacing the above rows u; by the columns
(alj, cee ,amj).

If the zero row can be written as a linear combination of
some given rows with at least one non-zero scalar coeflicient,
we say that these rows are linearly dependent. In the alterna-
tive case, that is, when the only possibility of obtaining the
zero row is to select all the scalars c; equal to zero, the rows
are called linearly independent.

Analogously, we define linearly dependent and linearly
independent columns.

The previous results about the Gaussian elimination can
1. be now interpreted as follows: the number of non-
» zero “steps” in the row (column) echelon form is

= &' always equal to the number of linearly independent

A rows (columns) of the matrix. Let E}, be the matrix
from the theorem 2.1.9 with h ones on the diagonals and as-
sume that by two different row transformation procedures into
the echelon form we obtain two different &’ < h. But then ac-
cording to our algorithm there are invertible matrices P, P’,
@, and @’ such that

EIL:P'A'Qa Eh,’:P/'A'QI-

In particular, £, = P- P'~'. E},,-Q'~' - Q and so there are
invertible matrices P” and Q" such that

P// . Eh/ . QI/ — Eh.

In the product P” - Ej: there will be more zero rows in the
bottom part of the echelon matrix than we see in £} and we
must be able to reach E}, using only elementary column trans-
formations. This is clearly not possible, because the zero rows
remain zero there.

Therefore the number of ones in the matrix P- A - @ in
theorem 2.1.9 is independent of the choice of our elimination
procedure and it is always equal to the number of linearly in-
dependent rows in A, which must be the same as the number
of linearly independent columns in A. This number is called
the rank of the matrix and we denote it by h(A). We have the
following theorem:

Theorem. Let A be a matrix of type m/n over a field of
scalars K. The matrix A has the same number h(A) of lin-
early independent rows as linearly independent columns. In
particular, the rank is always at most the minimum of the di-
mensions of the matrix A.

The algorithm for computing the inverse matrix also says
that a square matrix A of dimension m has an inverse if and
only if its rank equals m.
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O
2.A.17. Compute A~!

(a) A= (_17 ;), while ¢ is the imaginary unit

1 -5 -3
b A=|-1 5 4
-1 6 2

O

2.A.18. Find the inverse to the n X n matrix (n > 1)

2—n 1 1 1
1 2—n 1
1 2—n 1
1 1 1 2—n

2, 3, 4), which is

easy to compute with the known algorithm, and then guess

Solution. You can try for small n (n

the general form.

01 1 1
1 0 1 1
A7l = 1 11 0
n—1
Co 1
11 1 0

|

We have already encountered systems of linear equations

at the beginning of the chapter. Now we will deal with them in
more detail. We use the inverse matrix to assist in computing
the solution to the system of linear equations. Note that we do
the same computation as before. To express the variables is
the same as to bring the matrix of the system with equivalent
transformation to the identity matrix and that is the same as
to multiply the matrix of the system with the inverse matrix.

2.A.19. Participants of a trip. There were 45 participants
of atwo-day bus trip. On the first day, the fee for a watchtower
visit was €30 for an adult, €16 for a child and €24 for a senior.
The total fee for the first day was €1 116. On the second day,
the fee for a bus with a palace and botanical garden tour was
€40 for an adult, €24 for a child and €34 for a senior. The
total fee for the second day was €1 542. How many adults,

children and seniors were there among the participants?
Solution. Introduce the variables

x for the ,,number of adults*;

y for the ,,number of children;
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2.1.12, Matrices as mappings. Similarly to the way we

worked with matrices in the geometry of the plane (see 1.5.7),

we can interpret every matrix A of the type m/n as a mapping
A: K" K™ ax+— A-x.

By the distributivity of matrix multiplication, it is clear how

the linear combinations of vectors are mapped using such

mappings:

A -(az+by)=a(A-z)+b(A y).

Straight from the definition we see, by the associativity of
multiplication, that composition of mappings corresponds to
matrix multiplication in given order. Thus invertible matrices
of dimension n correspond to bijective mappings A : K" —
K"™.

Remark From this point of view, the theorem 2.1.9 is very
interesting. We can see it as follows: the rank
>'__of the matrix determines how large is the image
~~ of the whole K™ under this mapping. In fact, if
2 A = P- Ej - Q where the matrix Ey, has k ones
asin 2.1.9, then the invertible () first bijectively “shuffles” the
n-dimensional vectors in K™, the matrix E}, then “copies” the
first k£ coordinates and completes them with the remaining
m — k zeros.
This “k-dimensional” image then cannot be enlarged by
multiplying with P. Multiplying by P can only bijectively
reshuffle the coordinates.

2.1.13. Back to linear equations. We shall return to the no-

s tions of dimension, linear independence and so
on in the third part of this chapter. But we should
notice now what our results say about the solu-
= tions of the systems of linear equations.

If we consider the matrix of the system of equations and
add to it the column of the required results, we speak about the
extended matrix of the system. The above Gaussian elimina-
tion approach corresponds to the sequential variable elimina-
tion in the equations and the deletion of the linearly dependent
equations (these are simply consequences of other equations).

Thus we have derived complete information about the
size of the set of solutions of the system of linear equations,
based on the rank of the matrix of the system. If we are left
with more non-zero rows in the row echelon form of the ex-
tended matrix than in the original matrix of the system, then
there cannot be a solution (simply, we cannot obtain the given
vector value with the corresponding linear mapping). If the
rank of both matrices is the same, then the backwards elimi-
nation provides exactly as many free parameters as the differ-
ence between the number of variables n and the rank h(A).
In particular, there will be exactly one solution if and only if
the matrix is invertible.

All this will be stated explicitely in terms of abstract vec-
tor spaces in the important Kronecker-Capelli theorem, see
2.3.5.
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z for the ,number of seniors*;

There were 45 participants, therefore

T 4+ y + 2z = 45

The fees for the first and second days respectively imply that

1116,
1542.

30 + 16y + 24z =
40 + 24y + 34z =

We write the system of three linear equations in the matrix

notation as

1 1 1 x 45
30 16 24 y|=[1116
40 24 34 z 1542
We compute
11 1\ " 16 5 -4
30 16 24 =—-1 30 3 -3
40 24 34 —40 -8 7
Hence the solution is
T 1 16 5 —4 45
y| = 6 30 3 -3 1116
z —40 -8 7 1542
132 22
=5 2 |1=112],
66 11

expressed in words, there were 22 adults, 12 children and 11
Seniors. (|

The latter approach is particularly efficient if we have to
solve several systems with the same matrix on the left hand
side but different values on the right hand side.

But what if the matrix of the system is not invertible?
Then we cannot use the inverse matrix for solving the system.
Such a system cannot have a single solution. As the reader
may have noticed above, a system of linear equations either
has no solution, has one solution or has infinitely many solu-
tions, depending on one or more free parameters (for instance,
it cannot have exactly two solutions). We should have also no-
ticed when dealing with equations with two variables in the
previous section, that the space of the solutions is either a vec-
tor space (in the case when the right-hand side of the system is
zero, we speak of a homogeneous system of linear equations)
or an affine space, see 4.1.1 (in the case when the right-hand
side of at least one of the equations is non-zero, we speak of
a non-homogeneous system of linear equations).

We can recognize all the possibilities from the rank of
the matrices, i.e. the number of nonzero rows left in the row-

echelon form.

2. Determinants

In the fifth part of the first chapter, we introduced the
~ scalar function det on square matrices of di-
mension 2 over the real numbers, called deter-
— _~ minant, see 1.5.5. We saw that the determinant
assigned a non-zero number to a matrix if and only the matrix
was invertible. We did not say it in exactly this way, but you
can check for yourself in previous paragraphs starting with
1.5.4 and formula 1.5.5(1).

We saw also that determinants were useful in another
way, see the paragraphs 1.5.10 and 1.5.11. There we showed
that the volume of the parallelepiped should be linearly de-
pendent on every two of the vectors defining it. It was useful
to require the change of the sign when changing the order of
these vectors. Because determinants (and only determinants)
have these properties, up to a constant scalar multiple, we con-
cluded that it was determining the volume. Now we will see
that we can proceed similarly for every finite dimension.

We work again with arbitrary scalars K and matrices over
these scalars. Our results about determinants will thus hold
for all commutative rings, notably also for integer matrices or
matrices over any residue classes.

2.2.1. Definition of the determinant. Recall that the bijec-
tive mapping from a set X to itself is called a permutation of
the set X, see 1.3.3. If X = {1,2,...,n}, the permutation
can be written by putting the resulting ordering into a table:

The element x € X is called a fixed point of the permutation
o if o(x) = x. If there exist exactly two distinct elements
x,y € X such that o(z) = y while all other elements z € X
are fixed points, then the permutation o is called a transposi-
tion, and we denote it by (x,y). Of course, then o(y) = «
holds for such a transformation.

For dimension 2, the formula for a determinant was sim-
ple — take all possible products of two elements,
___ one from every column and every row of the ma-
trix, give them a sign such that interchanging
two columns leads to the change of the sign of
the whole result, and sum all of them (that is, both):

A= (‘CL Z),detA:ad—bc.

Consider now square matrices A = (a;;) of dimension
n over K. The formula for the determinant of the matrix A is
also composed of all possible products from elements from
individual rows and columns, with properly chosen signs.

In dimension 3 we can guess the correct signs easily. The
product of the elements on the diagonal should be with posi-
tive sign and we want anti-symmetry when interchanging two
columns or rows. This gives the so called Sarrus rule:

84



CHAPTER 2.

ELEMENTARY LINEAR ALGEBRA

2.A.20. Determine the rank of the matrix

1 -3 0 1
1 -2 2 -4
A= 1 -1 0 1
-2 -1 1 =2

Then determine the number of solutions of the system of lin-

ear equations

r1 + T + 3 — 2x4 = 4,
73I1 - 2172 — I3 - XTq = 5,
+ 2x9 + ry = 1,
xr1 — 4dxe + x3 — 234 = 3
Determine also all solutions of the system
r1 + w2 + 13 — 24 = 0,
—3.131 — 21‘2 — I3 — T4 = 0,
+ 2x9 + zy = 0,
xr, — 41’2 + x3 - 21’4 = 0
and of the system
rr — 3332 = 1,
Ty — 2x9 4+ 223 = —4,
T - To = 1,
721’1 Tro + r3 = —2.

Solution. Transforming the matrix to the row-echelon form,
we check that the rank is four. (The rank cannot exceed the
number of rows or columns). The first of the three given sys-
tem is given by the extended matrix

1 1 1 -24
-3 -2 -1 -—-115
0 2 0 1 |1
1 -4 1 =213

But the left-hand side is exactly A7 and thus we can get the
column-echelon form the same way as before. In particular,
the columns of the matrix are linearly indepent and the rank
is maximal, i.e. four again. Therefore there exists a matrix

(47)"

1 . .
and the system has a unique solution

- (4,5,1,3)7

(x1, T2, 3, 24)" = (AT)il

The second of the systems has the same left-hand side
(given by the matrix AT) as the first. Because the numbers
on the right-hand side of the equations in the system do not
influence the number of solutions and because every homo-
geneous system has a zero solution, the only solution of the

second system is given by

(wlv X2, T3, LL‘4) - (0,0,0,0) .
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SARRUS RULE

. iz 413 (11022033 + A13021032 + (12023031
a1 Aa22 G23| =

—@13G22G31 — (11023032 — A12021033
az1 azz ass

The general definition can be formulated via a sum over
all permutations:

DEFINITION OF DETERMINANT

The determinant of the matrix A is a scalar det A =
defined by the relation

[41= Y sen(@)atoq) - azo) -
ocEX,

4]

Ano(n)

where Y, is the set of all possible permutations over
{1,...,n} and the symbol sgn for a permutation o, called
the parity of o, will be described below. Each of the
expressions

Sgn(o)alo—(l) cA25(2) "

is called a term in the determinant | A|.

Ano(n)

2.2.2, Parity of permutation. How should we define the

3 sign of a permutation? We say that a pair of
elements a,b € X = {1,...,n} forms an
inversion in the permutation o, if a < b and
o(a) > o(b). A permutation o is called even
or odd if it contains an even or odd number of inversions,
respectively.

Thus, the parity sgno of the permutation o is
(—1)numberofinversions and we denote it by sgn(c). This
amounts to our definition of sign for computing determinant.
But we should like to know how to calculate the parity. The
following theorem reveals that the Sarrus rule really defines
the determinant in dimension 3.

Theorem. Over the set X = {1,2,...,n} there are exactly
n! distinct permutations. These can be ordered in a sequence
such that every two consecutive permutations differ in exactly
one transposition. Every transposition changes parity.

For any chosen permutation o there is such a sequence
starting with o.

Proor. Forn = 1 or n = 2, the claim is trivial. We
prove the theorem by induction on the size n of the set X.

Assume that the claim holds for all sets with n — 1 el-
ements and consider a permutation o (1) = aq,...,0(n) =
an. According to the induction assumption, all the permuta-
tions that end with a,, can be obtained in a sequence, where ev-
ery two consecutive permutations differ in one transposition.
There are (n — 1)! such permutations. In order to proceed
further, we select the last of them, and use the transposition
of o(n) = a, with some element a; which has not been at
the last position yet. Once again, we form a sequence of all
permutations that end with a;. After doing this procedure n-
times, we obtain n(n — 1)! = n! distinct permutations — that
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The third system is given by the extended matrix

1 -3 01
1 -2 2|4
1 -1 0| 1 ’
-2 -1 1| -2

which is the matrix A (only the last column is given after the
vertical bar). If we try to simplify the matrix into the row

echelon form, we must obtain a row

(O 0 O‘a), where a # 0.

‘We know, that the column on the right-hand side is not a linear
combination of the columns on the left-hand side (the rank of
the matrix is 4). This system thus has no solution. ]

For further examples see 2.H.7

B. Permutations and determinants

In order to be able to define the key object of the matrix

calculus, the determinant, we must deal

g with permutations (bijections of a finite

set) and their parities.

We shall use the two-row notation for permutations (see
2.2.1). In the first row we list all elements of the given set, and
every column then corresponds to a pair (preimage, image) in
the given permutation. Because a permutation is a bijection,
the second row is indeed a permutation (ordering) of the first

row, in accordance with the definition from combinatorics.

2.B.1. Decompose the permutation

(1 2 3 45 6 7 8 9
7316 7895 4 2
into a product of transpositions.

Solution. We first decompose the permutation into a product
of independent cycles. Start with the first element 1 and look
on the second row to see what the image of 1 is. It is 3. Now
look on the column that starts with 3, and see that the image of
3 is 6, and so on. Continue until we again reach the starting
element 1. We obtain the following sequence of elements,

which map to each other under the given permutation:
1—=3—=6—9—2— 1.

The mapping which maps elements in such a manner is called
a cycle (see 2.2.3) which we denote by (1, 3,6,9,2).

Now choose any element not contained in the obtained
cycle. With the same procedure as with 1, we obtain the cycle
(4,7,5,8). From the method is clear that the result does not
depend on the first obtained cycle. Each element from the set
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is, all permutations on n elements. The resulting sequence
satisfies the condition.

Note that the last sentence of the theorem does not seem
to be useful in practice. But it is a very important part for
proving the theorem by induction over the size of X.

It remains to prove the part of the theorem about parities.
Consider the ordering

an),

containing 7 inversions. Then in the ordering

(alv"'aaivai-‘rl?"'?

(al,..., an)

there are either » — 1 or 4 1 inversions. Every transposition
(ai,a;) is obtainable by doing (j —4)+ (j —i—1) = 2(j —
1)—1 transpositions of neighbouring elements. Therefore any
transposition changes the parity. Also, we already know that
all permutations can be obtained by applying transpositions.

O

Ait1,Agy .y

We found that applying a transposition changes the parity
of a permutation and any ordering of numbers {1,2,...,n}
can be obtained through transposing of neighbouring ele-
ments. Therefore we have proven

Corollary. On every finite set X = {1,...,n} with n ele-
ments, n > 1, there are exactly %n! even permutations, and
%n! odd permutations.

If we compose two permutations, it means first doing all
transpositions forming the first permutation and then all the
transpositions forming the second one. Therefore for any two
permutations 0,1 : X — X we have

sen(o o) = sgn(o) - sgn(n)
and also
sgn(o™!) = sgn(o).

2.2.3. Decomposing permutations into cycles. A good tool
for practical work with permutations is the cycle decomposi-
tion, which is also a good exercise on the concept of equiva-
lence.

CyYCLES

A permutation o over the set X = {1,...,n} is called a
cycle of length k, if we can find elements aq,...,a; € X,
2 <k <mnsuchthato(a;) = a;41,i=1,...,k — 1, while
o(ax) = a1, and other elements in X are fixed-points of o.
Cycles of length two are transpositions.

Every permutation is a composition of cycles. Cycles of
even length have parity —1, cycles of odd length have parity
1.

Proor. The last claim has yet to be proved. Fix a per-

mutation o and define a relation R such that
: ) two elements x, y € X are R-related if and
only if o*(x) = y for some iteration tecZ
of the permutation o (notice o~ ! means the in-
verse bljectlon to o). Clearly, it is an equivalence relation
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({1,2,...,9}) appears in one of the obtained cycles, we can

thus write:
oc=(1,3,6,9,2)0(4,7,5,8),
or
o=(4,7,5,8)0(1,3,6,9,2),
since independent cycles commute. For cycles the decompo-

sition into transpositions is simple, we have
(1,3,6,9,2) = (1,3) 0 (3,6) 0 (6,9) 0 (9,2) =
(1,3)(3,6)(6,9)(9,2).
Thus we obtain:

o = (1,3)(3,6)(6,9)(9,2)(4,7)(7,5)(5,8).
O

Remark. The minimal number of transpositions in the de-
composition of a permutation is obtained by carrying out ex-
actly the procedure as above. That is, first decompose the per-
mutation into the independent cycles, then the cycles canoni-
cally into the transpositions. Thus the found decomposition is
the decomposition into the minimal number of transpositions.
Note also that the operation o is a composition of map-

pings, thus it is necessary to carry out the composition “back-
wards”, as we are used to in composition of mappings. Ap-
plying the given composition of transposition for instance on
the element two we can successively write:

[(1,3)(3,6)(6,9)(9,2))(2) =

[(1,3)(3,6)(6,9)]((9,2)(2)) =

[(1,3)(3,6)(6,9)](9) = [(1,3)(3,6)](6) = (1,3)(3) = 1,
thus the mapping indeed maps the element 2 on the element 1
(it is actually just the cycle (1,3,6,9,2) written in a different
way). When writing a composition of permutations, we often
omit the sign “o” and speak of the product of permutations.

When writing the cycle we write only the elements on

which the cycle (that is, the mapping) nontrivially acts (that is,
the element is mapped to some other element). Fixed-points
of the cycle are not listed. Thus it is necessary to know on
which set do we consider the given cycle (mostly it will be
clear from the context). The cycle ¢ = (4,7,5, 8) from the
previous example is thus a mapping (permutation), which, in
the two-row notation, looks like this

1 2 3 45 6 7 8 9
1 23 7 8 6 5 4 9)°

If the original permutation has some fixed-points they do
not appear in the cycle decomposition.
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(check it carefully!). Because X is a finite set, for some ¢ it
must be that of(z) = x. If we pick one equivalence class
{z,0(z),...,0° " Y(x)} C X and define other elements to
be fixed-points, we obtain a cycle. Evidently, the original per-
mutation X is then the composition of all these cycles for in-
dividual equivalence classes and it does not matter in which
order we compose the cycles.

For determining the parity we just have to note that cy-
cles of even length can be written as a composition of an odd
number of transposition, therefore their parity is —1. Anal-
ogously, cycle of odd length can be obtained using an even
number of transpositions and therefore it has parity 1. (]

2.2.4. Expansion of determinant. Our understanding of
the permutations allows to find the expansion
method of computing the determinants. The
simple idea is to collect the terms containing an

- element in a fixed row in the determinant sum
and to add these contributions along the row.

Consider a matrix A = (a;;) and let us look at all terms
in |A| containing the element a;;. By the very definition,
these terms correspond to all permutations o with (1) = 1.
Thus, the contribution of all these terms to |A] is a11A411,
where A;p; is the determinant of the matrix obtained from A
by omitting the first row and the first column.

Similarly, we can take any other fixed element a;; in A
and look for the contribution of all terms containing it. Again,
we could write A;; for the determinant of the matrix obtained
from A by omitting the i-th row and the j-th column, and the
latter contribution must have terms like in a;; A;;, but we have
to be very careful about the signs. While the actual terms
of |A| would be sgn 0a;ja14(1)..." ... ano(n) Where the hat
denotes the omition of the i-th entry and o (i) = j, the sig-
natures of the permutations in A;;, with the 7 and j omitted
might be different.

In order to compare it to the previous case s = 1, j = 1,
we can change the initial ordering of the elements in the do-
main and target of the permutations o. Clearly, : — 1 changes
on the domain and j — 1 changes on the target do the job
(by “bubbling” the index in question to the first position by
consecutive swaps of neighboring positions).

Thus, the sign correction is (—1)**7~2 and we have to
adjust the value of A;; as in the following algorithm, which
is the simplest version of the more general Laplace expansion
formula, see 2.2.9 below. The readers not sure about the de-
tails of our argumentation here may wait for the detailed proof
in the more general situation.
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Note further that the notation (1,2,3) gives the same
cycle as for instance (2,3,1) or (3,1,2). But the notation

(1,3,2) is a different cycle.

2.B.2. Determine the parity of the following permutations:

(123456789
7= \3 8 9 5 4 2

- )

Solution. According to our definition (see 2.2.2) we compute

6
3
6

O R
ot ot

the number of inversions of o: we go sequentially through the
second row in the two-row notation and for every number &
there we count the number of numbers which are smaller than
k and are located after k in the second row. Itis not hard to see
that the number of inversions in a given permutation is exactly
the number of pairs “larger before smaller” in the second row.
For o we compute (stepping through the second row): after
three there is one and two, thus we add 2; after one there is
no smaller number and we add 0; after six there is five, four
and two, thus we add 4, similarly for seven, eight and nine, for
five we add 2, for four we add 1 and for two nothing. Thus we
have 17 inversions in total and thus the permutation is odd.

But we can compute the parity of o otherwise. The the-
orem 2.2.2 implies that the parity of a permutation is given
by the parity of the number of transpositions in its decompo-
sition (this number is, unlike the number of transposition in
an arbitrary decomposition, always the same)

The previous exercise gives us

= (1,3)(3,6)(6,9)(9,2)(4,7)(7,5)(5, 8). There are seven

transpositions in the decomposition, thus the permutation is
indeed odd.

Alternatively we can decompose 7 into either a product
of three transpositions (using the cycle decomposition):

= (1,2,4)(3,6) = (1,2)(2

or we count the number of inversions in 7;: 14+2+3+0+1 = 7.

,4)(3,6),

Either way we find that 7 is an odd permutation.

In general, as soon as the decomposition to cycles is
ready, we may just count the lengths of the cycles, since each
cycle including k elements is clearly built of £ — 1 transposi-
tions and thus contributes (—1)*~! to the parity. O

For the following exercises, recall how to compute deter-
minants of the type 2 X 2 (aj1 - ass — a12 - ag;) and 3 X 3

(Sarrus rule), see 2.2.1.
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EXPANSION OF DETERMINANT

The algebraic complement A;; of the element a;; in a matrix
A is the (—1)**J-multiple of the determinant of the matrix
obtained from A by omiting the i-th row and the j-th col-
ummn.

Fixing the ¢-th row or j-th column,

n n
Al =) aiAi, Al =) aidy.
j=1 i=1

The latter formulae correspond to splitting the determi-
nant sum to parts containg terms with the individual elements
in the row or column.

For example, an easy application derives the Sarrus rule
from the formula in dimension 2 now.

2.2.5. Simple properties. Knowing the properties of per-

< mutations and their parities from previous para-
2~/ graphs allows us to derive quickly basic proper-
ties of determinants.

% For every matrix A = (a;;) of the type
m / n over scalars from K we define the rranspose of A as
the matrix AT = (d! ;) with elements a}; = a;;. The matrix
AT is of the type n/m.

A square matrix A with the property A = AT is called
symmetric. If A= — AT then A is called antisymmetric.

SIMPLE PROPERTIES OF DETERMINANTS

Theorem. Every square matrix A =

lowing conditions:

(1) |AT] = |A].

(2) If one of the rows contains only zero elements from K,
then |A| = 0.

(3) If a matrix B was obtained from A by transposing two
rows, then |A| = —|B|.

(4) If a matrix B was obtained from A by multiplying one
row by a scalar a € K then |B| = a|A|.

(5) Ifall elements of the k-th row in A are of the form ay; =
ckj+br; and all remaining rows in the matrices A, B =
(bij), C = (ci;) are identical, then |A| = |B| + |C].

(6) A determinant | A| does not change if we add to any row
of A a linear combination of other rows.

(aij) satisfies the fol-

Proor. (1) The terms of determinants |A| and |A”|
7 f7 are in bijective correspondence, where the
l term sgn(0)ai,(1) - @20(2) * * * Ano(n) COI-
- responds the following A7 term (notice it
does not depend on the order of scalars)

Sgn(a)%un *g(2)2° " @
= SgH(U)ala—l(l) TQ25-1(2) "t

and we have to ensure that this member has the correct sign.
But the parities of o and o~ ! are the same, and so this is really
a term in the determinant | A”'| and the first claim is proved.

o(n)n —

Ano=1(n)>
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2.B.3. Compute the determinant of the following matrices

1 2 3 1 11
(;f>,1—12, 1 00
3 2 2 —2 0 1

O

Solution. The determinant of the first matrixis 1-1 —2-2 =
—-3.

As for the second matrix, according to the Sarrus rule we
just have to enumerate the expression
1-(—=1)-242-2-3+3-1-2—3:(—1)-3—1-2.2—1-22 = 17.

We can also bring the matrix into the row echelon form
and then multiply the numbers on the diagonal but we have to
remember that a multiplication of a row with a scalar changes
the determinant of the matrix by the same multiple. Inter-

changing two rows changes the sign of the determinant of the

matrix.
1 2 31 1 2 3 Lo o2
1 -1 2(=f0 =3 —l=—.2-0 12 4
3 2 2 lo -4 -7 “* 3|0 —12 —2n
L2
— - 12 4
0 0 -17

We finish with an upper triangular matrix. The determi-
nant of such matrices is the product of the numbers on the
main diagonal. So the result is — 75 (1 - 12 (=17)) = 17.

We can see, that using the Sarrus rule is quicker.

For the third matrix we have
1-0-14+1-0-141-0-(—2)—1-0-(—2)—1-1-1-1-0-0 = —1.

]

It is important to realize, that Sarrus rule can be used
for matrices 3 x 3 only. For higher dimension matrices you
can either bring the matrix to the row echelon form (where
you have to take in to account rules 2.2.5) or use the Laplace
expansion (see 2.2.9).

2.B.4. Compute the determinant of the matrix

O ==
=N W
DN = DN Ot
=N NN

Solution. We compute this in two ways. First, convert the
matrix to row echelon form. We can use already known ele-

mentary transformations,
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(2) This comes straight from the definition of determi-
nant, because all its terms contain exactly one member from
every row. Thus, if one of the rows is zero, all terms of the
determinant are also zero.

(3) The only change in the terms of | B| compared to | A|
is the addition of one transposition in all permutations, there-
fore all the signs will be reversed.

(4) This follows straight from the definition, because
terms of | B] are just terms of | A| multiplied by the scalar a.

(5) Inevery term of | A, there is exactly one element from
the k-th row of the matrix A. By the distributive law for mul-
tiplication and addition in K, the claim follows directly from
the definition of determinant.

(6) If there are two identical rows in A, then there are al-
ways two identical terms among all terms in the determinant,
up to the sign. Therefore in this case |A| = 0. Thus, by (5),
we can add any other row to the given row, without changing
the value of the determinant. In view of the claims (4) and
(5), we can in fact add a scalar multiple of any other row. [l

2.2.6. Computational corollaries. By the previous theo-
., Tem, we can use elementary row transfor-
EAy .. mations to bring any square matrix A into
_~ row echelon form, without changing the

i =il value of its determinant. We just have to
be careful and add only linear combinations of other rows to
a given one.

Thus let us look at the distribution of the elements in the
individual terms of a determinant | A| with dimension of A
equal to n > 1. There is just one term with all of its elements
on the diagonal. In all other terms, there must be elements
both above and below the diagonal (if we place one element
outside of the diagonal, we block two diagonal entries and
we leave only n — 2 diagonal positions for the other n — 1
elements).

Therefore, if the matrix A is in a row echelon form, then
every term of |A] is zero, except the term with exclusively
diagonal entries. This proves the following algorithm:

COMPUTING DETERMINANTS USING ELIMINATION

If A is in the row echelon form then
\A| = Q11+ @22 Apn-

The previous theorem gives an effective method for comput-
ing determinants using the Gauss elimination method, see
the paragraph 2.1.7.

Notice that the very same argumentation allows us to stop
the elimination having the first k£ columns in the requested
form and finding the determinant of the matrix B of dimen-
sion n—k in the right bottom corner of A in another way. The
result will then be |A| = a11 - ass ... akk - |B).

Let us note a nice corollary of the first claim of the pre-
vious theorem about the equality of the determinants of the
matrix and its transpose. It ensures that whenever we prove
some claim about determinants formulated in terms of rows
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Note, that we have interchanged the rows twice in the course
of computation.

The other way of computing the determinant is by cofac-
tor expansion along the first column (the one with the greatest

number (one) of zeroes). Successively we obtain

L35sl oy s
=11 1 2/—-1-1 1 2|+
112 1 2 1 1 21
01 2 1
3 5 6] ‘
1. 2 2 2 usmglhe;arruswle —2—2+6:2
1 2 1
O
2.B.5. Compute the determinant of the matrix
1 01 01
0 2 0 2 0
0 0 3 0 3
4 0 0 4 4
0 00 0 5

Solution. We notice, that the last (fifth) row contains four ze-
ros (as well as the second column). It is the most, we can find
in a row or a column in the matrix, thus it will be advanta-
geous to use Laplace theorem (2.3.10) and compute the de-
terminant via expasion along the fifth row or second column.

We present the expansion via fifth row:

Lo Lot 010 1 1101
020 20
2.0 20 0020
0030 3=0 —0-
100 4 4 030 3 030 3
00 0 0 3 00 4 4 40 4 4
100 1 1011 1010
o 02 20 o200 0202
000 3 0033 0030
4.0 4 4 400 4 400 4
0202 M L0
=5 =5-2-10 3 0| =120,
0030 10 4
400 4
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of the corresponding matrix, we immediately obtain an anal-
ogous claim in terms of the columns.

For instance, we can immediately formulate all the
claims (2)—(6) for linear combinations of columns.

As a useful (theoretical) illustration of this principle, we
shall derive the following formula for direct cal-
>* culation of solutions of systems of linear equa-
~ tions. For sake of simplicity, we shall work with
field of scalars now.

CRAMER RULE

Proposition. Consider the system of n linear equations for
n variables with matrix of the system A = (a;;) and the
column of values b = (by,...,by,). In matrix notation this
means we are solving the equation A - x = b.

If there exists the inverse | A| =1, then the individual com-
ponents of the unique solution x = (x1,...,x,) are given
as

z; = |Al| A7,
where the matrices A; arise from the matrix A of the system
by replacing the i-th column by the column b of values.

Proor. As we have already seen, working over field of
scalars the inverse of the matrix of the system exists if and
only if the system has a unique solution, and this in turn hap-
pens if and only if |A|~! exists. If we have such a solution
x, we can express the column b in the matrix A; by the corre-
sponding linear combination of the columns of the matrix A,
that is the values by, = ag1z1+- - -+ak,Tn- Then, by subtract-
ing the x,-multiples of all the other ¢-th columns from this -
th column in A;, we arrive at just the x;-multiple of the origi-
nal column of A. The number x; can thus be brought in front
of the determinant to obtain the equation |4;| = z; | A, and
thus |A;||A|~! = 2;]A||A|~! = x;, which is our claim. [

Notice also that the properties (3)—(5) from the previous
theorem say that the determinant, (considered as a mapping
which assigns a scalar to n vectors of dimension n), is an
antisymmetric mapping linear in every argument, exactly as
we required in analogy to the 2-dimensional case.

2.2.7. Further properties of the determinant. Later we
will see that, exactly as in the dimension 2, the
determinant of the matrix equals to the (oriented)
volume of the parallelepiped determined by the
= columns of the matrix. We shall also see that
considering the mapping x — A - x given by the square
matrix A on R” we can understand the determinant of this
matrix as expressing the ratio between the volume of the par-
allelepipeds given by the vectors x1, ...z, and their images
A-xl,...,A-xn.
Because the composition x — A-z — B-(A-z) of map-

pings corresponds to the matrix multiplication, the Cauchy
theorem below is easy to understand:
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where we have used the expansion along the second column
in the second step and computed the determinant of the 3 x 3
matrix directly using the Sarrus rule.

Another option is to try to expand the determinant along
several rows, exploiting vanishing of many sub-determinants
there. For example, we may use the last two rows. Clearly
there might be only two non-zero sub-determinants built from
this row there. Thus the entire determinant must be (notice
that choosing two lines and two columns always leads to the
plus sign in the definition of the algebraic complement, see
2.3.10)

01 0 1 0 1
‘gg‘-202+’3§020:
03 0 °l'lo o 3
=20-0+20-6 =120
O
2.B.6. Find all the values of a such that
L 0 a 1 1]_,
01 a 1 ’
0 0 0 —a

For complex a give either its algebraic or polar form.

Solution. We compute the determinant by expanding the first

row of the matrix:

S
D=1 ¢ —a-]1 a 1
01 a 1 00 —a
0 0 0 —a
Expand further using the last row:
o s a 1 20,2
D=q-(-a) 1 a’ = —a’(a” = 1).

We conclude that a* — a®> + 1 = 0. Substituting t = a?
we have t? — t + 1 with roots t; = # = cos(m/3) +
isin(r/3), t = =8 = cos(n/3) — isin(r/3) =
cos(—m/3) + isin(—n/3), from where we obtain four possi-
ble values for the parameter a: a1 = cos(7/6)+isin(w/6) =
V3/241/2, ay = cos(7n/6) +isin(Tn/6) = —/3/2—1i/2,
az = cos(—7/6) + isin(—7/6) = V3/2 —i/2, ay =
cos(57/6) + isin(57/6) = —/3/2 +i/2.
Alternatively, we can multiply by a? + 1 to obtain
a®+1=(*+1)(a* —a*+1)=0.

The equation a® =
a = cos @ + isin where ¢ = /6 + kw/3 = (2k + 1)7/6,
k=0,1,2,3,4,5. Of these, we must discard the two choices

—1 has six (complex) solutions given by

k =1, and k = 4, since these choices solve a2 + 1 = 0 and
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CAUCHY THEOREM

Theorem. Let A = (a;;), B = (bi;) be square matrices of
dimension n over the ring of scalars K. Then

|A- Bl = |A] - |B|.

In the next paragraphs, we derive this theorem in a purely
algebraic way, in particular because the previous argumenta-
tion based on geometrical intuition could hardly work for ar-
bitrary scalars. The basic tool is the determinant expansion
using one or more of the rows or columns which we have seen
in simplest case of single rows or columns in 2.2.4.

We will also need a little technical preparation. The
reader who is not fond of too much abstraction can skip these
paragraphs and note only the statement of the Laplace theo-
rem and its corollaries.

Notice also, the claims (2), (3) and (6) from the theorem
2.2.5 are easily deduced from the Cauchy theorem and the
representation of the elementary row transformations as mul-
tiplication by suitable matrices (cf. 2.1.8).

2.2.8. Minors of the matrix. When investigating matrices
7 = and their properties we often work only
Y I with parts of the matrices. Therefore we
need some new concepts.

SUBMATRICES AND MINORS

Let A = (a;;) be a matrix of the type m/n and let 1 <41 <
o <ip <m,1 < g1 < ... < J; < nbe fixed natural
numbers. Then the matrix

Qi g,

Qirjy Qivgo

M =

Qjpgy iy s @iy, 5,

of the type k/¢ is called a submatrix of the matrix A deter-
mined by the rows i1, ...,%; and columns j1,..., .. The
remaining (m — k) rows and (n — ¢) columns determine a
matrix M* of the type (m—£k)/(n—¢), which is called com-

plementary submatrix to M in A. When k = ¢ we call the
determinant | M| the subdeterminant or minor of the order
k of the matrix A. If m = n and k = /¢, then M* is also
a square matrix and |[M*| is called the minor complement
to | M|, or complementary minor of the submatrix M in the

matrix A. The scalar

(= 1)t Hintivtie | pre|

is then called the algebraic complement of the minor |M|.

The submatrices formed by the first £ rows and columns
are called leading principal submatrices, and their determi-
nants are called leading principal minors of the matrix A. If
we choose k sequential rows and columns starting with the -
th row, we speak of principal matrices and principal minors.
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not a* — a? + 1 = 0. We conclude that a = cos ¢ + isin ¢
where ¢ = (2k + 1)7/6, k = 0,2, 3, or 5. O

2.B.7. Vandermonde determinant. Prove the formula for
the Vandermonde determinant, that is, the deter-

minant of the Vandermonde matrix:

1 1 ... 1
T o ... oy
2 2 2
vV, =| %1 r5 ... Ty | — H (z; — i),
: : 1<i<j<n
o my L an !
where z1,...,2z, € R and on the right-hand side of the

equation there is the product of all terms x; — x; where j > 1.

Solution. We proceed by induction on nn. From technical rea-
sons we work with the transposed Vandermonde matrix (it has
the same determinant). By subtracting the first row from all

other rows and then expanding the first column we obtain

Vn(l,‘l,.]?g,...,l‘n)
1 1 x? x?%
0 wo—my 23—2? ... oftoap!
0 xp,—x1 22 —27 ... m%‘l—x?*ll
To—x1 wx3—a7 ... xb ot
- —1
T, —x1 22 —axF ... 2l Tl o2

If we take out z;4; — x; from the i-th row for

i€{1,2,...,n— 1}, we obtain

Vi(x1, o, xn) = (22 — 1) -+ (2, — 1)
2

n—2 n—j—2_j
1zt @ 2 j—o T T

Sy a7

|1 Ty + 1 =0 Tn

By subtracting from every column (starting with the last and

ending with the second) x;-multiple of the previous column,

we obtain
n—2 n—j—2_j
L @y +m 20 Ta 3
n—2 p—j-2.7
L an 42 > =0 Tn Ty
1 zo ... xSiQ
|1 T xﬁ_2|

Specially, when £k = ¢ = 1, m = n we call the corre-
sponding algebraic complementary minor the algebraic com-
plement A;; of the element a;; of the matrix A, which we met
already in 2.2.4.

2.2.9. Laplace determinant expansion. If the principal mi-

nor | M| of the matrix A is of the order k, then,
. ) directly from the definition of the determinant,
each of the individual k!(n — k)! terms in the
=~ product of |M| with its algebraic complement
is a term of |A.

In general, consider a square submatrix M, that is, a
square matrix given by the rows i; < 49 < .-+ < 7} and
columns j; < -+ < ji. Thenusing (i; — 1)+ -+ (i — k)
exchanges of neighbouring rows and (j; — 1) +- - -+ (jr, — k)
exchanges of neighbouring columns in A we can transform
this submatrix M into a principal submatrix and the comple-
mentary matrix gets transformed into its complementary ma-
trix.

The whole matrix A gets transformed into a matrix B
satisfying (cf. 2.2.5 and the definition of the determinant)
1B = (—1)*| A, where @ = Y5 _, (in +5jn)—2(1+- - - +k).
But (—1)® = (=1)% with 8 = 25 _, (in + jn). Therefore
we have checked:

A

Proposition. If A is a square matrix of dimension n and | M |
is its minor of the order k < n, then the product of any term
of | M| with any term of its algebraic complement is a term in
the determinant | A|.

This claim suggests that we could perhaps express the de-
terminant of the matrix by using some products of smaller de-
terminants. We see that | A| contains exactly n! distinct terms,
exactly one for each permutation. These terms are mutually
distinct as polynomials in the components of a general matrix
A. If we can show that there are exactly that many mutually
distinct expressions from the previous claim, we obtain the
determinant | A| as their sum.

It remains to show that the terms of the product | M|-| M*|
contain exactly n! distinct members from | A.

From the chosen k£ rows we can choose (2) minors
M and using the previous lemma each of the kl(n — k)!
terms in the products of |M| with their algebraic comple-
ments is a term in |A|. But for distinct choices of M we
can never obtain the same terms and the individual terms
in (—1)btFietittie 0| | M*] are also mutually
distinct. Therefore we have exactly the required number
k!(n — k)!(}) = n! of terms, and we have proved:

LAPLACE THEOREM

Theorem. Let A = (a;;) be a square matrix of dimension n
over arbitrary ring of scalars with k rows fixed. Then |A| is
asumofall () products (—1)+Fistivttit M| M|
of minors of the order k chosen among the fixed rows with
their algebraic complements.
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Therefore The Laplace theorem transforms the computation of | A|
into the computation of determinants of lower dimension.
Vil(zy, 29, ., 2p) This method of computation is called the Laplace expansion
— (wp— 1) (2n — 1) Vies (@ ) along the chosen rows (or columns). For instance, the expan-
R no ) sl e sion along the i-th row or the j-th column is:
n n
Al = Qi A = s A
Because it is clear that = ; e 7,:21 e
Vo(Tp_1,2Tn) = Tp — Tp_1, where A;; are the algebraic complements of the elements a;;
(that is, minors of order one), as deduced in 2.2.4 already.
it follows by induction that In practical computations, it is often efficient to combine
the Laplace expansion with a direct method of Gaussian elim-
Vi(z1, 20,0, 2p) = H (xj — x;). ination.
1<i<j<n

Note that the determinant is non-zero whenever the numbers ~ 2-2-10- Proof of the Cauchy theorem. The theorem is
@ based on a clever but elementary application of

>*, the Laplace theorem. We just use the Laplace

Remark. Another (more beautiful?) proof of the formulacan &g ,/p=-  expansion twice on a particular arrangement of
be found in 5.1.5. M7= a well chosen matrix.

Consider first the following matrix H of dimension 2n

(we are using the so-called block symbolics, that is, we write

Z1,...,Ty, are mutually distinct. 0

2.B.8. Find whether or not the matrix the matrix as if composed of the (sub)matrices A, B, and so
PAAN 3 2 -1 2 on)
i 4 1 2 —4 ail .. Q1 0 ... 0
-2 2 4 1 . . . .
i 2 3 -4 8 : 1 : :
’ g (A OY_lam o @m0 0
is invertible. “\-E B) | -1 0 bii ... bin
Solution. The matrix is invertible (that is, there is an in- : :
verse matrix) whenever we can transform it by elementary 0 -1 bnr o b
row transformations into the unit matrix. That is equivalent The Laplace expansion along the first n rows gives
for instance to the property that it has non-zero determinant. o Al B
That we can compute using the Laplace Theorem (2.3.10) by A = 14]- 15
expanding for instance the first row: Now in sequence, we add linear combinations of the first
n columns to the last n columns in order to obtain a matrix
32 —-1 2 1 92 _4 with zeros in the bottom right corner. We obtain
4 1 2 -4
=3-12 4 1
-2 2 4 1 3 4 8 aiiq ... Q1n C11 ... Cin
3 —4 8 :
2 —4 4 I —4 K an1 Apn Cnl Cnn
-2|1-2 4 1|+(-1)-|-2 2 1 = -1 0 0 0
2 -4 8 2 3 8 .
412 0 -1 0 0
-2-1-2 2 4
2 3 -4 The elements of the submatrix on the top right part must sat-
=3-90—-2-180+(—1)-110 — 2 (—100) = 0, isfy
Cij = @by + aioboj + - + ainbny,
that is, the given matrix is not invertible. O

that is, they are exactly the components of the product A - B

and |K| = |H|. The expansion of the last n columns gives us
2.B.9. Solve the system from 2.A.2 using the Cramer rule |K| = (—1)"(=1)1*+"+21| 4. B| = (—1)2»(+D .| 4. B| =

(see 2.2.6). |A - B|. This proves the Cauchy theorem.
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Solution. We just plug in the values to the rule:

2 2 3 1 2 3
-3 -3 -1 2 -3 -1
-3 1 2 -3 -3 2
Q’/‘lz :1’ 1’2: :2

1 2 3 1 2 3
2 -3 1 2 -3 1
-3 1 2 -3 1 2

1 2 2

2 -3 -3

-3 1 =3

T3 = = —1.

1 2 3

2 =31

-3 1 2

U

2.B.10. Find the algebraically adjoint matrix and the inverse

of the matrix

1 0 2 0
0 3 0 4
A= 5 0 6 0
0 7 0 8
Solution. The adjoint matrix is
Ay Ay Az A\ T
A* — Agp Agp Az Aoy
Aszr Azp Aszz Ay |
An Ay Az Ap

where A;; is the algebraic complement of the element a;; of
the matrix A, that is, the product of the number (—1)*7 and
the determinant of the matrix given by A without the i-th row

and j-th column. We have

30 4 00 4
A =10 6 0/ =-24, Ap=—15 6 0/=0,
70 8 00 8
0 3 4 0 3 0
Ai3=15 0 0/=20, A =-15 0 6 =0,
07 8 07 0
02 0 1 20
Ayy=—10 6 0/=0, Ap=1|5 6 0 =-32,
70 8 00 8
1 00 10 2
Ass=—15 0 0/=0, Asyy=1|5 0 6 =—28,
07 8 07 0
02 0 1 20
A; =13 0 4/=8,  Ap=-10 0 4/=-0,
70 8 00 8
100 10 2
A3 =10 3 4/=-4, Ay =-10 3 0/ =-0,
07 8 07 0
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2.2.11. Determinant and the inverse matrix. Assume first
58 that there is an inverse matrix of the matrix A,
;-\ thatis, A - A~! = E. Since the unit matrix
always satisfies | E| = 1, it follows that for every
invertible matrix its determinant is an invertible
scalar and by the Cauchy theorem we have [A~1| = |A| 1.

But we can say more, combining the Laplace and Cauchy
theorems.

INVERSE MATRIX DETERMINANT FORMULA

For any square matrix A = (a;;) of dimension n we define
a matrix A* = (aj;), where aj; = Aj; are algebraic com-
plements of the elements a;; in A. The matrix A* is called
the algebraically adjoint matrix of the matrix A.

Theorem. For every square matrix A over a ring of scalars
K we have that

(D

In particular,

AA* = A*A=|A| - E.

(i) A~ exists as a matrix over the ring of scalars K if and
only if |A| =1 exists in K.
(ii) If A=" exists, then A= = |A|7! - A%,

Proor. As already mentioned, the Cauchy theorem
G\ shows that the existence of A~' implies the
invertibility of |A| € K.

For an arbitrary square matrix A we can di-
y compute A - A* = (¢;;), where

n n
*
Cij = E aikakj = E aikAjk.
k=1 k=1

If ¢ = j, it is exactly the Laplace expansion of |A| along
the i-th row.

If i # j, then we may imaging we expand the determi-
nant alogn the j-th row, but plug in the values of the i-th row
instead of the a;;’s. This is the expansion of the determinant
of a matrix where the i-th and j-th row is the same, therefore
Cij =0.

This implies that A - A* = |A| - E, and we have proven
one of the equalities (1). In particular, if |A|~! exists, then
A (JA]1A%)

If | A| is an invertible scalar, we may repeat the previous
computation for A* - A, and we obtain (|A|71A*) - A = E.
Therefore our computation really gives the inverse matrix of
A, as claimed in the theorem. O

Notice that for fields of scalars we have already proved
that the right inverse of a matrix is automatically the left in-
verse and thus the inverse, too. Here we have obtained the
same result for all rings of scalars, together with a strong and
effective existence condition. On the other hand the exact for-
mula for the inverse has become rather theoretical with little
practical value.
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0 2 0 1 20
Apn=—13 0 4]=0, Ap=|0 0 4| =-16,
0 6 0 5 6 0
1 00 1 0 2
Apz=—10 3 4]=0, Au=|0 3 0|=-12.
5 0 0 5 0 6

By substitution we obtain
T

-24 0 20 0
0 =32 0 28
8 0 -4 0
0 16 0 -12

-24 0 8 0
0 =32 0 16
20 0 -4 0
0 28 0 -12

A* =

We compute the inverse matrix A~! from the relation
A~1 = |A|7! . A*. The determinant of the matrix A is (ex-
panding the first row) equal to

(1) g (2) 2 3 0 4 0 3 4
|A| = =0 6 0/+2|5 0 0]=16
5 0 60 7 0 8 0 7 8
0 7 0 8
By substitution, we obtain

-3/2 0 1/2 0
Al 0 -2 0 1

5/4 0 -1/4 0

0 7/4 0 —3/4
O

C. Vector spaces, examples

Typical properties of vector spaces (met already in the
5{{@\} plane or three dimensional space) can be ob-
i@ <, served in many other situations. We illustrate
! this by examples.

~
iy

2.C.1. Vector space — yes or no? Decide
whether following sets form a vector space over the field of

real numbers:

i) The set of solutions of the system

T1 + To + -+ + Tog + Tgg + T100 =100z,
Ty + T2+ -+ Tgg + Tgg =991,
T+ T2 + -+ Tos =98z,
T +IL‘2 :2.’E1.
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As a direct corollary of this theorem we can once again
prove the Cramer rule for solving the systems of linear equa-
tions, see 2.2.6. Really, for the solution of the system A-x = b
we just need to read in the equation

r=A"1 b= |A"tA b

the individual components of the expression A* - b as the
Laplace expansions of the determinant of the matrix A; which
arose through the exchange of the i-th column of A for the col-
umn b.

3. Vector spaces and linear mappings

2.3.1. Abstract vector spaces. Let us go back for a while to

- the systems of m linear equations of n variables
from 2.1.3 and further, let us assume that the sys-
tem is the homogeneous system A - z = 0, that

aii a1n T 0

Gm1 Amn Tn 0

By the distributivity of the matrix multiplication it is clear
that the sum of two solutions ¢ = (z1,...,2,) and y =
(Y1, - - -, Yn) satisfies

A-(z4+y)=A-2+A-y=0

and thus is also a solution. Similarly, a scalar multiple a -
is also a solution. The set of all solutions of a fixed system of
equations is therefore closed under vector addition and scalar
multiplication. These are the basic properties of vectors of di-
mension n in K", see 2.1.1. Now we have the vectors in the
solution space with n coordinates. The “dimension” of this
space is given by the difference of the number of variables and
the rank of the matrix A. Thus we can easily deal with the so-
lution of a system of 1000 equations in 1000 variables and
need only one or two free parameters. Thus the whole solu-
tion space will behave as a plane or a line, as we have already
seen in 1.5.3 at the page 30, although the vectors themselves
are given by so many components.

We go further. Already in paragraph 1.2.1 we have en-
countered an interesting example of a space of all solutions
of ahomogeneous linear difference equation of first order. All
solutions have been obtained from a single one by scalar mul-
tiplication and are also closed under addition and scalar mul-
tiples. These “vectors” of solutions are infinite sequences of
numbers, although we intuitively expect that the “dimension”
of the whole space of solutions should be one. We shall un-
derstand such phenomena with the help of a more general def-
inition of vector space and its dimension.
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ii) The set of solutions of the equation
z1+ @2+ -+ x100 =0
iii) The set of solutions of the equation
21 + 229 + 3z3 4+ -+ - + 1002190 = 1.

iv) The set of all real (or complex) sequences. (Real or com-
plex sequence is a mapping f : N — Ror f : N —» C.
The image of number 7 is then called n-th member of the
sequence, we usually denote it by lower index, say a,,.)

v) The set of solutions of a homogeneous difference equa-
tion.

vi) The set of solutions of a non-homogeneous difference
equation.

vii) {f : R = R|f(1) = f(2) =¢,c € R}

Solution. We check the properties of a vector space, see 2.3.1.
Actually all we have to do is to check whether the given sets
are closed to linear combinations of it’s elements. Then all

the axioms of a vector space are satisfied.

i) Yes. They all are real multiples of the vector
(1,1,1...,1). A sum of two multiples of the same
—_——

100 ones

vector is again a multiple of the vector. The reverse
vector is again a multiple of the vcetor and all other
axioms are trivially satisfied. By the way, the solution
space is thus a vector space of dimension 1, see also
2.3.7.

ii) Yes. It is a space of dimension 99 (corresponds to the
number of free parameters of the solution). In general
the set of all solutions of any system of homogeneous
linear equations forms a vector space.

iii) No. For instance, taking twice the solution 1 = 1, ; =

0,7 =2,...100 we do not obtain a solution. But the set

of solutions forms an affine space (see 4.1.1).

Yes.

forms a real (complex) vector space.

The set of all real or complex sequences clearly

Adding the se-
quences and scalar multiplication is defined term-wise,
where it is clearly the vector space of all real (complex)
numbers.

v) Yes. In order to show that the set of sequences which sat-
isfy given difference homogeneous equation it is enough
to show that it is closed under addition and real number
multiplication (as the set of all real sequences is a vector

space, as we know). Consider two sequences ()52,
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VECTOR SPACE DEFINITION

A vector space V over a field of scalars K is a set where we
define the operations
e addition, which satisfies the axioms (CG1)—~(CG4) from
the paragraph 1.1.1 on the page 5,
e scalar multiplication, for which the axioms (V1)—(V4)
from the paragraph 2.1.1 on the page 72 hold.

Recall our simple notational convention: scalars are usu-
ally denoted by letters from the beginning of the alphabet, that
is, a, b, c, ..., while for vectors we shall use letters from the
end, that is, u, v, w, x, y, 2. Usually, z, y, z will denote n-
tuples of scalars. For completeness, the letters from the cen-
tre of the alphabet, for instance i, j, k, £, will mostly denote
indices.

In order to gain some practice in the formal approach, we
check some simple properties of vectors.
These are trivial for n-tuples for scalars,
but not so evident for general vectors in
our new abstract sense.

2.3.2. Proposition. Let V' be a vector space over a field of
scalars K. Suppose a,b,a; € K, and u,v,u; € V. Then

(1) a-u=0ifand onlyifa =0 oru =0,

2) (1) u=—u,

(3 a-(u—v)=a-u—a-v,

(4) (a—b)-u=a-u—>-u,

(5) (Xisai) - (Z;n:1 uj) =i, Z;n:l aj - Uj.

Proor. We can expand

(V2)

(a+0)-u =a-u+0-u=a-u

which, according to the axiom (CG4), implies 0-u = 0. Now

ut (-1 P A (-1) u=0-u=0
and thus —u = (—1) - u. Further,

(V2,V3)
= "a

a-(u+(-1)-v) u+(—a)-v=a-u—a-v,

which proves (3). It follows that

(V2,V3)
= a -

(a—0b) u ut(=b)-u=a-u—>b-u

which proves (4). Property (5) follows using induction with
(V2) and (V1).

It remains to prove (1): a0 =a- (u —u) = a-u —
a - u = 0, which along with the first derived proposition in
this proof proves one implication. For the other implication,
we use an axiom for the field of scalars, and axiom (V4) for
vector spaces: if p-u = 0andp # 0, thenu = 1-u =
(pt-p)u=pt-0=0. O

2.3.3. Linear (in)dependence. In paragraph 2.1.11 we
worked with linear combinations of rows of a matrix. With
vectors we work analogously:
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and (y;)72 satisfying the given equation, that is,

AnTn+k + Ap—1Tn+k—1 + -+ aplr = 0

AnYntk + Qn_1Ynik—1 + - +aoyry = 0.

By adding these equations, we obtain

anp, (wnJrk + y7z+k) + Ap—1 (xn+k71 + yn+k71)

+ -+ ao(zk +yr) =0,

therefore also the sequence (z; + y;)32, satisfies the
given equation. Analogously, if the sequence ()32,
satisfies the given equation, then also (ux;)$2,, where

u € R.

Jj=0>

vi) No. The sum of two solutions of a non-homogeneous

equation

UnTn+k + Qn—1Tptk—1 + -+ a0TE =¢C

OnYn+k + An—1Ynt+k—1 + -+ aoyr =c,c € R — {O}

satisfies the equation
A (Tpgk + Yntk) + Cn1 (Tnsk—1 + Yntk—1)
4+ ag(wr + yr) = 2¢,
that is, it does not satisfy the original non-homogeneous
equation. But the set of solutions forms an affine space,
see 4.1.1.
vii) It is a vector space if and only if ¢ = 0. If we take two
functions f and g from the given set, then (f + g)(1) =
(f+9)(2) = f(1) +g(1) = 2c. Thusif f +gistobea
member of the given set, it must be that (f + g)(1) = ¢,
therefore 2¢ = ¢, hence ¢ = 0.

2.C.2. Find out, whether the set
Ur = {(z1,22,23) € R?; a1 | = |22 | = |23}
is a subspace of a vector space R3 and the set
Uy = {az® 4+ ¢; a,c € R}

a subspace of the space of polynomials of degree at most 2.

Solution. The only property we have to check is whether the
given subset is closed under linear combination of vectors in
it, that is if it forms a vector space. The set U; is not a vector

(sub)space. We can see that, for instance,

(1,1,1) + (—=1,1,1) = (0,2,2) ¢ Uy.
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LINEAR COMBINATION AND INDEPENDENCE

An expression of the form a; v1 + - -+ + ag vy is called a
linear combination of vectors vy, ...,v; € V.

A finite sequence of vectors vy, ..., vy is called lin-
early independent, if the only zero linear combination is
the one with all coefficients zero. That is, for any scalars
ai,...,ar €K, ayvi+---+ag vy = 0implies a; = az =

- = ap = 0. Itis clear that for an independent sequence
of vectors, all vectors are mutually distinct and nonzero.

The set of vectors M C V in a vector space V over K is
called linearly independent, if every finite k-tuple of vectors
V1, ...,V € M is linearly independent.

The set of vectors M is linearly dependent, if it is not
linearly independent.

A nonempty subset M of vectors in a vector space over a
field of scalars K is dependent if and only if one
of its vectors can be expressed as a finite linear
combination using other vectors in M. This fol-
- lows directly from the definition.

At least one of the coefficients in the corresponding linear
combination must be nonzero, and since we are over a field
of scalars, we can multiply whole combination by the inverse
of this nonzero coefficient and thus express its corresponding
vector as a linear combination of the others.

Every subset of a linearly independent set M is clearly
also linearly independent (we require the same conditions on
a smaller set of vectors). Similarly, we can see that M C V'
is linearly independent if and only if every finite subset of A/
is linearly independent.

2.3.4. Generators and subspaces. A subset M C V is

% called a vector subspace if it forms, together
with the restricted operations of addition and
— ~ scalar multiplication, a vector space. That is,
we require

Va,be K, Vo,w e M, a-v+b-w € M.

We investigate a couple of cases: The space of m-tuples
of scalars R™ with coordinate-wise addition and multiplica-
tion is a vector space over R, but also a vector space over Q.
For instance for m = 2, the vectors (1,0), (0,1) € R? are
linearly independent, because from

a-(1,0)+b-(0,1) = (0,0)

follows a = b = 0. Further, the vectors (1,0), (v/2,0) € R?
are linearly dependent over R, because v/2 - (1,0) = ( V2,0),
but over Q they are linearly independent! Over R these two
vectors “generate” a one-dimensional subspace, while over Q
the subspace is “larger”.

Polynomials with real coefficients and of degree at most
m form a vector space R,,,[x]. We can consider the polyno-
mials as mappings f : R — R and define the addition and
scalar multiplication like this: (f + ¢)(z) = f(z) + g(x),

(a-f)(x) =a- f(z).
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The set U, is a subspace (there is a clear identification with
R?), because

(ale + cl) + (ang + 62) = (a1 + as) 2% + (c1 + c2),

k- (az® +¢) = (ka) 2® + ke

for all numbers a1, c1, a2, co,a,c, k € R, 0

D. Linear (in)dependence

2.D.1.

Determine whether or not the vectors (1,2,3,1),
(1,0,—1,1), (2,1,—1,3) and (0,0, 3, 2) are lin-

early independent.

Solution. Because
12 3 1
10 -1 1
2 1 -1 3| 1070,
00 3 2
the given vectors are linearly independent. ]

2.D.2. Given arbitrary linearly independent vectors u, v, w,
z in a vector space V, decide whether or not in V' the vectors

u—2v, 3ut+w-—z2 u—4dvt+w+2z, 4v+8w+4z

are linearly independent.

Solution. Considered vectors are linearly independent if and
only if the vectors (1,—2,0,0), (3,0,1,—1), (1,—4,1,2),
(0,4, 8, 4) are linearly independent in R*, We have

1 -2 0 0
3 0 1 -1
1 -4 1 2| 73670
0 4 8 4
thus the vectors are linearly independent. ]
2.D.3. The vectors
(1,2,1), (-1,1,0), (0,1,1)

are linearly independent, and therefore together form a basis
of R3 (for basis it is important to give an order of the vectors).
Every three-dimensional vector is therefore some linear com-
bination of them. What linear combination corresponds to
the vector (1,1, 1), or equivalently, what are the coordinates

of the vector (1, 1, 1) in the basis formed by the given vectors?

Solution. We seek a, b, ¢ € R such that a(1,2,1) +
b(—1,1,0) + ¢(0,1,1) = (1,1,1). The equation must hold
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Polynomials of all degrees also form a vector space R[z]
(or Ro[z]) and R, [z] C R[] is a vector subspace for any
m < n < oco. Further examples of subspaces is given by all
even polynomials or all odd polynomials, that is, polynomials
satisfying f(—z) = £ f(x).

In complete analogy with polynomials, we can define a
vector space structure on a set of all mappings R — R. or
of all mappings M — V of an arbitrary fixed set M into the
vector space V.

Because the condition in the definition of subspace con-
. sists only of universal quantifiers, the intersection of

subspaces is still a subspace. We can see this also
—, A directly: Let W;, ¢ € I, be vector subspaces in V,

A a,beK, u,venNeW;. Thena-u+b-v e W, for
alli € I. Hencea-u+b-v € Nicf Wi,

It can be noted that the intersection of all subspaces
W C V that contain some given set of vectors M C V is
a subspace. It is called span M.

We say that a set M generates the subspace span M,
or that the elements of M are generators of the subspace
span M.

We formulate a few simple claims about subspace gener-
ation:

Proposition. For every nonempty set M C V, we have

(1) span M = {a;-ui+---+ap-up; k € N,a; € K u; €
M,j=1,...,k};

(2) M = span M if and only if M is a vector subspace;

(3) if N C M thenspan N C span M is a vector subspace;
the subspace span () generated by the empty subspace is
the trivial subspace {0} C V.

Proor. (1) The set of all linear combinations
ajuy + - -+ agug

on the right-hand side of (1) is clearly a vector subspace and
of course it contains M. On the other hand, each of the linear
combinations must be in span M and thus the first claim is
proved.

Claim (2) follows immediately from claim (1) and from
the definition of vector space. Analogously, (1) implies most
of the third claim.

Finally, the smallest possible vector subspace is {0}. No-
tice that the empty set is contained in every subspace and each
of them contains the vector 0. This proves the last claim. [J

Basis AND DIMENSION

A subset M C V is called a basis of the vector space V' if
span M = V and M is linearly independent.

A vector space with a finite basis is called finitely di-
mensional. The number of elements of the basis is called
the dimension of V.

If V does not have a finite basis, we say that V' is infin-
itely dimensional. We write dimV =k, k € Nor k = co.

In order to be satisfied with such a definition of dimen-
sion, we must know that different bases of the same space will
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in every coordinate, so we have a system of three linear equa-

tions in three variables:

a—>b =1

2a+b+c =1

at+c = 1,
whose solution gives us a = %, b= —%, c= %, thus we have

(1,1,1) = L (1,2,1) — L (—1,1,0)+1-(0,1,1),
2 2 2

that is, the coordinates of the vector (1,1,1) in the basis
((1,2,1),(~1,1,0),(0,1,1)) are (3, -3, 2). O

2.D.4. Determine all constants a € R such that the polyno-
mials ax?+x+2, —22% +az+3 and 2°+2x+a
are linearly dependent (in the vector space Ps[x]

of polynomials of one variable of degree at most

three over real numbers).

Solution. In the basis 1, z, 2 the coefficients of the given
vectors (polynomials) are (a, 1,2), (—2,a,3), (1,2, a). Poly-
nomials are linearly independent if and only if the matrix
whose columns are given by the coordinates of the vectors
has a rank lower than the number of the vectors. In this case
the rank must be two or less. In the case of a square matrix, a
rank less than the number of rows means that the determinant
is zero. The condition for a thus reads

-2
=0,

o = Q
IS NI

a
3

that is, a is a root of the polynomial a® — 6a — 5 = (a +

1)(a® — a — 5), thus there are 3 such constants a; = —1,
ag = 714_;/5, as = 71_;/5. D

2.D.5. Consider the complex numbers C as a real vector
space. Determine the coordinates of the number 2 4 ¢ in the

basis given by the roots of the polynomial 22 + z + 1.

Solution. Because roots of the given polynomial are —1 +
z@ and \/g , we have to determine the coordlnates
(a,b) of the vector 2 + i in the basis (—3 + z%, —1- 7@)
These real numbers a, b are uniquely determined by the con-

—1 -

dition
1 V3 IERVE]
(== 2 (== — i) =2 4.
a(2+22)+b(222) +i
By equating separately the real and the imaginary parts of the

equation, we obtain a system of two linear equations in two

always have the same number of elements. We shall show this
below. But we note immediately, that the trivial subspace is
generated by the empty set, which is an “empty” basis. Thus
it has dimension zero.

The lineatly independent vectors

e;=(0,...,1,...,0) e K",
(all zeros, but one value 1 at the ¢-th position) are the most

useful example of a basis in the vector space K. We call it
the standard basis of K™.

1=1,...,n

2.3. 5 Linear equations again. It is a good time now to re-

@ call the properties of systems of linear equation
**/ in terms of abstract vector spaces and their bases.
As we have already noted in the introduction to
this section (cf. 2.3.1), the set of all solutions of

the homogeneous system

A-xz=0

is a vector space. If A is a matrix with m rows and n columns,
and the rank of the matrix is k, then using the row echelon
transformation (see 2.1.7) to solve the system, we find that
the dimension of the space of all solutions is exactly n — k.

Indeed, the left hand side of the equation can be under-
stood as the linear combination of the columns of A with co-
efficients given by = and the rank k of the matrix provides
the number of linearly independent columns in A, thus the di-
mension of the subspace of all possible linear combinations
of the given form. Therefore, after transforming the system
into row echelon form, exactly m — k zero rows remain. In
the next step, we are left with exactly n — k free parameters.
By setting one of them to have value one, while all others are
zero, we obtain exactly n — k linearly independent solutions.
Then all solutions are given by all the linear combinations of
these n — k solutions. Every such (n — k)-tuple of solutions
is called a fundamental system of solutions of the given ho-
mogeneous system of equations. We have proved:

Proposition. The set of all solutions of the homogeneous sys-
tem of equations

A-xz=0
for n variables with the matrix A of rank k is a vector sub-
space in K" of dimension n — k. Every basis of this space
forms a fundamental system of solutions of the given homoge-
neous system.

Next, consider the general system of equations
A-x=0b.

Notice that the columns of the matrix A are actually images
of the vectors of the standard basis in K" under the mapping
assigning the vector A - x to each vector z. If there should
be a solution, b must be in the image under this mapping and
thus it must be a linear combination of the columns in A.

If we extend the matrix A by the column b, the number
of linearly independent columns and thus also rows might in-
crease (but does not have to). If this number increases, then b
is not in the image and the system of equations does not have
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variables:
1 1
——a—=-b = 2
2 2
VEIRVE]
—a——b = 1.
2 2
The solution gives us a = —2 + ?, b=-2- f , therefore
the coordinates are (—2 + \/gv -2 - %) O

2.D.6. Remark. As a perceptive reader may have spotted, the
problem statement is not unambiguous — we are not given the
order of the roots of the polynomial, thus we do not have the
order of the basis vectors. The result is thus given up to the

permutation of the coordinates.

We add a remark about rationalising the denominator,

that is, removing the square roots from the denominator. The
authors do not have a distinctive attitude whether this should
always be done or not (Does ? look better than %?). In
some cases the rationalising is undesirable: from the fraction
\/% we can immediately spot that its value is a little greater

than 1 (because v/35 is just a little smaller than 6) while for
6\/7

in general the convention is to normalize.

2.D.7. Consider complex numbers C as a real vector space.

Determine the coordinates of the number 2 + ¢ in the basis

given by the roots of the polynomial 22 — = + 1. O

2.D.8. For what values of the parameters a, b, c € R are the
vectors (1,1,a,1), (1,b,1,1), (¢, 1, 1,1) linearly dependent?
O

2.D.9. Let a vector space V be given along with a basis
formed by the vectors u, v, w, z. Determine whether or not

the vectors

u—3v+z, v—-Oow—2z 3w—7Tz, u—w+=z

are linearly independent. O

2.D.10. Complete the vectors 1 — 2+ 23, 1 + 22 + 25,

1 — 2 — 2° to a basis of the space of polynomials of degree
at most 3. O

2.D.11. Do the matrices

G5 64 Go 6

form a basis of the vector space of square two-dimensional

matrices?

a solution. If on the other hand the number of linearly inde-
pendent rows does not change after adding the column b to
the matrix A, it means that b must be a linear combination of
the columns of A. Coefficients of such combinations are then
exactly the solutions of our system.

Consider now two fixed solutions  and y of our sys-
tem and some solution z of the homogeneous system with
the same matrix. Then clearly

A-(z—y)=b-0=0
A-(z+2)=b+0=h.

Thus we can summarise in the form of the so called

Kronecker-Capelli theorem':

KRONECKER-CAPELLI THEOREM

Theorem. The solution of a non-homogeneous system of lin-
ear equations A - x = b exists if and only if adding the
column b to the matrix A does not increase the number of
linearly independent rows. In such a case the space of all so-
lutions is given by all sums of one fixed particular solution
of the system and all solutions of the homogeneous system
that has the same matrix.

2.3.6. Sums of subspaces. Since we now have some intu-
_ ition about generators and the subspaces gener-
ated by them, we should understand the possi-

A == bilities of how some subspaces can generate the
whole space V.

SuM OF SUBSPACES

Let V;, @ € I be subspaces of V. Then the subspace gener-
ated by their union, that is, span U;c1V;, is called the sum of
subspaces V;. We denote it as W = ), V;. Notably, for
a finite number of subspaces V1, ..., Vi, C V we write

W:V1+~~-+Vk:span(VlLJVQU--~UVk).

We see that every element in the considered sum W can
be expressed as a linear combination of vectors from the sub-
spaces V;. Because vector addition is commutative, we can
aggregate summands that belong to the same subspace and
for a finite sum of k£ subspaces we obtain

Vit Vot o+ Vi ={vi+-+uop v € Viyi=1,... k}.

The sum W = Vi + --- + V), C V is called the direct sum
of subspaces if the intersection of any two is trivial, that is,
ViNnV; = {0} for all i # j. We show that in such a case,

! A common formulation of this fact is “system has a solution if and only
if the rank of its matrix equals the rank of its extended matrix”. Leopold Kro-
necker was a very influential German Mathematician, who dealt with alge-
braic equations in general and in particular pushed forward Number Theory
in the middle of 19th century. Alfredo Capelli, an Italian, worked on alge-
braic identities. This theorem is equally often called by different names, e.g.
Rouché-Frobenius theorem or Rouché-Capelli theorem etc. This is a very
common feature in Mathematics.
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Solution. The four given matrices are as vectors in the space
of 2 x 2 matrices linearly independent. It follows from the

fact that the matrix

1 1 -5 1
0 4 0 -2
1 0 3 0
-2 -1 0 3

is invertible (which is by the way equivalent to any of the fol-
lowing claims: its rank equals its dimension; it can be trans-
formed into the unit matrix by elementary row transforma-
tions; it has the inverse matrix; it has a non-zero determinant
(equal to 116); it stands for a system of homogeneous linear
equations with only zero solution; every non-homogeneous
linear system with left-hand side given by this matrix has a
unique solution; the range of a linear mapping given by this
matrix is a vector space of dimension 4 — this mapping is in-

jective). |
2.D.12. In the vector space R* we are given three-
dimensional subspaces

V = span{vy, vo,v3},

U = span{uy, ug, us},

while

1
-1
-1

Uy = Uz = , U3z = , U1 =

O = = =
— O = =
— = O =

ve = (1,-1,1,-1)T w3 = (1,—1,—1,1)7. Determine the
dimension and find a basis of the subspace U N V.

Solution. The subspace U N V contains exactly the vectors
that can be obtained as a linear combinations of vectors u; and
also as a linear combination of vectors v;. Thus we search for
numbers x1, T2, T3, Y1,Y2,y¥3 € R such that the following
holds:

1 1 1 1
0 1 -1 -1
=
1

“+xo +ys3

(=R
= O = =

that is, we are looking for a solution of a system

r1 + T2 + T3 = Y1+ Y2+ ys,
Ty + T2 = i — Y2 — Y3,
x1 + 23 = —y1 + Y2 — Y3,

r2 + T3 = —y1 — Y2 + Y3

every vector w € W can be written in a unique way as the
sum

w=v+ -+ g,

where v; € V. Indeed, if we could simultaneously write w
as w = vy + - -+ + vy, then

O=w—w=(v; —v}))+ -+ (v — V).

If v; — v} is the first nonzero term of the right-hand side, then
this vector from V; can be expressed using vectors from the
other subspaces. This is a contradiction to the assumption that
V; has zero intersection with all the other subspaces. The only
possibility is then that all the vectors on the right-hand side
are zero and thus the expression of w is unique.

For direct sums of subspaces we write

W=V@& --&V,=0e",V.

2.3.7. Basis. Now we have everything prepared for under-
standing minimal sets of generators as we un-

?@ derstood them in the plane R? and to prove the
Q‘E““) promised indepence of the number of basis ele-
&= menis on any choices.

A basis of a k-dimensional space will usually be denoted
as a k-tuple v = (v1...,vg) of basis vectors. This is just a
matter of convention: with finitely dimensional vector spaces
we shall always consider the bases along with a given order of
the elements, even if we have not defined it that way (strictly
speaking).

Clearly, if (v1,...,v,) is a basis of V, then the whole
space V is the direct sum of the one-dimensional subspaces

V =span{v;} & - - - ® span{v, }.

An immediate corollary of the derived uniqueness of de-
composition of any vector w in V' into the components in the
direct sum gives a unique decomposition

W= 2T1V1 + ++ + TpUn.

This allows us, after choosing a basis, to see the abstract vec-
tors again as n-tuples of scalars. We shall return to this idea
in paragraph 2.3.11, when we finish the discussion of the ex-
istence of bases and sums of subspaces in the general case.

2.3.8. Theorem. From any finite set of generators of a vec-
tor space V we can choose a basis. Every basis of a finitely
dimensional space V' has the same number of elements.

Proor. The first claim is easily proved using induction
{1, on the number of generators k.

Only the zero subspace does not need a generator
2" and thus we are able to choose an empty basis. On the
A other hand, we are not able to choose the zero vector
(the generators would then be linearly dependent) and there
is nothing else in the subspace.

In order to have our inductive step more natural, we deal
with the case k = 1 first. We have V' = span{v} and v # 0,
because {v} is a linearly independent set of vectors. Then
{v} is also a basis of the vector space V and any other vector
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Using matrix notation of this homogeneous system (and pre-
serving the order of the variables) we have

11 1 -1 -1 -1
110 -1 1 1
101 1 -1 1
011 1 1 -1
1 1 1 -1 -1 -1
0 0 -1 0 2 2

“lo -1 0 2 0 2
o 1 1 1 1 -1
11 1 -1 -1 -1
o1 1 1 1 -1

“lo o -1 0 2 2
00 1 3 1 1
11 1 -1 -1 -1
011 1 1 -1

“lo o1 0o -2 -2
000 1 1 1
1110 0 0
01 10 0 -2

“lo 0o 1 0 —2 -2
0001 1 1
1000 0 2
0100 2 0

“lo 0o 1 0 —2 -2
0001 1 1

We obtain a solution
1 =2t x90=—-28,23=25+2t,y1 =—s—1t, Y2 =8,
ys=t, t,seR.

We obtain a general vector of the intersection by substituting

1+ T + 23 0
1+ T2 | -2t —2s
1+ 23 - 2s
T2 -I—(Eg 2t
We see that
0 0
. —1 -1
dmUNV =2, UNYV =span 1101 o .

0 1

2.D.13. Let there be in R? two vector spaces U and V gen-

erated by the vectors
(15 17 _3) ) (15 27 2)

and (1717_1)3 (17271)’ (15373)7

respectively. Determine the intersection of these two sub-
spaces.

Solution. According to the definition of intersection, the vec-

tors in the intersection are in both, the span of the vectors

is a multiple of v, so all bases of V' must contain exactly one
vector, which can be chosen from any set of generators.

Assume that the claim holds for £ = n and consider
V = span{vy,...,vp41}. If vy, ..., v,41 are linearly inde-
pendent, then they form a basis. If they are linearly dependent,
there exists ¢ such that

Vi = 101 + -+ Q-1Vi—1 + Gi41Vi41 0 App1Unga-

Then V' = span{vy,...,0i—1,Vit1,---,Uns1} and we can
choose a basis, using the inductive assumption.

In remains to show that bases always have the same num-
ber of elements. Consider a basis v = (v1,...,v,) of the
space V' and for an arbitrary nonzero vector u, consider

u=avy+---+apv, €V

with a; # 0 for some i. Then

Vg = ;(U—(alvﬁ-' i 101+ i Vi1t )
(]
and therefore also span{u, vy, ..., 0i—1,Vit1,...,0n} = V.
We show that this is again a basis. For if adding w to the
linearly independent vectors vy, ..., v;—1,Vit+1,- . ., Uy leads
to a set of linearly dependent vectors, then

V =span{vy,...,0;—1,Vit1,.--,0n},

which implies a basis of n — 1 vectors chosen from v, which
is not possible.

Thus we have proved that for any nonzero vec-
tor u € V there exists 7, 1 < ¢ < n, such that
(U, V1, V=1, Vig1,- - -, Vp) is again a basis of V.

Similarly, instead of one vector u, we can consider a lin-
early independent set ui,...,u;. We will sequentially add
uy,us, . . ., always exchanging for some v; using our previous
approach. We have to ensure that there always is such v; to
be replaced (that is, that the vectors u; will not consequently
replace each other).

Assume thus that we have already placed uq, ..., u, in-
stead of some v;’s. Then the vector w41 can be expressed as
a linear combination of the latter vectors u; and the remain-
ing v;’s. As we have seen, uy1 may replace any vector with
non-zer coefficient in this linear combination. If only the co-
efficients at uy, . . . , uy were nonzero, then it would mean that
the vectors uy, ..., u¢+1 were linearly dependent, which is a
contradiction.

Summarizing, for every k < n we can arrive after k steps
at a basis in which k vectors from the original basis were ex-
changed for the new w;’s. If £ > n, then in the n-th step we
would obtain a basis consisting only of new vectors u;, which
means that the original set could not be linearly independent.

In particular, it is not possible for two bases to have a
different number of elements. (|

In fact, we have proved a much stronger claim, the
Steinitz exchange lemma:
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(1,1,-3), (1,2,2), as well as in the span of the vectors
(1,1,-1), (1,2,1), (1,3,3). It helps to consider first the
geometry. Firstly, U is spanned by two linearly independent
vectors. So U is a plane in R3. Next, V is spanned by three
vectors. But these are linearly dependent since

1 1 1 1 1 -1
1 2 3/=[1 2 1|=0
-1 1 3 1 3 3
So V is also a plane.
If the vector (x1,z2,23) lies in U, then
(r1,22,23) = A1,1,-3) + wu(1,2,2) for some
scalars A, u. Similarly (z1,x9,23) lies in V, so

(x1,22,23) = «a(1,1,-1) + [(1,2,1) + ~(1,3,3) for
scalars «, 8,7. When written in full, this is a set of six
equations in eight unknowns. Solving these is possible but
can be quite cumbersome. Some simplification is obtained
as follows:

The first three equations, which describe U are

1 =A+p
x2=/\—|—2,u
T3 = —3A+2u

If we solve these three equations for the two "unknowns" A
and g, (which in any case we do not want), or alternatively
if we eliminate A and p, from these equations, we obtain the
single equation 8x1 — 5xy + x3 = 0 to replace the first three.

The second set of three equations, which describe V' are

rn=a+p+7y

Ty =a+20+7y

T3 =—a+B+3y

If we solve these three equations for the three "unknowns" «
[ and ~, (which in any case we do not want), or alternatively
if we eliminate o 8 and +, from these equations, we obtain the
single equation 3z —2x2+z3 = 0todescribe V. Introducing

the parameter ¢, it is straightforward write the solution as the
line (1,22, z3) = 1(3,5,1).

O

Now we move to unions of vector spaces. There is a sim-

ple algorithm, how to chose the maximal linearly independent
set of vectors out of a given set of vectors. Write the given
vectors as columns in a matrix. Then tranform the matrix
with row tranformation into the row echelon forms. The vec-

tors, who correspond to the columns, where the “stairs™ begin,

STEINITZ EXCHANGE LEMMA

For every finite basis v of a vector space V' and every set of
linearly independent vectors u;, ¢ = 1,...,k in V we can
find a subset of the basis vectors v; which will complete the
set of u;’s into a new basis.

2.3.9. Corollaries of the Steinitz lemma. Because of the
X possibility of freely choosing and replacing ba-

intuitively expectable) properties of bases of
vector spaces:

Proposition. (/) Every two bases of a finite dimensional
vector space have the same number of elements, that is,
our definition of dimension is basis-independent.

(2) If V has a finite basis, then every linearly independent
set can be extended to a basis.

(3) A basis of a finite dimensional vector space is a maximal
linearly independent set of vectors.

(4) The bases of a vector space are the minimal sets of gen-
erators.

A little more complicated, but now easy to deal with, is
the situation of dimensions of subspaces and their sums:

Corollary. Let W, W1, Wy C V be subspaces of a space V
of finite dimension. Then

(1) dimW < dimV,

(2) V=W ifand only ifdimV = dim W,

(3) dim Wy +dim Wy = d1m(W1 + Wz) + d1m(W1 N WQ)

Proor. It remains to prove only the last claim. This is

- evident if the dimension of one of the spaces is
zero. Assume dimWy =r > 1, dim Wy = s >
¥ 1 and let (wy ..., w;) be abasis of W1 N Wy (or
E= empty set, if the intersection is trivial).

According to the Steinitz exchange lemma this
basis of the intersection can be extended to a ba-
sis (wi,..., W U1 ..., u,) for W7 and to a basis
(wy ..., wt, Vg1, .., 0s) for Wa. Vectors

Wiy e ooy Wy Ut 1y e ooy Upy, Vg1 -+ -5 Us

clearly generate W7 + W,. We show that they are linearly
independent. Let
aiwy + -+ apwy + bt+1ut+1 +...
c by + i1V o+ csvs = 0.
Then necessarily
—(Ctq1 - Veg1 s vg) =
:al'w1+"‘+at‘wt+bt+1'Ut+1+"'+br‘ur
must belong to Ws N W;. This implies that
bey1 = =b. =0,
since this is the way we have defined our bases. Then also

ap - wi+ -+ ap W+ Cpy1 Vg1 + o+ s vs =0
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form a maximal linearly independent set. To justify this, just
think of the system of linear equations describing that a linear
combination of the given vectors is zero. The matrix of the
system is exactly the one described. If you put in the system
only vectors corresponding to columns where are stairs, you
get a system which can be transformed into a one in row ech-
elon form with non-zero numbers on the diagonal and thus
only solution of the systems are zeros, that is the vectors are
linearly independet. Similarly, the system together with any
of the vectors which correspond to “no stair” columns has
a lower rank than the number of variables (coefficients of a
linear combination), thus according to 2.3.5 has a nontrivial

(non-zero) solution.

2.D.14. Determine the vector subspace (of the space
R%) generated by the vectors u; = (—1,3,-2,1), uy =
(2,-1,-1,2), ug = (—4,7,-3,0), ug = (1,5,—5,4), by
choosing a maximal set of linearly independent vectors wu;
(that is, by choosing a basis).

Solution. Write the vectors u; into the columns of a matrix
and transform it using elementary row transformations. This

way we obtain

-1 2 -4 1 1 2 0 4

3 -1 7 5 -1 2 -4 1

-2 -1 -3 5|7 |3 -1 7 5

1 2 0 4 -2 -1 -3 =5

1 2 0 4 12 0 4

0 4 —4 5 01 -1 5/4
“lo -7 7 =77 lo 1 -1 1

0 3 -3 3 00 0 0

12 0 4 (1) o 2 o

0 1 -1 5/4 o (1) -1 0
“loo o -14]7 1y o o o1

00 0 o0 o 0 o )

And (according to the algorithm) it follows that the vec-
tors corresponding to the columns with circled elements,
namely vectors uy, u2 and u4 form a maximal linearly inde-

pendent set. ]

Remark. Note, that the maximal set of linearly independent
vectors is not unique. Unique is only the number of vectors in
it (the dimension of the vector space generated by the given
vectors). For example from vectors (1,0), (0,1), (1,1) you
can pick any two to form a maximal linearly independent set,
from vectors (1, 0), (2,0), (0, 1). This fact is also reflected in

and because the corresponding vectors form a basis W, all
the coefficients are zero.

The claim (3) now follows by directly counting the gen-
erators. O

2.3.10. Examples. (1) K" has (as a vector space over K) di-
mension n. The n-tuple of vectors

((1,0,...,0),(0,1,...,0)...,(0,...,0,1))

is clearly a basis, called the standard basis of K.

Note that in the case of a finite field of scalars, say Zy,
with &k prime, the whole space K" has only a finite number
k™ of elements.

(2) C as a vector space over R has dimension 2. A basis is for
instance the pair of numbers 1 and 7, or any other two complex
numbers which are not a real multiple of each other, eg. 1+
and 1 — 4.

(3) K, [z], that is, the space of all polynomials with coeffi-
cients in K of degree at most m, has dimension m + 1. A
basis is for instance the sequence 1, x, 22, ..., 2™

The vector space of all polynomials K|[x] has dimension
00, but we can still find a basis (although infinite in size):
Lz, 2%, ...,

(4) The vector space R over Q has dimension co. It does not
have a countable basis.

(5) The vector space of all mappings f : R — R has also
dimension co. It does not have any countable basis.

2.3.11. Vector coordinates. If we fix a basis (v1,...,v,) of
a finite dimensional space V, then every vector
w € V can be expressed as a linear combination
v = a1+ - -+ an vy, in a unique way. Indeed,
assume that we can do it in two ways:

w=a1v1 + -+ apvy = b1vr + -+ + bpvy.

Then

O:(al—bl)'U1+"'+(a7L_bn)'vn

and thus a; = b; for all i = 1,...,n, because the vectors
v; are linearly independent. We have reached the concept of
coordinates:

COORDINATES OF VECTORS

Definition. The coefficients of the unique linear combina-
tion expressing the given vector w € V in the chosen basis
v = (v1,...,v,) are called the coordinates of the vector w
in this basis.

Whenever we speak about coordinates (aq,...,a,) of
a vector w, which we express as a sequence, we must have
a fixed ordering of the basis vectors v = (v1,...,v,). Al-
though we have defined the basis as a minimal set of genera-
tors, in reality we work with them as with sequences (that is,
with ordered sets).
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the algorithm, becouse it is independent of an order, in which

you put the given vectors as columns in a matrix.

2.D.15. Find a basis of the subspace

1 2 0 1 -1 0 -2 -1
Uspan{ 3 41,2 3], 1 2|,10 1 }
5 6 4 5 3 4 2 3

of the vector space of real matrices 3 x 2. Extend this basis

to a basis of the whole space.

Solution. Recall that a basis of a subspace is a set of linearly
independent vectors which generate given subspace. By writ-
ing the entries of the matrices in a row, we can consider the
matrices as vectors in RS. In this way, the four given matrices

can be identified with the rows of the matrix

1 2 3 4 5 6
0 1 2 3 45
-1 0 1 2 3 4
-2 -1 0 1 2 3

It is easy to show that this matrix has rank 2, and hence that
the subspace U is generated just by the first two matrices,
which consequently form a basis for U. In fact, it follows eas-
ily that

1 0 1 2 0 1
1 2)=-1-{3 4])+2-[2 3
3 4 5 6 4 5
-2 -1 1 2 0 1
0 1 1 =-2-13 4] +3-(2 3
2 3 5 6 4 5

There are many options for extending this basis to be a basis
for the whole space. One option is to choose the first two of
the given matrices together with the last four (actually, any
four would do) of the six linearly independent matrices

10 0 1 0 0 0 0 0 0 0 0
o ol,(o of,|1 of,[o 1],{0o o], o o
0 0 0 0 0 0 0 0 1 0 0 1

. Linear independence of these six matrices is established by

computing
1 2 3 4 5 6
01 2 3 45
0 01 0 0O
000 1 0 0 170.
0 000T1FPO
0 000 01

Clearly the dimension is 6, so spanning is automatic, and

hence we have a basis. O

ASSIGNING COORDINATES TO VECTORS

A mapping assigning the vector v = ajv; + - - - + apv, to
its coordinates in the basis v will be denoted by the same
symbol v : V' — K", It has the following properties:

(D) v(u+w) =v(u) +v(w); Yu,w € V,

2) v(a-u)=a-v(u); Va e K,\Vu € V.

Note that the operations on the two sides of these equa-
tions are not identical. Quite the opposite; they
are operations on different vector spaces!

=" £ Sometimes it is really useful to understand
vectors as mappings from fixed set of independent generators
to coordinates (without having the generators ordered). In
this way, we may think about the basis M of infinite dimen-
sional vector spaces V. Even though the set M will be infi-
nite, there can be only a finite number of non-zero values for
any mapping representing a vector. The vector space of all
polynomials K. [z], with the basis M = {1, x, 22, ...} is
a good example.

2.3.12. Linear mappings. The above properties of the as-
i // -, signments of coordinates are typical for what we
AR have called linear mappings in the geometry of
,\ the plane R2. ppne : ’

For any vector space (of finite or infinite dimension) we
define “linearity” of a mapping between spaces in a similar
way to the case of the plane R?:

LINEAR MAPPINGS

Let V and W be vector spaces over the same field of scalars
K. The mapping f : V. — W is called a linear mapping, or
homomorphism, if the following holds:

D flutv) = f(u)+ f(v), Vu,v eV

2) fla-u)=a- f(u), Ya e K, VueV.

We have seen such mappings already in the case of ma-

trix multiplication:
f:K"—=K™" x—A-x
with a fixed matrix A of the type m/n over K.

The image of a linear mapping, Im f = f(V) C W, is
always a vector subspace, since for any set of vectors u;, the
linear combination of images f(u;) is the image of the linear
combination of the vectors u; with the same coeflicients.

Analogously, the set of all vectors Ker f = f~1({0}) C
V is a subspace, since the linear combination of zero images
will always be a zero vector. The subspace Ker f is called the
kernel of the linear mapping f.

A linear mapping which is a bijection is called an isomor-
phism.

Analogously to the abstract definition of vector spaces,
it is again necessary to prove seemingly trivial claims that
follow from the axioms:
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E. Linear mappings

How can we describe simple mappings analytically? For
example,how can we describe a rotation, an axial symmetry,
a mirror symmetry, a projection of a three-dimensional space
onto a two-dimensional one in the plane or in the space? How
can we describe the scaling of a diagram? What do they have
in common? These all are linear mappings. This means that
they preserve a certain structure of the space or a subspace.
What structure? The structure of a vector space. Every point
in the plane is described by two coordinates, every point in the
3-dimensional space is described by three coordinates. If we
fix the origin, then it makes sense to say that a point is in some
direction twice that far from the origin as some other point.
We also know where arrive at if we translate or shift by some
amount in a given direction and then by some other amount
in another direction. These properties can be formalized —
we speak of vectors in the plane or in space, and we consider
their multiplication and addition. Linear mappings have the
property that the image of a sum of vectors is a sum of the
images of the vectors. The image of a multiple of a vector is
the same multiple as the image of the vector. These properties
are shared among the mappings stated at the beginning of this
paragraph. Such a mapping is then uniquely determined by
its behaviour on the vectors of a basis. (In the plane, a basis
consists of two vectors not on the same line. In space a basis
consists of three vectors not all in the same plane).

How can we write down some linear mapping f on a
vector space V'? For simplicity, we start with the plane R2.
Assume that the image of the point (vector) (1,0) is (a,b)
and the image of the point (vector) (0,1) is (¢,d). This
uniquely determines the image of an arbitrary point with coor-
dinates (u, v): f((u,v)) = f(u(1,0)+v(0,1)) = uf(1,0)+
vf(1,0) = (ua,udb) + (ve,vd) = (au + cv,bu + dv). This

can be written down more efficiently as follows:

(b o) ()= (i)

A linear mapping is thus a mapping uniquely determined

(in a fixed basis) by a matrix. Furthermore, when we have an-

f
h E
can easily compute (an interested reader can fill in the details

other linear mapping g given by the matrix <; then we

by himself) that their composition go f is given by the matrix

a b e f\ [(ae+ fc be+df
¢ d) \g h) \ag+ch bg+dh)"

Proposition. Let f : V — W be a linear mapping between
two vector spaces over the same field of scalars K. The fol-
lowing is true for all vectors u,uy,...,u; € V and scalars
ai,...,ap € K

(1) f(0)=0,

2) f(=u) = —f(u),

(3) flar-ur+--+ap-up) =ar- flu)+---+ap- flug),

(4) for every vector subspace Vi C V, its image f(V1) is a
vector subspace in W,

(5) for every vector subspace W1 C W, the set f~1(W7) =
{veV; f(v) € W1} is a vector subspace in V.

Proor. We rely on the axioms, definitions and already
proved results (in case you are not sure what has been used,
look it up!):

F0) = flu—u) = f(1=1)-u) =0 f(u) =0,
fl=u) = f((=1) -u) = (=1) - f(u) = = f(u).

Property (3) is derived easily from the definition for two
summands, using induction on the number of summands.

Next, (3) implies span f (V1) = f(V1), thus it is a vector
subspace. On the other hand, if f(u) € Wi and f(v) € W}
then for any scalars we arrive at f(a-u+b-v) =a- f(u) +
b f(v) € Wi O

2.3.13. Proposition (Simple corollaries). (1) The composi-
tiongo f:V — Z of two linear mappings f : V. — W
and g : W — Z is again a linear mapping.

(2) The linear mapping f : V. — W is an isomorphism if
and only if Im f = W and Ker f = {0} C V. The
inverse mapping of an isomorphism is again an isomor-
phism.

(3) For any two subspaces V1, Vo C V and linear mapping
fV->w,

fVi+V2) = f(Vi) + f(Va),
fVinVa) C f(Vi) N f(Va).

(4) The “coordinate assignment” mapping u :
given by an arbitrarily chosen basis u = (uq, . .
a vector space V' is an isomorphism.

(5) Two finitely dimensional vector spaces are isomorphic if
and only if they have the same dimension.

(6) The composition of two isomorphisms is an isomor-
phism.

V —- K"
S, Up) of

Proor. Proving the first claim is a very easy exercise
)’3)\ ) left to the reader. In order to verify (2), notice

# that f is surjective if and only if Im f = W.
If Ker f = {0} then f(u) = f(v) ensures
. flu—wv) =0, that is, v = v. In this case f
is injective. Finally, if f is a linear bijection, then the vector
w is the preimage of a linear combination au + bv, that is
w = f~Y(au + bv), if and only if

flw) = au+bv=fla- f7H(w)+b- fH(v)).
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This leads us to the definition of matrix multiplication
in exactly this way. That is, an application of a mapping on
a vector is given by the matrix multiplication of the matrix
of the mapping with the given vector, and that the mapping
of a composition is given by the product of the correspond-
ing matrices. This works analogously in the spaces of higher
dimension. Further, this again shows what has already been
proven in (2.1.5), namely, that matrix multiplication is asso-
ciative but not commutative, just as with mapping composi-
tion. That is another motivation to study vector spaces.

Recall that already in the first chapter we worked with
the matrices of some linear mappings in the plane R?, notably
with the rotation around a point and with axial symmetry (see
1.5.8 and 1.5.9).

We try now to write down matrices of linear mappings
from R3 to R3. What does the matrix of a rotation in three
dimensions look like? We begin with some special (easier for

description) rotations about coordinate axes:

2.E.1. Matrix of rotation about coordinate axes in R3,
We write down the matrices of rotations by the angle ¢, about

the (oriented) axes z, ¥ and z in R3.

Solution. When rotating a particular point about the given
axis (say z), the corresponding coordinate (z) does not
change. The remaining two coordinates are then given by the
rotation in the plane which we already know (a matrix of the

type 2 X 2).
Thus we obtain the following matrices — rotation about
the axis z:
cosp —sing 0
sinp cosep O
0 0 1
rotation about the axis x:
1 0 0
0 cosp —singp
0 singp cosyp
rotation about the axis y:
cose 0 sing
0 1 0
—sing 0 cosp

Note the sign of ¢ in the matrix for rotation about y. We want,
as with any other rotation, the rotation about the y axis to be
in the positive sense — that is, when we look in the opposite
direction of the direction of the y axis, the world turns anti-
clockwise. The signs in the matrices depend on the orienta-

tion of our coordinate system. Usually, in the 3-dimensional

Thus we also get w = af~!(u) + bf ~!(v) and therefore the
inversion of a linear bijection is again a linear bijection.

The third property is obvious from the definition, but try
finding an example showing that the inequality in the second
equation can indeed by sharp.

The remaining claims all follow immediately from the
definition. (]

2.3.14. Coordinates again. Consider any two vector spaces
doo Vand Woover K with dim V' = n, dimW = m
= #» and consider some linear mapping f : V — W.
2 For every choice of basis u = (u1,...,u,) on V,
v = (v1,...,0,)on W there are the following linear
mappings as shown in the diagram:

f

Ve =W

U\L ~ ~ lv
fu,v

K’ﬂ > Km
The bottom arrow f,, , is defined by the remaining three, i.e.
the composition of linear mappings
Jup =vof out.

MATRIX OF A LINEAR MAPPING

Every linear mapping is uniquely determined by its values
on an arbitrary set of generators, in particular, on the vectors
of a basis u. Denote by

flu1) = a1 -v1 + a1 -va+ -+ AniUm

flug) = a12 - v1 + a2z - v2 + -+ - + AmaUm

f(un) = a1n - v1 + a2n - V2 + - + GmnUm,

that is, scalars a;; form a matrix A, where the columns are
coordinates of the values f(u;) of the mapping f on the ba-
sis vectors expressed in the basis v on the target space W.

A matrix A = (a;;) is called the matrix of the mapping
f in the bases u, v.

For a general vector u = xqu; + -+ + zpu, € V we
calculate (recall that vector addition is commutative and dis-
tributive with respect to scalar multiplication)

flu) =21 f(ur) + -+ znf(un)

= Qfl(allvl 4+ +amlvm) + -4 xn(alnvl‘i‘ - )

= (zr1a11+ - Fepa1n)vr + o+ (X1am1+ )V
Using matrix multiplication we can now very easily and
clearly write down the values of the mapping f,,,(w) defined

uniquely by the previous diagram. Recall that vectors in K*
are understood as columns, that is, matrices of the type ¢/1

fup(u(w)) = v(f(w)) = A u(w).
On the other hand, if we have fixed bases on V and W,

then every choice of a matrix A of the type m/n gives a
unique linear mapping K™ — K" and thus also a mapping
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space the “dextrorotary coordinate system” is chosen: if we
place our hand on the x axis such that the fingers point in the
direction of the axis and such that we can rotate the = axis in
the zy plane so that x coincides with the y axis and they point
in the same direction, then the thumb should point in the di-
rection of the z axis. In such a system, this is a rotation in the
negative sense in the plane xz (that is, the axis z turns in the
direction towards x). Think about the positive and negative
sense of rotations by all three axes. The sign is also consistent
with the cycle xtoyto 2z toz toy etc.... or 1 to2to 3 to 1
to..... etc. (|

Knowledge of matrices allows us to write the matrix of
rotation about any oriented axis. Let us start with a specific

example:

2.E.2, Find the matrix of the rotation in the positive sense
by the angle /3 about the line passing through the origin
with the oriented directional vector (1,1,0) under the stan-
dard basis R3.

Solution. The given rotation is easily obtained by composing

these three mappings:

e rotation through the angle 7/4 in the negative sense
about the axis z (the axis of the rotation goes over on
the x axis);

e rotation through the angle 7/3 in the positive sense about
the x axis;

e rotation through the angle 7 /4 in the positive sense about

the z axis (the x axis goes over on the axis of the rotation).

The matrix of the resulting rotation is the product of the ma-
trices corresponding to the given three mappings, while the
order of the matrices is given by the order of application of
the mappings — the first mapping applied is in the product the

rightmost one. Thus we obtain the desired matrix

V2

S

V2o 0 1 0 0 vz
2 2 _ 2
2ogl-lo 3 =22 2 g
2 2 2 2 2
o 1) \o ¥ 1 0 0 1

Il
P Ow‘&w
13%\’—‘%\@
[=2)

I
Iy
no

Note that the resulting rotation could be also obtained
for instance by taking the composition of the three following
mappings:

e rotation through the angle 7 /4 in the positive sense about

the axis 2 (the axis of rotation goes over on the axis y);

f 'V — W. We have found the bijective correspondence be-
tween matrices of the fixed types (determined by dimensions
of V and W) and linear mappings V' — W.

2.3.15. Coordinate transition matrix. If we choose V' =
£3) W to be the same space, but with two different
?@‘ bases u, v, and consider the identity mapping for
’ é& f, then the approach from the previous paragraph
=== expresses the vectors of the basis u in coordinates
with respect to the basis v. Let the resulting matrix be 7'.
Thus, we are applying the concept of the matrix of a lin-
ear mapping to the special case of the identity mapping idy .

% idy v
K» T=(dv)u,v ~ K"

The resulting matrix 7' is called the coordinate transition
matrix for changing the basis from w to the basis v.

The fact that the matrix T of the identity mapping yields
exactly the transformation of coordinates between the two
bases is easily seen.

Consider the expression of u with the basis ©

U =2T1U1 + -+ TpUp,

and replace the vectors u; by their expressions as linear com-
binations of the vectors v; in the basis v. Collecting the
terms properly, we obtain the coordinate expression z =
(Z1,...,Ty) of the same vector u in the basis v. It is enough
just to reorder the summands and express the individual
scalars at the vectors of the basis. But this is exactly what we
do when forming the matrix for the identity mapping, thus
z=T- .

We have arrived at the following instruction for building
the coordinate transition matrix:

CALCULATING THE MATRIX FOR CHANGING THE BASIS

Proposition. The matrix T for the transition from the basis
w to the basis v is obtained by taking the coordinates of the
vectors of the basis u expressed in the basis v and writing
them as the columns of the matrix T'. The new coordinates
T in terms of the new basis v are then * = T - x, where x is
the coordinate vector in the original basis u.

Because the inverse mapping to the identity mapping is
again the identity mapping, the coordinate transition matrix
is always invertible and its inverse T~ is the coordinate tran-
sition matrix in the opposite direction, that is from the basis
v to the basis u (just have a look at the diagram above and
invert all the arrows).

2.3.16. More coordinates. Next, we are interested in the
‘ matrix of a composition of the linear mappings.
A Thus, consider another vector space Z over K
TE—=""7 of dimension k with basis w, linear mapping
g : W — Z and denote the corresponding matrix by gy -
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e rotation through the angle 7/3 in the positive sense about
the axis y;

e rotation through the angle 7/4 in the negative sense
about the axis z (the axis y goes over to the axis of ro-

tation).

Analogously we obtain

v2 V2 L9 B V2 V2
2 3 2 2 2 2
Y2 V2 0 1 0 V2 V2
2 32 V3 ) 2 2
0 0 1) \-¥£ o } 0 0 1
3 1 V6
1 5
i i 4
_V6 V6 1
4 4 2
O

2.E.3. Matrix of general rotation in R3. Derive the matrix

. . 3
A0
0:5?4;' o of a general rotation in R”,

L

Solution. We can do the same things as in the
previous example with general values. Con-
sider an arbitrary unit vector (, y, z). Rotation
in the positive sense by the angle ¢ about this vector can
be written down as a composition of the following rotations

whose matrices we already know:

i) rotation R, in the negative sense about the z

axis through the angle with cosine equal to
/22 +y2 = x/V1— 22, that is, with sine
y/ v/1— 22, under which the line with the direc-
tional vector (x,y,z) goes over on the line with the
directional vector (0, y, z). The matrix of this rotation is
tNVI—2  yVI—2Z 0
Ry = —y/m x/m 0],
0 0 1
ii) rotation R in the positive sense about the y axis through
the angle with cosine V1 — 22, that is, with sine z, under
which the line with the directional vector (0,y, z) goes
over on the line with the directional vector (1,0, 0). The
matrix of this rotation is
m 0 z
Ry = 0 1 0 ,
—z 0 V1-22
iii) rotation R in the positive sense about the x axis through
the angle ¢ with the matrix

1 0 0
R;= [0 cos(p) —sin(p) |,
0 sin(p) cos(p)

iv) rotation R ' with the matrix R, ",

v—t w7z
K" Ju,v -~ K™ Gv,w >Kk

The composition g o f on the upper row corresponds to
the matrix of the mapping K™ — K* on the bottom and we
calculate directly (we write A for the matrix of f and B for
the matrix of g in the chosen bases):

1 1

Jow © fup(x) =wogov “ovo fou”
=B-(A-2)=(B-A)-z=(g90 fluu®)

for every x € K". By the associativity of matrix multiplica-
tions, the composition of mappings corresponds to multipli-
cation of the corresponding matrices. Note that the isomor-
phisms correspond exactly to invertible matrices and that the
matrix of the inverse mapping is the inverse matrix.

The same approach shows how the matrix of a linear map-
ping changes, if we change the coordinates on both the do-
main and the codomain:

idy f

\%4 \%4 w w
K™ > K" Ju, v > K™ st > K™

where T is the coordinate transition matrix from v’ to v and
S is the coordinate change matrix from v’ to v. If A is the
original matrix of the mapping, then the matrix of the new
mapping is given by A’ = S~LAT.

In the special case of a linear mapping f : V — V/, that
is the domain and the codomain are the same space V, we
express f usually in terms of a single basis u of the space V.
Then the change from the old basis to the new basis ' with
the coordinate transition matrix 7' leads to the new matrix
A =T~ 1AT.

2.3.17. Linear forms. A simple but very important case of
R linear mappings on an arbitrary vector space V'
" ' over the scalars K appears with the codomain
i being the scalars themselves, i.e. mappings f :
— V= K. We call them linear forms.

If we are given the coordinates on V, the assignments
of a single i-th coordinate to the vectors is an example of a
linear form. More precisely, for every choice of basis v =
(v1,...,vy), there are the linear forms v} : V' — K such that
v} (v;) = 0y, thatis, v} (v;) = Lwheni = j,and v} (v;) =0
when i # j.

The vector space of all linear forms on V' is denoted by
V* and we call it the dual space of the vector space V. Let
us now assume that the vector space V has finite dimension
n. The basis of V*, v* = (v},...,v}), composed of as-
signments of individual coordinates as above, is called the
dual basis to v. Clearly this is a basis of the space V*, be-
cause these forms are evidently linearly independent (prove
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v) rotation R; " with the matrix Ry !

The matrix of the composition of these mappings, that is, the
matrix we are looking for, is given by the product of the rota-

tions in the reverse order:

Ry Ry'-Rs Ry Ri=
1—t+tx?  txy—zs trz +ys
= yrt +zs  1—t+ty? tyz—as |,
zat —ys tzy+2xs 1 —t4t22

where t = 1 — cos ¢ and s = sin ¢.

O

We got familiar with matrices of linear maps now. But
what happen with the matrix of a linear mapping, if we change
the base of the vector space? (we can imagine it for example
as the change of coordinate system of the observer) We have
to understand, what happens with the coordinates of vectors
first. The key to all this is the transition matrix (see 2.3.15).
We will further write e for the standard basis, that is vectors
((1,0,0),(0,1,0), (0,0, 1)) (these vectors could be any three
linearly independent vectors in a vector space; with naming

them as we did, we identified the vector space with R?)

2.E4. A vector has coordinates (1,2,3) in the stan-
dard basis e.
u=((1,1,0), (1,

What are its coordinates in the basis
-1,2),(3,1,5))?

Solution. We write the transiton matrix 7" for u to the stan-
dard basis first. We just write coordinates of the vectors which

form the basis w in the columns:

1 1 3
T=11 -1 1
3 1 5

For expressing the sought coordinates we albeit need the
transition matrix from the standard basis to u. No problem, it
is just T — 1). (see 2.3.15 if you have not done so yet). We
already know how to compute inverse matrix (see 2.1.10).

3 1
-5 -5 1
-1 i T
L5 -3
Finally the sought coordinates are
1 1
T711,2,3)" = (5,-1,2)".
( ? ) ) ( 2 Y ) 2 )

O

Similarly we work with the matrix of a linear mapping.

it!) and if « € V* is an arbitrary form, then for every vector
U =TV + -+ TpUn

a(u) = z1a(v1) + -+ + zra(v,)
= a(v)v] (u) + -+ + a(vn)v) (u)

and thus the linear form « is a linear combination of the forms
*

Ui .

Taking into account the standard basis {1} on the one-
dimensional space of scalars K, any choice of a basis v on
V identifies the linear forms o with matrices of the type 1/n,
that is, with rows y. The components of these rows are co-
ordinates of the general linear forms « in the dual basis v*.
Expressing such a form on a vector is then given by multiply-
ing the corresponding row vector y with the column of the

coordinates x of the vector u € V in the basis v:

Thus we can see that for every finitely dimensional space V,
the dual space V* is isomorphic to the space V. The choice
of the dual basis provides such an isomorphism.

In this context we meet again the scalar product of a row
of n scalars with a column of n scalars. We have worked with
it already in the paragraph 2.1.3 on the page 73.

The situation is different for infinitely dimensional
& \\ spaces. For instance the simplest example
"‘,,’ of the space of all polynomlals K[z] in one

can define hnearly 1ndependent forms v. Every formal
infinite sum > ;- a;v} is now a well-defined linear form
on K]z], because it will be evaluated only for a finite linear
combination of the basis polynomials x%, i = 0,1,2,....
The countable set of all v is thus not a basis. Actually,
it can be proved that this dual space cannot have a countable

basis.

2.3. 18 The length of vectors and scalar product. When
7 . dealing with the geometry of the plane R? in
" the first chapter we also needed the concept of
/== _the length of vectors and their angles, see 1.5.7.
For deﬁnmg these concepts we used the scalar product of two
vectors u = (x,y) and v = (2/,y’) in the form u - v =
zx' + yy'.

Indeed, the expression for the length of v = (z,y) is

given by
ol = Vo +y? = Vo,

while the (oriented) angle ¢ of two vectors u = (x,y) and
v = (a',y’) is in the planar geometry given by the formula

zx’ +yy'

COS(p = ————.
[[oll{lv"]

Note that this scalar product is linear in each of its arguments,
and we denote it by u - v or by (u,v). The scalar product
defined in such a way is symmetric in its arguments and of
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2.E.5. We are given a linear mapping R® — R? in the stan-
dard basis as the following matrix:
1 -1
0

0
1 1
2 0 0

Write down the matrix of this mapping in the basis
(f1; f2, f3) = ((1,1,0),(=1,1,1),(2,0,1)).
Solution. Again the transition matrix 7" for changing the ba-
sis from the basis f = (f1, f2, f3) to the standard basis ¢ can
be obtained by writing down the coordinates of the vectors
f1, f2, f3 in the standard basis as the columns of the matrix
T'. Thus we have
1 —
T=11 1
0 1

1 2
0
1

The transition matrix for changing the basis from the

standard basis to the basis i is then the inverse of 1"

13 1
e I SR
doh 1
4 4 2

The matrix of the mapping in the basis f is then given by (see
2.2.11)

1 9 _3
Tiar= (2 o T
3 8
1 72 g

|

2.E.6. Consider the vector space of polynomials of one
variable of degree at most 2 with real coefficients. In this

space, consider the basis 1, z, x2,

Write down the matrix
of the derivative mapping in this basis and also in the basis

i:(l—&—xz,x,x—&—xQ).

Solution. First we have to determine the matrix of the de-
rivative mapping (let us denote the mapping as d, its ma-
trix as D). We chose the basis (1, x, z2) as a standard ba-
sis e, so we have coordinates 1 ~ (1,0,0), x ~ (0,1,0)
and 22 ~ (0,0,1). We look at the images of the basis vec-
tors: d(1) = 0 ~ (0,0,0), d(z) = 1 ~ (1,0,0) and
d(z?) = 2z ~ (0,2,0). Now we write the images as columns

into the matrix D:

O O =
S NN O

course ||v]| = 0 if and only if v = 0. We also see immedi-
ately that two vectors in the Euclidean plane are perpendicular
whenever their scalar product is zero.

Now we shall mimic this approach for higher dimensions.
First, observe that the angle between two vectors is always a
two-dimensional concept (we want the angle to be the same
in the two-dimensional space containing the two vectors u
and v). In the subsequent paragraphs, we shall consider only
finitely dimensional vector spaces over real scalars R.

SCALAR PRODUCT AND ORTHOGONALITY

A scalar product on a vector space V' over real numbers is
amapping (, ) : V x V — R which is symmetric in its
arguments, linear in each of them, and such that (v,v) > 0
and ||v]|?> = (v,v) = 0 if and only if v = 0.

The number ||v|| = \/W is called the length of the
vector v.

Vectors v and w € V are called orthogonal or perpen-
dicular whenever (v, w) = 0. We also write v | w. The
vector v is called normalised whenever ||v|| = 1.

The basis of the space V' composed exclusively of mutu-
ally orthogonal vectors is called an orthogonal basis. If the
vectors in such a basis are all normalised, we call the basis
orthonormal.

A scalar product is very often denoted by the common
dot, that is, (u,v) = u-v. Thus, it is then necessary to recog-
nize from the context whether the dot means a product of two
vectors (the result is a scalar) or something different (e.g. we
often denote the product of matrices and product of scalars in
the same way).

Because the scalar product is linear in each of its argu-
R ments, it is completely determined by its values
'__ on pairs of basis vectors. Indeed, choose a basis
u = (u1,...,uy,) of the space V and denote

Sij = {ui7uj).
Then from the symmetry of the scalar product we know s;; =
54; and from the linearity of the product in each of its argu-
ments we get

<Z TiUs, Z yjuj> = sz'yj@u uj) = Z SijTiYj-
i j i, iy
If the basis is orthonormal, the matrix S is the unit matrix.
This proves the following useful claim:

SCALAR PRODUCT IN COORDINATES

Proposition. For every orthonormal basis, the scalar prod-
uct is given by the coordinate expression

<1:7 y> = yT " L.
For each basis of the space V there is the symmetric matrix
S such that the coordinate expression of the scalar product
is
(z,y) :yTSZ'
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Now we write the coordinates of the basis vectors of the
basis f into the columns:
)

1 00
T=10 11
1 01

to get the transition matrix from f to e. As in the previous
example we get the matrix of d in the basis f as

0 1 1
T-'DT=1[12 1 3|,
0 -1 -1
where we had to compute
1 0 O
Tl =11 1 -1
-1 0 1

O

2.E.7.
the rotation through the angle 90° in the positive sense about
the line (¢,¢,t), t € R, oriented in the direction of the vector
(1,1,1). Further, find the matrix of this rotation in the basis
g=((1,1,0),(1,0,-1),(0,1,1)).

Solution. We can easily determine the matrix of the given

In the standard basis in R2, determine the matrix of

rotation in a suitable basis, that is, in a basis given by the di-
rectional vector of the line and by two mutually perpendicular
vectors in the plane = 4+ y + z = 0, that is, in the plane of
vectors perpendicular to the vector (1,1, 1). We note that the

matrix of the rotation in the positive sense through 90° in an

-1
orthonormal basis in R? is ((1) 0 ) In the orthogonal ba-
L . (0 =K/
sis with vectors of length k, [ respectively, it is 1k 0

If we choose perpendicular vectors (1, —1,0) and (1,1, —2)

in the plane = 4+ y + 2z = 0 with lengths v/2 and /6, then

in the basis f = ((1,1,1),(1,-1,0), (1,1, —2)) the rotation
1 0 0

we are looking for has matrix | 0 0 —+/3 | . In order

0 1/v/3 0

to obtain the matrix of the rotation in the standard basis, it
is enough to change the basis. The transition matrix 1" for
changing the basis from the basis f to the standard basis is
obtained by writing the coordinates (under the standard ba-

sis) of the vectors of the basis f as the columns of the matrix

1 1 1
T:T= |1 —1 1 |. Finally, for the desired matrix R,
1 0 =2

we have

Notice, that with symmetric matrix S it is just a matter of
convention in which order we insert the vectors: the formula

2l S y=0aT - 8- ylT=yt. ST .z=y7-S-z

produces the same value. However, we shall later consider
the second argument as a linear form, thus it seems to be more
convenient to use the expression y' - S x.

2.3.19. Orthogonal complements and projections. For ev-
gy -~ ery fixed subspace W C V in a space with
7N scalar product, we define its orthogonal com-

e =

2E=—=—""~ plement as

Wt ={uecV;ulLvforallve W}
It follows directly from the definition that W is a vector sub-
space. If W C V has a basis (u1,...,u) then the descrip-
tion for W is given as k homogeneous equations for n vari-
ables. Thus W+ will have dimension at least n — k. Also
u € W N W+ means that (u,u) = 0, and thus also u = 0 by
the definition of scalar product. Clearly then, V' is the direct
sum
V=waew

A linear mapping f : V' — V on any vector space is

called a projection, if we have

fof=1
In such a case, we can write, for every vector v € V,

v=f(v)+(v—f(v)) € Im(f) + Ker(f) =V

and if v € Im(f) and f(v) = 0, then also v = 0. Thus
the above sum of the subspaces is direct. We say that f is a
projection to the subspace W = Im(f) along the subspace
U = Ker(f). In words, the projection can be described nat-
urally as follows: we decompose the given vector into a com-
ponent in W and a component in U, and forget the second
one.

If V has a scalar product, we say that the projection is
orthogonal if the kernel is orthogonal to the image.

Every subspace W # V thus defines an orthogonal pro-
jection to W. It is a projection to W along W+, given by
the unique decomposition of every vector u into components
uw € W and uy,. € W, that is, linear mapping which
maps uw + uypyL to upy.

2.3.20. Existence of orthonormal bases. It is easy to see
- that on every finite dimensional real vector space
there exist scalar products. Just choose any ba-
sis. Define lengths so that each basis vector is of
s unit length. Immediately we have a scalar prod-
uct. Call it orthonormal. In this basis the scalar products of
vectors are computed as in the formula in the Theorem 2.3.18.
More often we are given a scalar product on a vector
space V, and we want to find an appropriate orthonormal ba-
sis for it. We present an algorithm using suitable orthogonal
projections in order to transform any basis into an orthogo-
nal one. It is called the Gramm-Schmidt orthogonalization
process.
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1 0 0

R=T-{0 0 -3
0 1/V3 0

1/3 1/3-+/3/3 1/3++/3/3

=(1/3++3/3 1/3 1/3-+/3/3
1/3—-/3/3 1/3+/3/3 1/3

This result can be checked by substituting into the matrix

.71

of general rotation (2.E.3). By normalizing the vector (1,1, 1)
we obtain the vector (z,y,2) = (1/V/3,1/3/3,1/V/3),
cos(p) = 0, sin(p) = 1. O

2.E.8. Matrix of general rotation revisited. We derive

W7, the matrix of (general) rotation from (2.E.3)

‘/
&
g:
\

way, analogically to the previous exercise.

[ =

the orthogonal basis composed of the directional vector

Z through the angle ¢ in the positive sense
about the unit vector (z,y,z) in a different
In the basis

x,Y,%2),(—y,x,0), (22, 2y, 2" — , that 1is, 1n
0 2 1 hat is, i

of the axis of rotation and of two mutually perpendicular
vectors with sizes v/1 — 22 lying in a plane perpendicular

to the axis of rotation, the matrix corresponding to the

1 0 0
rotation is A = [0 cos(p) —sin(y) The matrix
0 sin(p) cos(p)
for changing the basis from f to the standard basis is then
x -y 2z
T=1y =« 2y with the inverse matrix
z 0 22-1
T Y z
Til = 7& 1—Iz2 0
ZX zZY _1
1—22 1—22

Finally, for the matrix R of the rotation we obtain

R=T-A-T™!
1—t+tx?  txy—zs trz +ys
= yrt+zs 1—t+ty>? tyz—axs |,
zxt —ys tzy +xs 1 —t+tz?

where againt = 1 — cosy and s = sin ¢, and we get the
same matrix as before.

When multiplying and simplifying, we must repeatedly
use the assumption 22 + 32 + 22 = 1.

Through a more detailed analysis of properties of various
types of linear mapping we now obtain a deeper understand-
ing of tools we are given by vector spaces for linear modeling
of processes and systems.

The point of this procedure is to transform a given se-
quence of independent generators vy, . . . , vy of a finite dimen-
sional space V' into an orthogonal set of independent genera-
tors of V.

GRAMM-SCHMIDT ORTHOGONALIZATION

Proposition. Let (u1, ..., ux) be a linearly independent k-
tuple of vectors of a space V with scalar product. Then
there exists an orthogonal system of vectors (v, ..., Vg)
such that v; € span{uy,...,u;}, and span{uy,...,u;} =
span{vy,...,v;}, foralli = 1,..., k. We obtain it by the
Jfollowing procedure:
o The independence of the vectors u; ensures that uy # 0;
we choose v1 = uj.
o [f we have already constructed the vectors vy, ...,V
with the required properties and if { < k, we choose

Ver1 = Upq1 + @101 + -+ + apvy, where a; =
_<ul+lavi>
llvill?

Proor. We begin with the first (nonzero) vector v; and
calculate the orthogonal projection vy to

span{v; }* C span{vy,vo }.

The result is nonzero if and only if vq is independent of v;.
All other steps are similar:

Instep ¢, ¢ > 1 we seek the vector vgy1 = ugy1 +aiv1+
-+ + apvy satisfying (vey1,v;) = 0foralli =1,...,¢. This
implies

0 = (ugy1 +ar1vi + -+ apve, v;) = (U1, V) + ;i (Vs v5)

and we can see that the vectors with the desired properties are
determined uniquely up to a scalar multiple. g

Whenever we have an orthogonal basis of a vector space
V', we just have to normalise the vectors in order to obtain
an orthonormal basis. Thus, starting the Gramm-Schmidt or-
thogonalization with any basis of V', we have proven:

Corollary. On every finite dimensional real vector space
with scalar product there exists an orthonormal basis.

In an orthonormal basis, the coordinates and orthogonal
projections are very easy to calculate. Indeed, suppose we
have an orthonormal basis (e1, . .., e,) for a space V. Then
every vector v = x1e1 + - - - + e, satisfies

(e, v) = (es,w1e1 + - -+ + Tpen) = T

and so we can always express

(1) v = (e, v)e; + -+ (en,v)en.

If we are given a subspace W C V and its orthonormal
basis (e1,...,ex), then we can extend it to an orthonormal
basis (eq, ..., e,) for V. Orthogonal projection of a general

vector v € V to W is then given by the expression

v (e1,v)er + -+ + (en, V)eg.
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2,E.9. Consider complex numbers as a real vector space and
choose 1 and 7 for its basis. Determine in this basis the matrix
of the following linear mappings:

a) conjugation,

b) multiplication by the number (2 + ).

Determine the matrix of these mappings in the basis i =
(T =1), (1 +1)).

Solution. In order to determine the matrix of a linear map-
ping in some basis, it is enough to determine the images of
the basis vectors.

a) For conjugation we have 1 — 1,7 — —3, written in the
coordinates (1,0) — (1,0) and (0, 1) — (0, —1). By writing

1 0

0 —-1)°
In the basis f the conjugation interchanges basis vectors, that
is, (1,0) — (0,1) and (0,1) ~ (1,0) and the matrix of
0 1
1 0/

b) For the basis (1,47) we obtain 1 +— 2 44,7 — 27 — 1,
that is, (1,0) — (2,1), (0,1) — (2, —1). Thus the matrix of
multiplication by the number 2 + 4 under the basis (1,7) is:

2 -1
1 2 )

We determine the matrix in the basis f. Multiplication by

(2+1) givesus: (1—i) — (1—2)(2+14) = 3—4, (1+4) — (1+

3i). Coordinates (a,b) of the vector 3 — i in the basis f are

the images into the columns we obtain the matrix

conjugation under this basis is

given, as we know, by the equation a-(1—i)+b-(144) = 341,
thatis, (3 +1); = (2,1). Analogously (1 + 3i); = (—1,2).
2 -1
1 2
Think about the following: why is the matrix of multi-

Altogether, we obtain the matrix

plication by 2 + ¢ the same in both bases? Would the two
matrices in these bases be the same for multiplication by any

complex number? ]

2.E.10. Determine the matrix A which, under the standard
basis of the space R?, gives the orthogonal projection on the
vector subspace generated by the vectors u; = (—1,1,0) and
uz = (—1,0,1).

Solution. Note first that the given subspace is a plane contain-
ing the origin with normal vector uz = (1, 1, 1). The ordered
triple (1,1, 1) is clearly a solution to the system

+ T2 = 07
+ z3 = 0,

—1
—1

that is, the vector ug is perpendicular to the vectors uy, ua.
Under the given projection the vectors u; and ue must
map to themselves and the vector us on the zero vector. In

In particular, we need only consider an orthonormal basis of
the subspace W in order to write the orthogonal projection to
W explicitly.

Note that in general the projection f to the subspace W
along U and the projection g to U along W is constrained by
the equality ¢ = idy —f. Thus, when dealing with orthog-
onal projections to a given subspace W, it is always more
efficient to calculate the orthonormal basis of that space W
or W+ whose dimension is smaller.

Note also that the existence of an orthonormal basis guar-
antees that for every real space V' of dimension n with a scalar
product, there exists a linear mapping which is an isomor-
phism between V' and the space R™ with the standard scalar
product (i.e. respecting the scalar products as well). We saw
already in Theorem 2.3.18 that the desired isomorphism is
exactly the coordinate assignment. In words — in every or-
thonormal basis the scalar product is computed by the same
formula as the standard scalar product in R™.

The constant coeflicient is the determinant |A|. We shall
see later that this coefficient describes how much the linear
mapping scales the volumes.

We shall return to the questions of the length of a vector
and to projections in the following chapter in a more general
context.

2.3.21. Angle between two vectors. As we have already
noted, the angle between two linearly independent vectors in
the space must be the same as when we consider them in the
two-dimensional subspace they generate. Basically, this is the
reason why the notion of angle is independent of the dimen-
sion of the original space. If we choose an orthogonal basis
such that its first two vectors generate the same subspace as
the two given vectors u and v (whose angle we are measuring),
we can simply take the definition from the planar geometry.
Independently of the choice of coordinates we can formulate
the definition as follows:

ANGLE BETWEEN TWO VECTORS

The angle ¢ between two vectors v and w in a vector space
with a scalar product is given by the relation

(v, w)

cosp = .
[[ollf|w]|

The angle defined in this way does not depend on the order
of the vectors v, w and it is chosen in the interval 0 < ¢ < 7.

We shall return to scalar products and angles between
vectors in further chapters.

2.3.22. Multilinear forms. The scalar product was given as

a mapping from the product of two copies of a
: ) vector space V' into the space of scalars, which
" was linear in each of its arguments. Similarly,
e we will work with mappings from the product
of k copies of a vector space V into the scalars, which are
linear in each of its k arguments. We speak of k-linear forms.
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the basis composed of uj, ug, us (in this order) is thus the
matrix of this projection

1 00
010
0 00

Using the the transition matrix for changing the basis

-1 -1 1 _1 2 1
T=11 0 1 A N S
B 0 1 1 ’ B 13 13 :%
3 3 3

from the basis (u1, ug, ug) to the standard basis, and from the

standard basis to the basis (u1, us, u3) we obtain

-1 -1 1 1 00 -z 2 -1
_ I R
A=1 0 1])-10 1 0]}- 3 53
0 1 1 000 3 3
2 _1 _1
B U L
IS ORI
3 3 3
O
F. Inner products and linear maps
2.F.1. Write down the matrix of the mapping of orthogonal

projection on the plane passing through the origin and per-

pendicular to the vector (1,1, 1).

Solution. The image of an arbitrary point (vector) x =
(21,2, 23) € R? under the considered mapping can be ob-
tained by subtracting from the given vector its orthogonal pro-
jection onto the direction normal to the considered plane, that

is, onto the direction (1, 1,1). This projection p is given by

(see 1) as
(x,(1,1,1))
(1,1, 1))
$1+.’L’2+$3 1’1+£L’2+£L’3 1’1+£L’2+£L’3
= 3 ’ 3 ’ 3 )

The resulting mapping is thus

X—=Pp
_(2.’151 To + X3 21’2 1+ 3 2%5 I +ILQ)_
3 3 73 3 73 3 B
2 1 1
£ —z =z T
B R L x;
i 3 2?
-3 T3 3 L3

We have (correctly) obtained the same matrix as in the exer-
cise 2.E.10. 0

Most often we will meet bilinear forms, that is, the case
a: V xV — K, where for any four vectors u, v, w, z and
scalars a, b, ¢ and d we have

alau + bv, cw + dz) = aca(u, w) + ad a(u, z)
+ bea(v,w) + bd a(v, z).

If additionally we always have
a(u,w) = a(w,u),

then we speak of a symmetric bilinear form. If interchang-
ing the arguments leads to a change of sign, we speak of an
antisymmetric bilinear form.

Already in planar geometry we have defined the determi-
nant as a bilinear antisymmetric form c, that is, «(u, w) =
—a(w, u). In general, due to the theorem 2.2.5, we know that
the determinant with dimension n can be seen as an n-linear
antisymmetric form.

As with linear mappings it is clear that every k-linear
form is completely determined by its values on all k-tuples of
basis elements in a fixed basis. In analogy to linear mappings
we can see these values as k-dimensional analogues to matri-
ces. We show this by an example with k = 2, where it will
correspond to matrices as we have defined them.

MATRIX OF A BILINEAR FORM

If we choose a basis u on V' and define for a given bilinear
form « scalars a;; = o(u;, Uj) then we obtain for vectors v,
w with coordinates x and y (as columns of coordinates)

n
E T

OZ(UJU) = A5 T;Y5 = T 'A'ya
i,j=1

where A is a matrix A = (a;;).

Directly from the definition of the matrix of a bilinear
form we see that the form is symmetric or antisymmetric if
and only if the corresponding matrix has this property.

Every bilinear form « on a vector space V' defines a map-
ping V. — V*, v +— «(v, ). Thatis, by placing a fixed vector
in the first argument we obtain a linear form which is the im-
age of this vector. If we choose a fixed basis on a finitely
dimensional space V' and a dual basis V'*, then we have the

mapping
z— (y—azl - A-y).

All this is a matter of convention. Also we may fix the second
vector and get a linear form again.

4. Properties of linear mappings

In order to exploit vector spaces and linear mappings in
modelling real processes and systems in other sciences, we
need a more detailed analysis of properties of diverse types
of linear mappings.
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2.F.2. InR3 write down the matrix of the mirror symmetry
with respect to the plane containing the origin and (1,1,1)

being its normal vector.

Solution. As in 2.F.1 we get the image of an arbitrary vec-
tor x = (21,79,73) € R?® with the help of the orthogonal
projection onto the direction (1, 1, 1). Unlike in the previous
example, we need to subtract the projection twice (see image).

Thus we get the matrix:

T —2p=
v 2xatw3) z2  2(z1ta3) z3 221 +32)
3 3 "3 3 "3 3
1 2 2
. - = x
I T C B N
O R I W
3 T3 3 L3

Second solution. The normed normal vector of the mirror
plane is n = %(1, 1,1). We can express the mirror im-
age of v under the mirror symmetry Z as follows: Z(v) =
v—2v,nn =v—2n-nT -v)=v-2n -nT) v =
((E — 2n - nT)v (where we have used (v,n) = v -n” for
the standard scalar product and the associativity of the matrix

multiplication). We get the same matrix:

10 0\ , (111
E-2n-nT=[0 1 0]-=2(1 1 1
o0 1/ 3\1 11

1 —2 —2

—- -2 1 -2

3\ 2 —2 1

O

2.F.3. Consider R3, with the standard coordinate system. In
the plane z = 0 there is a mirror and at the point [4, 3, 5] there
is a candle. The observer at the point [1, 2, 3] is not aware of
the mirror, but sees in it the reflection of the candle. Where
does he think the candle is?

Solution. Independently of our position, we see the mirror
image of the scene in the mirror (that is why it is called a
mirror image). The mirror image is given by reflecting the
scene (space) by the plane of the mirror, the plane z = 0.
The reflection with respect to this plane changes the sign of
the z-coordinate. That is we can see the candle at the point
[4,3, —5]. O

By using the inner product we can determine the (angu-
lar) deflection of the vectors:

2.4.1. We begin with four examples in the lowest dimen-
.. sionofinterest. With the standard basis of

.. the plane R? and with the standard scalar
/2~ product we consider the following matri-
7™ ces of mappings f : R? — R2:

a- (s g>,B=(8 )= )= )

The matrix A describes the orthogonal projection along the
subspace

W ={(0,a); a € R} C R?
to the subspace
V ={(a,0); a € R} C R?

that is, the projection to the z-axis along the y-axis. Evidently
for this f : R? — R? we have f o f = f and thus the restric-
tion f|y of the given mapping on its codomain is the identity
mapping. The kernel of f is exactly the subspace W.

The matrix B has the property B> = 0, therefore the
same holds for the corresponding mapping f. We can envi-
sion this as the differentiation of polynomials R, [] of degree
at most one in the basis (1, x) (we shall come to differentia-
tion in chapter five, see 5.1.6).

The matrix C' gives a mapping f, which rescales the first
vector of the basis a-times, and the second one b-times. There-
fore the whole plane divides into two subspaces, which are
preserved under the mapping and where it is only a homothety,
that is, scaling by a scalar multiple (the first case was a spe-
cial case with @ = 1, b = 0). For instance the choice a = 1,
b = —1 corresponds to axial symmetry (mirror symmetry)
under the z-axis, which is the same as complex conjugation
x+iy — z—iy on the two-dimensional real space R? ~ C in
basis (1,4). This is a linear mapping of the two-dimensional
real vector space C, but not of the one-dimensional complex
space C.

The matrix D is the matrix of rotation by 90 degrees (the
angle 7/2) centered at the origin in the standard basis. We can
see at first glance that none of the one-dimensional subspaces
is preserved under this mapping.

Such a rotation is a bijection of the plane onto itself,
therefore we can surely find distinct bases in the domain and
codomain, where its matrix will be the unit matrix £. We
simply take any basis of the domain and its image in the
codomain. But we are not able to do this with the same basis
for both the domain and the codomain.

Consider the matrix D as a matrix of the mapping ¢ :
C? — C? with the standard basis of the complex
vector space C2. Then we can find vectors u =
(i,1), v = (—1i, 1), for which we have

(8- ()
o= ) ()= ()

116



CHAPTER 2. ELEMENTARY LINEAR ALGEBRA

2.F4. Determine the deflection of the roots of the polyno-

mial 22 — i considered as vectors in the complex plane.

Solution. The roots of the given polynomial are square roots
of ¢. The arguments of the square roots of any complex num-
bers differ according to the de Moivre theorem by 7. Their

deflection is thus always 7. ]

2.F.5. Determine the cosine of the deflection of the lines p, ¢
in R3 given by the equations
p : 2x+y+z=1
r+3y—4z=5
q @ r—y=-2
z=26
O

2.F.6. Using the Gram-Schmidt orthogonalisation, obtain
the orthogonal basis of the subspace

U= {(z1,22,23,24)" €RY 21 4+ 22+ 235+ 24 =0}
of the space R,

Solution. The set of solutions of the given homogeneous lin-

ear equation is clearly a vector space with the basis

-1 -1 -1
1 0 0
Uy = 0 s Ug = 1 s us = 0
0 0 1

shall be denoted Denote by vy, v, v3, vectors of the orthogo-

nal basis obtained using the Gram-Schmidt orthogonalisation

process.
First set v1 = uy. Then let
T
-1 1 1 1
V2 = U2 — || ||2 _U22’U1_<2,27170) )
that is, choose a multiple v, = (-1, —1,2, O)T. Then let
ugml ugmg 1 1
V3 = U3 — V1 — Vg = U3 — — V1 — S Uy =
T P e T 27 6
1 1 1 \"
= _77_77_771 .
3" 3 3
Altogether we have
-1 -1 -1
R ! -1
Ul— O bl 'U2— 2 bl ’UJ_ 71
0 0 3

Due to the simplicity of the exercise we can immediately give
an orthogonal basis of the vectors

(]-,7]-7030)11 (07071771)11 (]-7]-771371)71

That means that in the basis (u,v) on C2, the mapping g has

the matrix
i 0
k=(i %),

Notice that by extending the scalars to C, we arrive at an anal-
ogy to the matrix C' with diagonal elements a = cos(%w) +
isin(%ﬂ) and its complex conjugate a. In other words, the
argument of the number a in polar form provides the angle of
the rotation.

This is easy to understand, if we denote the real and imag-

inary part of the vector u as follows

U =2y + 1Yy, =Reu+ilmu = <(1)>+Z ((1))

The vector v is the complex conjugate of u. We are interested
in the restriction of the mapping g to the real vector subspace
V = R? Nspang{u,v} C C?. Evidently,

V = spang {u + @, i(u — @)} = spang (.., 3.}

is the whole plane R?. The restriction of g to this plane is
exactly the original mapping given by the matrix D (notice
this matrix is real, thus it preserves this real subspace). It is
immediately seen that this is the rotation through the angle %7‘(‘
in the positive sense with respect to the chosen basis ,,, —¥.,.
Work it by yourself with a direct calculation. Note also why
exchanging the order of the vectors u and v leads to the same
result, although in a different real basis!

2.4.2. Eigenvalues and eigenvectors of mappings. A key
7 o the description of mappings in the previous

examples was the answer to the question “what
A% =~ — are the vectors satisfying the equation f(u) =
a-u for some suitable scalars a?”.

We consider this question for any linear mapping f :
V' — V on a vector space of dimension n over scalars K.
If we imagine such an equality written in coordinates, i.e. us-
ing the matrix of the mapping A in some bases, we obtain a
system of linear equations

A-z—a-z2=(A—-a-E)-2=0

with an unknown parameter a. We know already that such a
system of equations has only the solution x = 0 if the matrix
A—aF is invertible. Thus we want to find such values a € K
for which A — a F is not invertible, and for that, the necessary
and sufficient condition reads (see Theorem 2.2.11)

(1 det(A—a-E)=0.

If we consider A = a as a variable in the previous scalar equa-
tion, we are actually looking for the roots of a polynomial of
degree n. As we have seen in the case of the matrix D, the
roots may exist in an extension of our field of scalars, if they
are not in K.
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or

(_Llalv_l)Ta (13_171a_1)T (_17_131?1)T

O

2.F.7. Write down a basis of the real vector space of the ma-
trices 3 X 3 over R with zero trace. (The trace of a matrix is the
sum of the elements on the diagonal). Write the coordinates

of the matrix

1 2 0
0 2 0
1 -2 -3

in this basis.

2.F.8. Find the orthogonal complement U~ of the subspace

U= {(x1,22,23,24); x1 = T3,09 = x3 + 624} C R

Solution. The orthogonal complement U~ consists of just
those vectors that are perpendicular to every solution of the
system
1 — I3 = 0,
€T9 — I3 — 6]74 = 0.
A vector is a solution of this system if and only if it is perpen-
dicular to both vectors (1,0, —1,0), (0,1, —1, —6). Thus we

have

+={a-(1,0,-1,0) +b-(0,1,-1,—6); a,b € R}.

O

2.F.9. Find an orthonormal basis of the subspace V C R,
where V = {(z1, 22,73, 14) € R* |21 + 229 + 23 = 0}.

Solution. The fourth coordinate does not appear in the re-
striction for the subspace, thus it seems reasonable to select
(0,0,0, 1) as one of the vectors of the orthonormal basis and
reduce the problem into the subspace R?. If we set the second
coordinate equal to zero, then in the investigated space there

are vectors with reverse first and third coordinate, notably, the
s %7
any vector which has first coordinate equal to the third coordi-

unit vector (%, 0 0). This vector is perpendicular to

nate. In order to get into the investigated subspace, we choose

the second coordinate equal to the negative of the sum of the

first and the third coordinate, and then normalise. Thus we
2 1 .

choose the vector (—= NN 0) and we are finished. O

EIGENVALUES AND EIGENVECTORS

Scalars A € K satisfying the equation f(u) = X - u for
some nonzero vector u € V are called the eigenvalues of
mapping f. The corresponding nonzero vectors u are called
the eigenvectors of the mapping f.

If u, v are eigenvectors associated with the same eigen-
value A, then for every linear combination of u and v,

flau+bv) = af(u) +bf(v) = Alau + bv).

Therefore the eigenvectors associated with the same eigen-
value A, together with the zero vector, form a nontrivial vector
subspace V), C V. We call it the eigenspace associated with
A. For instance, if A = 0 is an eigenvalue, the kernel Ker f is
the eigenspace Vj.

We have seen how to compute the eigenvalues in coordi-
nates. The independence of the eigenvalues from the choice
of coordinates is clear from their definition. But let us look
explicitely what happens if we change the basis. As a direct
corollary of the transformation properties from the paragraph
2.3.16 and the Cauchy theorem 2.2.7 for calculation of the
determinant of product, the matrix A’ in the new coordinates

will be A" = P~* AP with an invertible matrix P. Thus
|P~YAP — \E| = |[P"*AP — P \EP|
= |P (A - \E)P|
P4 - AB)|IP)
— A=A,

because the scalar multiplication is commutative and we
know that |[P~1| = |P|~L.

For these reasons we use the same terminology for ma-
trices and mappings:

CHARACTERISTIC POLYNOMIALS

For a matrix A of dimension n over K we call the polyno-
mial |[A — AE| € K, [A] the characteristic polynomial of the
matrix A.

Roots of this polynomial are the eigenvalues of the ma-
trix A. If A is the matrix of the mapping f : V — V ina
certain basis, then |A — AE] is also called the characteristic
polynomial of the mapping f.

Because the characteristic polynomial of a linear map-
ping f : V — V is independent of the choice
'__of the basis of V, the coeflicients of individual
powers of the variable X are scalars expressing
4 some properties of f. In particular, they too can-
not depend on the choice of the basis. Suppose dimV = n
and A = (a;;) is the matrix of the mapping in some basis.
Then

JA—X-E| =(=1)"\" + (-
+ o+ AN

The coefficient at the highest power says whether the dimen-
sion of the space V is even or odd.

D™ HNayg + -+ app) A"
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G. Eigenvalues and eigenvectors

2.G.1. Find the eigenvalues and the associated subspaces
= of eigenvectors of the matrix
R I -1 1 0
A=1-1 3 O
2 -2 2

Solution. First we find the characteristic polynomial of the
matrix:
—1-A 1 0
-1 3—-A 0
2 -2 2=

=X\ — 4\ 420N+ 4.

This polynomial has roots 2, 1 + v/3, 1 — /3, which are then
the eigenvalues of the matrix. Their algebraic multiplicity is
one (they are simple roots of the polynomial), thus each has
associated only one (up to a non-zero multiple) eigenvector.
Otherwise stated, the geometric multiplicity of the eigenvalue
is one, see 3.4.10).

We determine the eigenvector associated with the eigen-
value 2. It is a solution of the homogeneous linear system with
the matrix A — 2E:

—3x1+z22 = 0
—lxi1+22 = 0
2I1 - 2562 = 0.

The system has solution 1 = z9 = 0, 3 € R arbitrary. So
the eigenvector associated with the value 2 is then the vector
(0,0, 1) (or any multiple of it).

Similarly we determine the remaining two eigenvectors
— as solutions of the system [A — (1 + v/3)E]x = 0. The
solution of the system

(72 — \/g)xl +x9 = 0
—11’1 + (2 - \/g).’EQ = 0
2x1 — 229 + (1 - \/g).fﬂg = 0

is the space {(2 — v/3,1,2) ¢, t € R}.

That is the space of eigenvectors associated with the
eigenvalue 1 + \/3

Similarly we obtain that the space of eigenvectors associ-
ated with the eigenvalue 1 — v3is {(2+/3,1,-2)¢t, t €
R}. |

2.G.2. Determine the eigenvalues and eigenvectors of the

matrix

The most interesting coefficient is the sum of the diago-
nal elements of the matrix. We have just proved that it does
not depend on the choice of the basis and we call it the trace of
the matrix A and denote it by Tr A. The trace of the mapping
f is defined as a trace of the matrix in an arbitrary basis.

In fact, this is not so surprising once we notice that the
trace is actually the linear approximation of the determinant
in the neighbourhood of the unit matrix in the direction A. We
shall deal with such concepts in Chapter 8 only. But since the
determinant is a polynomial, we may see easily that the only
terms in det(E +tA) which are linear in the real parameter ¢
are just the trace. We shall see relation to matrix exponential
later in Chapter 8.

The coefficient at A\ is the determinant | A| and we shall
see later that it describes the rescaling of volumes by the map-

ping.

2.4.3. Basis of eigenvectors. We discuss a few important
properties of eigenspaces now.

Theorem. Eigenvectors of linear mappings f : V. — V as-
sociated to different eigenvalues are linearly independent.

Proor. Let aj,...,a, be distinct eigenvalues of the
. mapping f and wuq,...,u; eigenvectors with these
eigenvalues. The proof is by induction on the num-
42 ber of linearly independent vectors among the chosen
ones.
Assume that uq,...,u, are linearly independent and
Upp1 = Zl c;u; is their linear combination. We can choose
¢ = 1, because the eigenvectors are nonzero. But then

l .
fueg1) = aig1 - w1 = D, Qi1 - G - Uy, that is,

g

l l l
flui1) = ZQZ—H “Cit Uy = Zczf(uz) = Zci’ai'ui'
i=1 i=1 i=1

By subtracting the second and the fourth expression in the
equalities we obtain 0 = Zézl(al_l,_l — a;) - ¢; - u;. All the
differences between the eigenvalues are nonzero and at least
one coefficient ¢; is nonzero. This is a contradiction with the
assumed linear independence uq, ..., uy, therefore also the
vector u;41 must be linearly independent of the others. [

The latter theorem can be seen as a decomposition of
45 .~ a linear mapping f into a sum of much sim-
/ /' pler mappings. If there are n = dim V distinct
} eigenvalues \;, we obtain the entire V' as a di-
rect sum of one-dimensional eigenspaces V),. Each of them
then describes a projection on this invariant one-dimensional
subspace, where the mapping is given just as multiplication
by the eigenvalue A;.
Furthermore, this decomposition can be easily calcu-
lated:
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Describe the geometric interpretation of this mapping and

write down its matrix in the basis:

€1 = (L_l»l)
€2 = (17270)
€3 = (07131)

Solution. The characteristic polynomial of the matrix A is

1-A 1 0
1 2—-A 1
1 2 1-XA

The roots of this polynomial are the eigenvalues, thus the

= N3 H4NZ 20 = —A(N2—4)42).

eigenvalues are 0, 2 + \/5, 2 — /2. Thus eigenvalues are
0,2+ /2,2 — /2. We compute the eigenvectors associated

with the particular eigenvalues:

e (: We solve the system

1 1 0 il
1 2 1 x| =0
1 2 1 T3
Its solutions form a one-dimensional vector space of

1,-1,1)}.
e 24 1/2: We solve the system
-1+v2) 1 0 1
1 -2 1 9
1 2 —(1+v2)) \a3
The solutions form a one-dimensional space span{(1, 1+
V2,1+v2)}.
e 2 — 1/2: We solve the system

(\/ﬁ -1 1 0 1

1 V2 1 T2

1 2 (vV2-1)) \=s3

Its solutions form a space of eigenvectors span{ (1,1 —

V2,1 -2)}.

Hence the given matrix has eigenvalues 0, 2 + /2 and

eigenvectors: spanf (

2 — /2, with the associated one-dimensional spaces of eigen-
vectors span{(1, —1,1)}, span{(1,1 + /2,1 + v/2)} and
span{(1,1 — /2,1 — \/2)} respectively.

The mapping can thus be interpreted as a projection
along the vector (1, —1, 1) into the plane given by the vectors
(1,14++/2,1++/2)and (1,1 — /2,1 — v/2) composed with
the linear mapping given by “stretching” by the factor corre-
sponding to the eigenvalues in the directions of the associated

eigenvectors.

BASIS OF EIGENVECTORS

Corollary. If there exist n mutually distinct roots \; of the
characteristic polynomial of the mapping f : V — V on the
n-dimensional space V., then there exists a decomposition of
V into a direct sum of eigenspaces each of dimension one.
This means that there exists a basis for V' consisting only of
eigenvectors and in this basis the matrix for f is the diago-
nal matrix with the eigenvalues on the diagonal. This basis
is uniquely determined up to the order of the elements and
scale of the vectors.

The corresponding basis (expressed in the coordinates
in an arbitrary basis of V') is obtained by solving n systems
of homogeneous linear equations of n variables with matri-
ces (A — \; - E), where A is the matrix of f in a chosen
basis.

244. Invarlant subspaces. We have seen that every eigen-
vector v of the mapping f : V' — V generates
"' asubspace span{v} C V, which is preserved
by the mapping f.

More generally, we say that a vector sub-
space W C V is an invariant subspace for a linear mapping

If V isa ﬁnite dimensional vector space and we choose
some basis (u1, ..., uy) of a subspace W, we can always ex-
tend it to be a basis (u1, . .., ug, Uk+1,. - . , Up ) for the whole
space V. For every such basis, the mapping will have a matrix

A of the form
B C
= (5 5)

where B is a square matrix of dimension k, D is a square
matrix of dimension n — k and C' is a matrix of the type
n/(n — k). On the other hand, if for some basis (u1, ..., uy,)
the matrix of the mapping f is of the form (1), then W =
span{uy, ..., ug} is invariant under the mapping f.

By the same arguments, the mapping with the matrix A
as in (1) leaves the subspace span{uy1, ..., u,} invariant,
if and only if the submatrix C' is zero.

From this point of view the eigenspaces of the mapping
are special cases of invariant subspaces. Our next task is to
find some conditions under which there are invariant comple-
ments of invariant subspaces.

(D

2.4.5. We illustrate some typical properties of mappings on
the spaces R?® and R? in terms of eigenvalues and eigenvec-
tors.

(1) Consider the mapping given in the standard basis by
the matrix A

0 0 1
fRP =R A=(0 1 0
1 00
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Now we express it in the given basis. For this we need the
matrix 7' for changing the basis from the standard basis to the
new basis. This can be obtained by writing the coordinates
of the vectors of the original basis under the new basis into
the columns of the matrix 7'. But we shall do it in a different
way — we obtain first the matrix for changing the basis from
the new one to the original one, that is, the matrix T-1. We
just write the coordinates of the vectors of the new basis into

the columns:

1 10
T-'=[-1 2 1
1 0 1
Then
0 0 1
T=7"'=(1 0 -1},
2 1 3

and for the matrix B of a mapping under new basis we have
(see 2.3.16)

0 5 2
B=TAT'=[0 -2 -1
0 14 6

]
You can find more exercises on computing with eigenval-
ues and eigenvectors on the page 136.
In the case of a 3 X 3 matrix, you can use this special
formula to find its characteristic polynomial:

2.G.3. For any n x n matrix A its characteristic polynomial
| A— X\ E|is of degree n, that is, it is of the form

|A=AE| =cy N +cp1 AV 4o ep Aeo, ¢ # 0,
while we have
Cn=(-1)" ch1=(=1)""ttrA, co=]A|

If the matrix A is three-dimensional, we obtain
|A—AE| ==X+ (trA) N+ A+ ]| A
By choosing A = 1 we obtain
|A-—FE|=—-14+trA4+c+ Al
From there we obtain
|A-AE|=
N4 (trAN+(JA-E|[+1—trA—[A))X+]A].
Use this expression for determining the characteristic polyno-

mial and the eigenvalues of the matrix

32 —67 47
A= 7 -14 13
-7 15 —6

We compute
- 0 1
JA=XE| =0 1-X 0|=-XN4+XN+A-1,
1 0 —-A
with roots Ay = 1, Ao = 1, A3 = —1. The eigenvectors with
eigenvalue A = 1 can be computed:
-1 0 1 1 0 -1
0 0 0f|~({0 0 O0];
1 0 -1 0 0 O

with the basis of the space of solutions, that is, of all eigen-
vectors with this eigenvalue

u; = (0,1,0), wus=1(1,0,1).
Similarly for A = —1 we obtain the third independent eigen-
vector
1 01 1 0 1
0 2 0]~[0 2 0 =u3=(-1,0,1).
1 01 0 0 0

Under the basis u;, u2, us (note that us must be linearly
independent of the remaining two because of the previous the-
orem and u1, us were obtained as two independent solutions)
f has the diagonal matrix

1 0 0
A=10 1 0
0 0 -1

The whole space R? is a direct sum of eigenspaces, R® =
V1 @ Vs, withdim V; = 2, and dim V, = 1. This decomposi-
tion is uniquely determined and says much about the geomet-
ric properties of the mapping f. The eigenspace V is further-
more a direct sum of one-dimensional eigenspaces, which can
be selected in other ways (thus such a decomposition has no
further geometrical meaning).

(2) Consider the linear mapping f : Ra[z] — Ra[z] de-
fined by polynomial differentiation, thatis, f(1) =0, f(z) =
1, f(2%) = 2x. The mapping f thus has in the usual basis
(1, z,2?) the matrix

0 1 0
A=10 0 2
0 0 O

The characteristic polynomial is | A—\- E| = —\3, thus it has
only one eigenvalue, A = 0. We compute the eigenvectors:
010 010
0 0 2|~]0 01
0 0 0 0 00

The space of the eigenvectors is thus one-dimensional, gener-
ated by the constant polynomial 1.

The striking property of this mapping is that is no basis
for which the matrix would be diagonal. There is the “chain”
of vectors mapping four independent generators as follows:
%xQ — x — 1 — 0 builds a sequence of subspaces without

invariant complements.
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2.G4. Find the orthonormal complement of the vec-
torspace spaned by the vectors (2,1,3), (3,16,7), (3,5,4),
(=7,7,-10).

Solution. In fact the task consists of solving the system 2.A.3,
which we have done already. ]

2.G.5. Pauli matrices. In physics, the state of a particle with
Mz spin % is described with Pauli matrices. They are the

/S 2 X 2 matrices over complex numbers:

/01 (0 =i /10
=\ 0)27 G 0) o -1

For square matrices we define their commutator (denoted by
square brackets) as [0, 02] := 0109 — 0207

Show that [01, 02] = 2ic3 and similarly o1, 03] = 2i09
and |09, 03] = 2i0y. Furthermore, show that 07 = 03 =
03 1 and that the eigenvalues of the matrices o1, 02, 03
are £1.

Show that for matrices describing the state of the particle

with spin 1, namely

L (0 10\ | /0 =i 0 10 0
— (10 1)],—=[i o —i],|l0o 0 o
V2o 1 0/ V2\0 i o 00 -1

, the commuting relations are the same as in the case of Pauli
matrices.

Equivalently it can be shown that under the notation

1 = (é (1)> A = i03,J = 109, K := ioy forms the

vector space with basis (1, [, J, K) of an algebra of quater-
nions (the algebra is a vector space with binary bilinear oper-
ation of multiplication, in this case the multiplication is given
by matrix multiplication). In order for the vector space to
be an algebra of quaternions it is necessary and sufficient to
show the following properties: I? = J?> = K? = —1 and
IJ=—-JI=K,JK=—KJ=1and KI = —-IK = J.

2.G.6. Can the matrix

5 6
5= 3)
be expressed in the form of the product B = P! - D - P for
some diagonal matrix D and invertible matrix P? If possible,

give an example of such matrices D, P, and find out how

many such pairs there are.
Solution. The matrix B has two distinct eigenvalues, and
thus such an expression exists. For instance it holds that

(6320 )0 B)4 (% V)

24, 6 Orthogonal mappings. We consider the special case

—, of the mapping f : V — W between spaces
with scalar products, which preserve lengths for
— all vectorsu € V.

ORTHOGONAL MAPPINGS

A linear mapping f : V. — W between spaces with scalar
product is called an orthogonal mapping, if forallu € V

(F(u), f(u) =

(u,u).

The linearity of f and the symmetry of the scalar product
imply that for all pairs of vectors the following equality holds:

(f(ut0), flut0)) = (), f(u) + (f(v), f(v))
+2(f(w), f(v)).

Therefore all orthogonal mappings satisfy also the seemingly
stronger condition for all vectors u,v € V:

(f(u), f(v)) = (u,v),

i.e. the mapping f leaves the scalar product invariant if and
only if it leaves invariant the length of the vectors. (We should
have noticed that this is true for all fields of scalars, where
1+ 1 s 0, but it does hold true for Zs.)

In the initial discussion about the geometry in the plane
we proved in the Theorem 1.5.10 that a linear mapping R? —
R? preserves lengths of the vectors if and only if its matrix
in the standard basis (which is orthonormal with respect to
the standard scalar product) satisfies AT . A = E, that is,
Al = AT,

In general, orthogonal mappings f : V' — W must be
always injective, because the condition (f(u), f(u)) = 0im-
plies (u,u) = 0 and thus u = 0. In such a case, the dimen-
sion of the range is always at least as large as the dimension
of the domain of f. But then both dimensions are equal and
f:V — Im f is a bijection. If Im f # W, we extend the or-
thonormal basis of the image of f to an orthonormal basis of
the range space and the matrix of the mapping then contains
a square regular submatrix A along with zero rows so that it
has the required number of rows. Without loss of generality
we can assume that W = V.

Our condition for the matrix of an orthogonal mapping
in any orthonormal basis requires that for all vectors x and y
in the space K™:

(A-2)" (A-y)=a" - (AT - A)-y=2"y.

Special choice of the standard basis vectors for « and y yields
directly AT - A = E, that is, the same result as for dimension
two. Thus we have proved the following theorem:

MATRIX OF ORTHOGONAL MAPPINGS

Theorem. Let V be a real vector space with scalar product
andlet f : V. — V be a linear mapping. Then f is orthogo-
nal if and only if in some orthogonal basis (and then conse-
quently in all of them) its matrix A satisfies AT = A=1,
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There exist exactly two diagonal matrices D:
(11 0 ) (1 0 )
0o -1/’ 0 11)°
but the columns of the matrix P! can be substituted with
their arbitrary non-zero scalar multiples, thus there are infin-
itely many pairs D, P. ]

As we have already seen in 2.G.2, based on the eigenval-
ues and eigenvectors of the given 3 x 3 matrix, we can often
interpret geometrically the mapping it induces in R®. In par-
ticular, we notice that can do so in the following situations:
If the matrix has O as eigenvalue and 1 as an eigenvalue with
geometric multiplicity 2, then it is a projection in the direc-
tion of the eigenvector associated with the eigenvalue O on
the plane given by the eigenspace of the eigenvalue 1. If the
eigenvector associated with 0 is perpendicular to that plane,
then the mapping is an orthogonal projection.

If the matrix has eigenvalue —1 with the eigenvector per-
pendicular to the plane of the eigenvectors associated with the
eigenvalue 1, then it is a mirror symmetry through the plane
of the eigenvectors associated with 1.

If the matrix has eigenvalue 1 with an eigenvector perpen-
dicular to plane of the eigenvectors associated with the eigen-
value —1, then it is an axial symmetry (in space) through the

axis given by the eigenvector associated with 1.

2.G.7. Determine what linear mapping R — R3 is given

by the matrix
2
T3
4
3
-1

Solution. The matrix has a double eigenvalue —1, its associ-
ated eigenspace is span{(2,0, 1), (1,1,0)}. Further, the ma-
trix has O as the eigenvalue, with eigenvector (1,4, —3). The
mapping given by this matrix under the standard basis is then
an axial symmetry through the line given by the last vector
composed with the projection on the plane perpendicular to
the last vector, that is, given by the equation x + 4y — 3z = 0.

O

2.G.8. The theorem 2.4.7 gives us tools for recognising a
matrix of a rotation in R3. It is orthogonal (rows orthogonal
to each other equivalently the same for the columns). It has
three distinct eigenvalues with absolute value 1. One of them
is the number 1 (its associated eigenvector is the axis of the
rotation). The argument of the remaining two, which are nec-

essarily complex conjugates, gives the angle of the rotation

Proor. Indeed, if f preserves lengths, it must have the
claimed property in every orthonormal basis. On the other
hand, the previous calculations show that this property for the
matrix in one such basis ensures length preservation. O

Square matrices which satisfy the equality A7 = A~!
are called orthogonal matrices.
The shape of the coordinate transition matrices between
; orthonormal bases is a direct corollary of the
@A above theorem. Each such matrix must provide a
3 3§ﬁ mapping K* — K" which preserves lengths and
: thus satisfies the condition S~! = ST, When
changing from one orthonormal basis to another one, the ma-
trix of any linear mapping changes according to the relation

A =58TAS.

2.4.7. Decomposition of an orthogonal mapping. We take
a more detailed look at eigenvectors and eigenvalues of or-
thogonal mappings on a real vector space V' with scalar prod-
uct.

Consider a fixed orthogonal mapping f : V — V with
the matrix A in some orthonormal basis. We continue as with
the matrix D of rotation in 2.4.1.

We think first about invariant subspaces of orthogonal
mappings and their orthogonal complements. Namely, given
any subspace W C V invariant with respect to an orthogonal
mapping f : V — V., thenforallv € W+ and w € W we
immediately see

(f(v),w) = (f(v), fo fH(w)) = (v, fH(w)) =0

since f~1(w) € W, too. But this means that also f(W+) C
W+ and we have proved a simple but very important propo-
sition:

Proposition. The orthogonal complement of a subspace in-
variant with respect to an orthogonal mapping is also invari-
ant.

If all eigenvalues of an orthogonal mapping are real, this
1 claim ensures that there always exists a basis of V'
= % composed of eigenvectors. Indeed, the restriction of

= &2 f to the orthogonal complement of an invariant sub-

A space is again an orthogonal mapping, therefore we
can add one eigenvector to the basis after another, until we
obtain the whole decomposition of V. However, mostly the
eigenvalues of orthogonal mappings are not real. We need to
deviate into complex vector spaces. We formulate the result
right away:
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in the positive sense in the plane given by the basis uy + wy,

i(U)\ — TA)

2.G.9. Determine what linear mapping is given by the ma-

3 16 12
5 25 25

—16 93 24
25 125 125
12 24 107
25 125 125

Solution. First we notice, that the matrix is orthogonal
(rows are mutually orhogonal, and equivalently the same with
columns). The matrix has the following eigenvalues and cor-
(0,1,5) 3
, 24). All three eigenval-

responding eigenvectors: 1, v; = + %7:,1}2 =
2

(1,84, —2i); 2 — 2i,03 = (1,—%
ues have absolute value one, which together with the obser-
vation of orthogonality tells us that the matrix is a matrix of
rotation. Its axis is given by the eigenvector corresponding
to the eigenvalue 1, that is the vector (0, 1, %) The plane
of rotation is the real plane in R3, which is given by the in-
tersection of two dimensional complex space in C® gener-
ated by the remaining eigenvectors with R3. It is the plane
span{(1,0,0), (0, —4, 3)} (the first generator is the (real mul-
tiple of) v2 + w3, the other one is the (real multiple of)
i(ve —v3), see 2.4.7). We can determine the rotation angle in
this plane, It is a rotation by the angle arccos(2) = 0,295,
which is the argument of the eigenvalue % + %i (or minus that
number, if we would choose the other eigenvalue).

It remains to determine the direction of the rotation. First,
recall that the meaning of the direction of the rotation changes
when we change the orientation of the axis (it has no mean-
ing to speak of the direction of the rotation if we do not have
an orientation of the axis). Using the ideas from the proof of
the theorem 2.4.7, we see that the given matrix acts by rotat-

3

ing by arccos(z)) in the positive sense in the plane given by

the basis ((1,0,0), (0, —%, 2)). The first vector of the basis
is the imaginary part of the eigenvector associated with the
eigenvalue % + %z the second is then the (common) real part
of the eigenvectors associated with the complex eigenvalues.
The order of the vectors in the basis is important (by changing
their order the meaning of the direction changes). The axis
of rotation is perpendicular to the plane. If we orient using
the right-hand rule (the perpendicular direction is obtained
by taking the product of the vectors in the basis) then the di-
rection of the rotation agrees with the direction of rotation in
the plane with the given basis. In our case we obtain by the
vector product (0,1, —1) x (1,1,—-1) = (0,—1,—1). Itis

ORTHOGONAL MAPPING DECOMPOSITION

Theorem. Let f : V — V be an orthogonal mapping on a
real vector space V with scalar product. Then all the (in gen-
eral complex) roots of the characteristic polynomial f have
length one. There exists the decomposition of V into one-
dimensional eigenspaces corresponding to the real eigen-
values \ = +1 and two-dimensional subspaces Py x with
A € C\R, where f acts by the rotation by the angle equal to
the argument of the complex number X in the positive sense.
All these subspaces are mutually orthogonal.

Proor. Without loss of generality we can work with the
G\ space V = R™ with the standard scalar prod-
@y, uct. The mapping is thus given by an orthogo-

complex space C™ (which just happens to have all of its co-
efficients real).

There exist exactly m (complex) roots of the character-
istic polynomial of A, counting their algebraic multiplicities
(see the fundamental theorem of algebra, 12.2.8). Further-
more, because the characteristic polynomial of the mapping
has only real coefficients, the roots are either real or there are
a pair of roots which are complex conjugates A and \. The
associated eigenvectors in C™ for such pairs of complex con-
jugates are actually solutions of two systems of linear homo-
geneous equations which are also complex conjugate to each
other — the corresponding matrices of the systems have real
components, except for the eigenvalues A. Therefore the so-
lutions of this systems are also complex conjugates (check
this!).

Next, we exploit the fact that for every invariant sub-
space its orthogonal complement is also invariant. First we
find the eigenspaces V., associated with the real eigenval-
ues, and restrict the mapping to the orthogonal complement
of their sum. Without loss of generality we can thus assume
that our orthogonal mapping has no real eigenvalues and that
dimV =2n > 0.

Now choose an eigenvalue ) and let u ) be the eigenvector
in C?" associated to the eigenvalue A\ = o + i3, 3 # 0.
Analogously to the case of rotation in the plane discussed in
paragraph 2.4.1 in terms of the matrix D, we are interested
in the real part of the sum of two one-dimensional (complex)
subspaces W = span{uy} @ span{u,}, where u, is the
eigenvector associated to the conjugated eigenvalue ).

Now we want the intersection of the 2-dimensional com-
plex subspace W with the real subspace R?" C C2", which
is clearly generated (over R) by the vectors uy + 4y and
i(ux — ). We call this real 2-dimensional subspace P, 5 C
R2" and notice, this subspace is generated by the basis given
by the real and imaginary part of uy

:L')\:Re’u,)\, 7y)\:71m’u,)\.
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thus a rotation through arccos( ) in the positive sense about
the vector (0, —1, —1), that is, a rotation through arccos(2)

in the negative sense about the vector (0,1, 1). O

2.G.10. Determine what linear mapping is given by the ma-

trix

|
—
‘ I
—

oo ol o
ool
ol v ouee
Lo
Tlw Ut ot

Solution. By already known method we find out that the ma-
trix has the following eigenvalues and corresponding eigen-
%z‘, (1,1 —4,—1 + i). Though all three eigenvectors have

absolute value 1, they are not orthogonal to each other, thus

vectors:

the matrix is not orthogonal. Consequently it is not a ma-
trix of rotation. Nevertheless, it is a linear mapping which is
"close" to a rotation. It is a rotation in the plane given by two
complex eigenvectors (but this plane is not orthogonal to the
vector (1,2,0), but it is preserved by the map). It remains to
determine the direction of the rotation. First, we should re-
call that the meaning of the direction of the rotation changes
when we change the orientation of the axis (it has no meaning
to speak of the direction of the rotation if we do not have an
orientation of the axis).

Using the same ideas as in the previous example, we see

that the given matrix acts by rotating by arccos(2)) in the pos-

-1),(0,1,).

The first vector of the basis is the imaginary part of the eigen-

itive sense in the plane given by the basis ((1, 1,
vector associated with the eigenvalue % + %7 the second
is then the (common) real part of the eigenvectors associ-
ated with the complex eigenvalues. The order of the vec-
tors in the basis is important (by changing their order the
meaning of the direction changes). The "axis" of rotation
is not perpendicular to the plane, but we can orient the vec-
tors lying in the whole half-plane using the right-hand rule
(the perpendicular direction is obtained by taking the prod-
uct of the vectors in the basis) then the direction of the ro-
tation agrees with the direction of rotation in the plane with
the given basis. In our case we obtain by the vector prod-
uct (0,1,—-1) x (1,1,-1) = (0,—1,—1). It is thus a rota-
tion through arccos( ) in the positive sense about the vector
(0,-1,—
tive sense about the vector (0, 1,1). O

1), that is, a rotation through arccos( ) in the nega-

Because A - (uy + %)) = Auy + Ay and similarly with the
second basis vector, it is clearly an invariant subspace with
respect to multiplication by the matrix A and we obtain

A-xy=axy+ Byx, A-yx = —ayx + B

Because our mapping preserves lengths, the absolute value
of the eigenvalue A must equal one. But that means that the
restriction of our mapping to P, 5 is the rotation by the argu-
ment of the eigenvalue A. Note that the choice of the eigen-
value X instead of \ leads to the same subspace with the same
rotation, we would just have expressed it in the basis z, ya,
that is, the same rotation will in these coordinates go by the
same angle, but with the opposite sign, as expected.

The proof of the whole theorem is completed by restrict-
ing the mapping to the orthogonal complement and finding
another 2-dimensional subspace, until we get the required de-
composition. (]

We return to the ideas in this proof once again in chapter
three, where we study complex extensions of the Euclidean
vector spaces, see 3.4.4.

Remark. The previous theorem is very powerful in dimen-
sion three. Here at least one eigenvalue must
~*, be real &1, since three is odd. But then the as-
sociated eigenspace is an axis of the rotation of
the three-dimensional space through the angle
glven by the argument of the other eigenvalues. Try to think
how to detect in which direction the space is rotated. Note
also that the eigenvalue —1 means an additional reflection
through the plane perpendicular to the axis of the rotation.

./img/0163b. jpg

We shall return to the discussion of such properties of
matrices and linear mappings in more details at the end of the
next chapter, after illustrating the power of the matrix calculus
in several practical applications. We close this section with a
general quite widely used definition:
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2.G.11. Without any written computation determine the spec- SPECTRUM OF LINEAR MAPPING

trum of the linear mapping f : R® — R3 given by

2.4.8. Definition. The spectrum of a linear mapping f :
(.731,]327.’63) — (Il + x3,%2,21 +’E3) Q

V' — V, or the spectrum of a square matrix A, is a sequence
2.G.12. Find the dimension of the eigenspaces of the eigen-  Of roots of the characteristic polynomial f or A, along with
their multiplicities, respectively. The algebraic multiplicity
of an eigenvalue means the multiplicity of the root of the
characteristic polynomial, while the geometric multiplicity
of the eigenvalue is the dimension of the associated subspace
of eigenvectors.
The spectral diameter of a linear mapping (or matrix)
O is the greatest of the absolute values of the eigenvalues.

values \; of the matrix

(RN BTN
=N e O
O w oo
w o O O

In this terminology, our results about orthogonal map-
pings can be formulated as follows: the spectrum of an orthog-
onal mapping is always a subset of the unit circle in the com-
plex plane. Thus only the values +1 may appear in the real
part of the spectrum and their algebraic and geometric multi-
plicities are always the same. Complex values of the spectrum
then correspond to rotations in suitable two-dimensional sub-
spaces which are mutually perpendicular.
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H. Additional exercises for the whole chapter

2.H.1. Kirchhoff’s Circuit Laws. We consider an application of Linear Algebra to analysis of electric circuits, using Ohm’s
law and Kirchhoff’s voltage and current laws.

Consider an electric circuit as in the figure and write down the values of the currents there if you know the values
V1 =20, Vo=120, V3=50, Ry =10, Ry =30, Rs3=4, Ry4=5, Rs=10,

Notice that the quantities /; denote the electric currents, while R?; are resistances, and V, are voltages.

D

<

I8

— F
AV, Rs Bj\é C

Solution. There are two closed loops, namely ABEF and EBCD and two branching vertices B and E of degree no less
than 3. On every segment of the circuit, bounded by branching points, the electric current is constant. Set it to be I; on the
segment EFAB, I, on EB, and I3 on BCDE.

Applying Kirchhoff’s current law to branching points B and E we obtain: I; 4+ Is = I3 and Is — I; = I, which are,
of course the same equations. In case there are many branching vertices, we write all Kirchhhoff’s Current Law equations to
the system, having at least one of those equations redundant.

Choose the counter clockwise orientations of the loops ABEF and EBCD. Applying Kirchhoff Voltage Law and
Ohm’s Law to the loop ABEF' we obtain the equation:

Vi+L1Rs—LRs+Vs+ 1R+ 1Ry =0.
Similarly, the loop EBCD implies
—Vo+ I3Ry — V3 + Rsl> = 0.

By combining all equations, we obtain the system

L + I, — I3 = 0,
(Rg + R + R4)I1 — RsI, + = —-V1-V3,
Rsl, + Rol3 = Vo+ V.

Substituing the prescribed values we obtain the linear system

I + I, — I3 = 0,
19, — 10, + = -0,
10l + 30I3 = 170.
This has solutions I; = —53 ~ —1.509, I, =22 ~4.132, I3= % ~2.623. 0

2.H.2. The general case. In general, the method for electrical circuit analysis can be formulated along the following steps:

i) Identify all branching vertices of the circuit, i.e vertices of degree no less than 3;
ii) Identify all closed loops of the circuit;

iii) Introduce variables I, denoting oriented currents on each segment of the circuit between two branching vertices;
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iv) Write down Kirchhoff’s current conservation law for each branching vertex. The total incoming current equals the total
outgoing current;

v) Choose an orientation on every closed loop of the circuit and write down Kirchhoff’s voltage conservation law according
to the chosen orientation. If you find an electric charge of voltage V; and you go from the short bar to the long bar, the
contribution of this charge is V. It is —V/ if you go from the long bar to the short one. If you go in the positive direction
of a current [ and find a resistor with resistance I;, the contribution is —2;1, and it is R; [ if the orientation of the loop
is opposite to the direction of the current I. The total voltage change along each closed loop must be zero.

vi) Compose the system of linear equations collecting all equations, representing Kirchhoff’s current and voltage laws and
solve it with respect to the variables, representing currents. Notice that some equations may be redundant, however, the
solution should be unique.

To illustrate this general approach, consider the circuit example in the diagram.

G I;; vf F E

l |

I,
R t’ L¢

1 " : @
V,-L /C/ 3 v, ’D Ly, R

— —_—

Solution.

i) The set of branching vertices is {B, C, F, G, H}.
ii) The set of closed loops is { ABHG, FHBC,GHF,CDEF}.
iii) Let I be the current on the segment GAB, I> on the segment G H, I3 on the segment HB, I, on the segment BC, I
on the segment F'C, I on the segment F'H, I7 on GF', and Ig on CDEF'.
iv) Write Kirchhoff’s current conservation laws for the branching vertices:
e vertex B: L+13=14
e vertex C: I+ 15 = I3
e vertex F: Is=15+ I — I
e vertex G: I, =1+ 1
e vertex H: I+ 1 =13
v) Write Kirchhoff’s voltage conservation for each of the closed loops traversed counter-clockwise:
loop ABHG: —RiI+V3+ Ryl1 — Vo =0
loop FHBC:" Vi+R3ly —V3=0
loop GHF': RiIo—Vi=0
loop CDEF: RyIgs -V, =0
Set the parameters: R =4, Ro =7, R3=9, Rys=12, V3 =10, Vo =20, ,V3=060, ,V,=120,to

obtain the system

L+1I3—-1,=0
Iy +1s —Ig7=0
Is+Ig—1I; —Is=0

L+1+1; =0
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Iy —I5+1g=0
71 — 41, = —40
9I, = —60
415, =10
125 = 120
with the solutionset I; = =20, L, =3 ;=320 [, ==2 [[=3% [;==2B T, =2 ;=10
|
2.H.3. Solve the system of equations
Ty 4+ x2 + x3 + x4 — 25 = 3,
200 4+ 2x3 + 234 — 4dxs = 5,
—Tr1 — To — r3 -+ re + 225 = 0,
721’1 + 3I2 + 31‘3 - 6I5 = 2.

Solution. The extended matrix of the system is

1 1 1 1 —-2/3
0 2 2 2 —415
-1 -1 -1 1 2|0
-2 3 3 0 —-6]2

Adding the first row to the third, adding its 2-multiple to the fourth, and adding the (—5/2)-multiple of the second to the
fourth we obtain

1111 -213 111 1 -2 3
02 2 2 —41|5 02 2 2 —4| 5
0002 01|37 looo 2 o 3
05 5 2 —10/8 000 —3 0 |-9/2

The last row is clearly a multiple of the previous, and thus we can omit it. The pivots are located in the first, second and fourth.

Thus the free variables are x3 and x5 which we substitute by the real parameters ¢ and s. Thus we consider the system

1 + x2 + t + x4 — 25 = 3,
200 + 2t 4+ 2x4 — 4s = b,
21’4 = 3.

We see that ¢4 = 3/2. The second equation gives
2090 + 2t +3 —4s =5, thatis, xo=1-—1+ 2s.
From the first we have
x1+1—t+2s4+t+3/2—-2s=3, t. 1 =1/2
Altogether,
(z1, 2, T3, x4, x5) = (1/2, 1—t+2s, t, 3/2, 5), t,s €R.

Alternatively, we can consider the extended matrix and transform it using the row transformations into the row echelon
form. We arrange it so that the first non-zero number in every row is 1, and the remaining numbers in the column containing

this 1 are 0. We omit the fourth equation, which is a combination of the first three. Sequentially, multiplying the second and
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the third row by the number 1/2, subtracting the third row from the second and from the first and by subtracting the second

row from the first we obtain

111 1 =23 1111 —=2] 3
0 2 2 2 —4|5 |~[01 11 =2|5/2 |~
000 2 013 000 1 013/2
1110 —-2|3/2 1000 0 |1/2
01 10 —-2| 1 ~1 0 1 1 0 -2 1
0001 01]3/2 000 1 01]3/2
If we choose again x3 = t, x5 = s (t, s € R), we obtain the general solution (2.H.3) as above. O

2.H.4. Find the solution of the system of linear equations given by the extended matrix

3 3 2 113
21 1 0 |4
05 -4 3|1
5 3 3 =315

Solution. We transform the given extended matrix into the row echelon form. We first copy the first three rows and into the

last row we write the sum of the (2)-multiple of the first and of the (—3)-multiple of the last row. By this we obtain

33 2 113 3 3 2 13
21 1 0 |4 0 -3 -1 —-21/6
05 —4 31| 7o 5 -4 3]1
5 3 3 -3|5 0 6 1 1410

Copying the first two rows and adding a 5-multiple of the second row to the 3-multiple of the third and its 2-multiple to the

fourth gives

3 3 2 113 3 3 2 113
0 -3 -1 —-216 0 -3 -1 —-2]|6
0 5 -4 3|1 0 0 -—-17 —-1]33
0 6 1 1410 0 0 -1 10|12
Copying the first, second and fourth row, and adding the fourth to the third, yields
3 3 2 113 3 3 2 113
0 -3 -1 -2]6 0 -3 -1 -2|6
0 0 -—-17 —-1]|33 0 0 —-18 9 |45
0 0 -1 10|12 0 0 -1 10|12
With three more row transformations, we arrive at
3 3 2 113 3 3 2 1 3
0 -3 -1 -2|6 0o -3 -1 =2 6
0 0 —-18 9 |45 0 O 2 -1 -5
0 0 -1 10|12 0 O 1 —-101| —12
3 3 2 1 3 3 3 2 1 3
0o -3 -1 =2 6 0 -3 -1 =2 6
0 O 1 —-10| —12 0 O 1 —-101| —12
0 O 2 —-1] -5 0 O 0 19 19
The system has exactly 1 solution. We determine it by backwards elimination
3 3 2 1 3 3 3 2 0] 2
0 -3 -1 =2 6 0 -3 -1 0] 8
0 0 1 =10 —-12 0 0 1 0| -2
0 0 0 1 1 0 O 0 1|1
3 3 0 0|6 11 0 0] 2 1 0 0 0] 4
0 -3 0 0| 6 01 0 0|-2 0 1 0 0]-2
0 0 1 0]-2 0 01 0]-2 0 01 0]-2
0 0 0 1|1 0 00 1]1 0 00 1]1
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The solution is

xr, = 47 To = —2, Tr3 = —2, Ty = 1.

2.H.5. Find all the solutions of the homogeneous system
z+y=2z4+v, z4+4u+v=0, —-3u=0, z=-v
of four linear equations with 5 variables z,y, z, u, v.

Solution. We rewrite the system into a matrix such that in the first column there are coefficients of x, in the second there are

coeflicients of y, and so on. We put all the variables in equations to the left side. By this, we obtain the matrix

11 -2 0 -1

00 1 4 1
00 0 -3 O
00 1 0 1
We add (4/3)-multiple of the third row to the second and subtract then the second row from the fourth to obtain
11 -2 0 -1 11 -2 0 -1
00 1 4 1 00 1 0 1
00 0 -3 0 00 0 -3 0
00 1 0 1 00 0 0 O

We multiply the third row by the number —1/3 and add the 2-multiple of the second row to the first, which gives
11 -2 0 -1 110 0 1

00 1 0 Ly 100101
00 0 -3 0 0 0010
00 0 0 O 0 00 0O

From the last matrix, we get immediately (reading from bottom to top) u = 0, z +v =0, z +y + v = 0. Letting 77
and v = s and y = ¢, the complete solution is

(z,y, z,u,v) =(—t—s,t, —s,0,8), tseR

which can be rewritten as

T -1 -1
Y 1 0
z|l=t] 0 |+s]—-1|, tseR,
u 0 0
v 0 1

Notice that the second and the fifth column of the matrix together form a basis for the solutions. These are the columns which

do not contain a leading 1 in any of its entries. (|

2.H.6. Determine the number of solutions for the systems

(@
1201 + VbBry + llazg = -9,
T1 - 51‘3 = —97
1 + 23 = T

(b)
4ZL’1 + 2.’52 - 12%3 = 0,
51’1 + 2%2 — r3 = 07

—2r; — 292 + 63 = 4
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()
41’1 =+
5:171 +
-2, -—

2.’L‘2
2&72
T2

+

12%3
T3
6373

= O7
= 17
= 0.

Solution. The vectors (1,0, —5), (1,0,2) are clearly linearly independent, (they are not multiples of each other) and the

vector (12, V5, 11) cannot be their linear combination (its second coordinate is non-zero). Therefore the matrix whose rows

are these three linearly independent vectors (from the left side) is invertible. Thus the system for case (a) has exactly one

solution.

For cases (b) and (c), it is enough to note that

(4,2, -12) = —2(—2,—1,6).

In case (b) adding the first equation to the third multiplied by two gives 0 = 8, hence there is no solution for the system. In

case (c) the third equation is a multiple of the first, so the system has infinitely many distinct solutions. (]

2.H.7. Find a linear system, whose set of solutions is exactly

{(t+1, 2¢, 3t, 4t); t € R}.

Solution. Such a system is for instance

201 —x9 =2, 2x9 — x4 =0,

4:1,‘3 — 3‘%4 =0.

These solutions are satisfied for every ¢ € R. The vectors

(07 27 07 _1)7

(27 _1a070)7

(07 07 47 _3)

giving the left-hand sides of the equations are linearly independent (the set of solutions contains a single parameter). ]

2.H.8. Solve the system of homogeneous linear equations given by the matrix

0 V2
2 2
0 2
3 3

V3 V6 0
V3 -2 -5
V5 2v3 -3
V3 -3 0

2.H.9. Determine all solutions of the system

€2

31’1 — 2LL'2

I + X2

T
2.H.10. Solve

3r — by
dr + Ty
Tr — 4y
r + 06y

I+ 1+

3(E3
T3
Zs3

2u
4y

2u

+
+
+

+ 1+

Ty
41’4
Ty

4z
6z
3z
5z

2.H.11. Determine whether or not the system of linear equations

31 +
211 +
2(L’1 —
3331 —

3]72
31’2
31’2
21‘2

+

+
+

zs3
T3
T3
Zs3

of three variables x1, z2, x3 has a solution.

O
= 17
_ 727
= 27
= 1.
O
= 2,
= 37
= 4’
O
L
8,
4,
O
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2.H.12, Determine the number of solutions of the system of 5 linear equations

AT .2 =(1,2,3,4,5)7,

where
3 1.7 5 0
= (z1,9,2z3)7 and A=[0 0 0 0 1
2 1 4 3 0

Repeat the question for the system

ATz =(1,1,1,1,1)7

2.H.13. Depending on the parameter a € R, determine the solution of the system of linear equations

ary + 4xs 42 xz3 = O,
2331 + 3262 — r3 = 0.

2.H.14. Depending on the parameter a € R, determine the number of solutions of the system

4 1 4 a T 2
2 3 6 8 2| | 5
3 2 5 4 z3|] | 3
6 -1 2 -8 Ty -3

O

2.H.15. Decide whether or not there is a system of homogeneous linear equations of three variables whose set of solutions is

exactly

(@ {(0,0,0)};

(b) {(0,1,0),(0,0,0),(1,1,0)};
© {(z,1,0); z € R};

(d) {(=,y,2y); v,y € R}

2.H.16. Solve the system of linear equations, depending on the real parameters a, b.

r+2y+bz = a
r—y+2z = 1
3r—y = 1.

2.H.17. Using the inverse matrix, compute the solution of the system

I’1+I2+1‘3+I4

i

T1 + X2 — Tz — X4

2
3
Ty — Ty + T3 — x4 = 3,
5

r1 — Xg — X3 + T4 =
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2,H.18. For what values of parameters a, b € R has the system of linear equations

T — aryg — 2x3 = b,
1 + (1—a)xs = b-3,
xr1 + (1—a)za + axrsg = 2b—1

(a) exactly one solution;
(b) no solution;

(c) atleast 2 solutions? (i.e. infinitely many solutions)

Solution. We rewrite it, as usual, in the extended matrix, and transform:

1 —-a -2 b 1 —a -2 b
1 1—a O b—-3 | ~10 1 2 -3
1 1—-a a 2b-—1 0 1 a+2 b-—-1

1 —a -2 b
~0 1 2 -3
0 0 a b+2
At the first step we subtract the first row from the second and the third; and at the second step we subtract the second from

the third. We see that the system has a unique solution (determined by backward elimination) if and only if a # 0. If a = 0
and b = —2, we have a zero row in the extended matrix. Choosing 3 € R as a parameter then gives infinitely many distinct
solutions. For a = 0 and b # —2 the last equation a = b + 2 cannot be satisfied and the system has no solution.

Note that for a = 0, b = —2 the solutions are
(xl, To, 1'5) = (—2+42t, —3 — 2t, t), teR

and for a # 0 the unique solution is the triple
<—3a2 —ab—4a+2b+4 2b+3a+4 b+2>

Y ’

a a a

2.H.19. Let

4 5 1 x b1
A=13 4 0 , = \|Z2], b= b2
11 1 Z3 b3

Find real numbers b1, b2, bs such that the system of linear equations A - x = b has:
(a) infinitely many solutions;

(b) unique solution;

(c) no solution;

(d) exactly four solutions.

Solution. It is enough to choose by = bs + b3 in case a) and by # by + bs in case c¢). Since all possibilities for by, by, bs are

catered for, variant d) cannot occur. Variant b) cannot occur, since the matrix A is not invertible. O

2.H.20. Factor the following permutations into a product of transpositions:

B (1 2 3 45 6 7)
7 5 4 3 2 1)°
i (1 34567 8)
1 2 5 8 3 7)
iii)( 3 4 5 6 7 8 9 10>.
1 2 5 9 8 3 7
2.H.2]. Determine the parity of the given permutations:

p(L 23450607
V{756 412 3)

== O
N =N

6 10
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ii)<12345678>

6 7 1 2 3 8 4 5)

iii)(12345678910>_
9 7 1 10 2 5 4 9 3 6

2.H.22. Find the algebraically adjoint matrix F'* for

a B 0
F=|~ 6 0], a, B,7,6 € R.
0 0 1
O
2.H.23. Calculate the algebraically adjoint matrix for the matrices
3 -2 0 -1
0 2 2 1 1+ 2
@y 2 3 2 ® <3—2i 6>’
0 1 2 1
where ¢ denotes the imaginary unit.
O
2.H24. Isthe set V = {(1,2); € R} with operations
®:V xV =V, (Lyd(l,z)=(1,z +y) forallz,y eR
O:RxV =V, z0o(ly =(1,y-2) forallz,y eR
a vector space? O

2.H.25. Express the vector (5,1, 11) as a linear combination of the vectors (3, 2,2), (2,3,1), (1,1, 3), that is, find numbers
p,q,r € R, for which

(5,1,11) =p(3,2,2) +¢(2,3,1) +r(1,1,3).

O
2.H.26. In R3, determine the matrix of rotation through the angle 120° in the positive sense about the vector (1,0,1) O
2.H.27. In the vector space R?, determine the matrix of the orthogonal projection onto the plane = + y — 2z = 0. O
2.H.28. In the vector space R?, determine the matrix of the orthogonal projection on the plane 2z — y + 2z = 0. O

2.H.29. Determine whether the subspaces U = ((2,1,2,2)) and V = ((-1,0,-1,2), (-1,0,1,0), (0,0,1,—1)) of the
space R* are orthogonal. If they are, is R* = U @ V, that is, is U+ = V?

2.H.30. Let p be a given line:
p:[1,1]+ 4, 1)t,teR
Determine the parametric expression of all lines ¢ that pass through the origin and have deflection 60° with the line p. (O

2.H.31. Depending on the parameter ¢ € R, determine the dimension of the subspace U of the vector space R3, if U is

generated by the vectors

(a) uy = (17 17 1)) Uz = (17ta 1)7 us = (2a27t)a
(b) Uy = (t,t,t), U = (7415, 74t,4t), us = (72, 72, 72)
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2.H.32. Construct an orthogonal basis of the subspace
((1,1,1,1), (1,1,1,-1), (-1,1,1,1))
of the space R,

2.H.33. In the space R*, find an orthogonal basis of the subspace of all linear combinations of the vectors (1,0,1,0),
(0,1,0,-7), (4,-2,4,14).
Find an orthogonal basis of the subspace generated by the vectors (1,2,2,—1), (1,1,-5,3), (3,2,8,=7).

2.H.34. For what values of the parameters a, b € R are the vectors
(171a27070)7 (1771;071704)) (1aba2737 72)
in the space R® pairwise orthogonal?

2.H.35. In the space R®, consider the subspace generated by the vectors
(1,1,-1,-1,0),(1,-1,-1,0,-1),(1,1,0,1,1), (—1,0,—1,1,1). Find a basis for its orthogonal complement.

2.H.36. Describe the orthogonal complement of the subspace V' of the space R*, if V' is generated by the vectors (—1,2,0, 1),
(3,1,-2,4), (-4,1,2,-4), (2,3,-2,5).

2.H.37. In the space R, determine the orthogonal complement W+ of the subspace W, if

@ W={(r+s+t,—r+t,r+s —t,s+t);rsteR}
(b) W is the set of the solutions of the system of equations z; — x3 = 0,21 — T2 + 23 — x4 + 25 = 0.

2.H.38. In the space R*, let
(1,-2,2,1), (1,3,2,1)

be given vectors. Extend these two vectors into an orthogonal basis of the whole R*. (You can do this in any way you wish,

for instance by using the Gram-Schmidt orthogonalization process.)

2.H.39. Define an inner product on the vector space of the matrices from the previous exercise. Compute the norm of the

matrix from the previous exercise, induced by the product you have defined. O

2.H.40. Find a basis for the vector space of all antisymmetric real square matrices of the type 4 x 4. Consider the standard

inner product in this basis and using this inner product, express the size of the matrix

0 3 1 0

-3 0 1 2

-1 -1 0 2

0 -2 -2 0

O
2.H.41. Find the eigenvalues and the associated eigenspaces of eigenvectors of the matrix:

1 1 0
A=1-1 3 0
2 =2 2

Solution. The characteristic polynomial of the matrix is A*> — 6A% + 12X — 8, which is (A — 2)3. The number 2 is thus an
eigenvalue with algebraic multiplicity three. Its geometric multiplicity is either one, two or three. We determine the vectors
associated to this eigenvalue as the solutions of the system

—I1 +x2 = 07
(A — QE)X = —2 +Io = 0,
21’1 —2{1}2 = 0.
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Its solutions form the two-dimensional space {(1,—1,0), (0,0, 1)). Thus the eigenvalue 2 has algebraic multiplicity 3 and
geometric multiplicity 2.

O
2.H.42. Determine the eigenvalues of the matrix
—-13 5 4 2
0 -1 0 0
-30 12 9 5
-12 6 4 1
O
2.H.43. Given that the numbers 1, —1 are eigenvalues of the matrix
-1 5 4 1
-3 0 1 0
4= -21 11 8 2|’
-9 5 3 1

find all solutions of the characteristic equation | A — A E'| = 0. Hint: if you denote all the roots of the polynomial | A — A E |
by A1, A2, Az, Ay, then

|A|:>\1~/\2')\3-)\4, and trA =X+ X+ A3+ A\

O

2.H.44. Find a four-dimensional matrix with eigenvalues A\; = 6 and Ay = 7 such that the multiplicity of A\, as a root of the

characteristic polynomial is three, and that
(a) the dimension of the subspace of eigenvectors of \s is 3;
(b) the dimension of the subspace of eigenvectors of \g is 2;

(¢) the dimension of the subspace of eigenvectors of \s is 1;

O
2.H.45. Find the eigenvalues and the eigenvectors of the matrix:
-1 =2 5
0 _2 _32
0 13 2
6 3
2.H.46. Determine the characteristic polynomial | A — A F'|, eigenvalues and eigenvectors of the matrix
4 -1 6
2 1 6
2 -1 8
O

respectively.
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Solutions to the exercises

2.A.11. There is only one such matrix X, and it is

18 —-32
5 -8/

1 10 —4
2A13. A7'=|1 12 -5
0 5 -2
2.A.14.
122 —121 121 14 13 -13
A®=|(-121 122 -—121), A=4(13 14 13
0 0 1 0 0 27
2 -3 0 0 0
-5 8 0 0 0
2405. [0 0 -1 0 O
0 0 0 -5 2
o 0 o0 3 -1
0 1 1 0
0 1 0 -1
_1_1
2416. CU =5 |1 o
1 -1 -1 1

2.A.17. In the first case we have
11 /3 =i\
AT=5 1)

8 5
A'=(2 1 1
1 10

in the second

2.D.7. 2+ 55,2 - 75)-

2.D.8. The vectors are dependent whenever at least one of the conditions

is satisfied.
2.D.9. Vectors are linearly independent.

2.D.10. 1t suffices to add for instance the polynomial x.

2.F.5. cos = %

2.G3.Je |A—AE|=-X34+12)02 — 470 +60,. A\1 = 3, A2 = 4, A3 = 5.
2.G.11. The solution is the sequence 0, 1, 2.

2.G.12. The dimension is 1 for A\1 = 4 and 2 for A2 = 3.

2.H.8. The solutions are all scalar multiples of the vector

(1+\/§, V3,0, 1, 0).

2HY9. x1 =1+t xzzg T3 =t, 142—5, teR.
2.H.10. The system has no solution.

2.H.11. The system has a solution, because

3 3 1 1
2 3 —1 8
Slal =3 %1 |7 |4
3 -2 1 6
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2.H.12. The system of linear equations

3x1 + 2z3 = 1,
1 + x3 = 2
Tx1 + 4dz3 = 3,
5x1 + 3z3 = 4,

2 = 5

has no solution, while the system

3x1 + 2z3 = 1,
T1 + x3 = 1,
Tx1 + dzz = 1,
51 + 3z3 = 1,

T2 = 1

has a unique solution x1 = —1, 22 =1, 3 = 2.

2.H.13. The set of all solutions is given by
{(—10¢, (a +4)t, (3a —8)t); t € R}.
2.H.14. For a = 0, the system has no solution. For a # 0 the system has infinitely many solutions.
2.H.15. The correct answers are ,,yes", ,,n0", ,,no" and ,,yes* respectively.
2.H.16. )Ifb# —T7,thenx =2=(24+a)/(b+7),y=(Ba—b—1)/(b+7).ii) Ifb = —7 and a # —2, then there is no solution. iii)
If a = —2 and b = —7 then the solution is z = z = ¢, y = 3t — 1, for any ¢.

2.H.17.
1 1 1 1\'" /1t 1 1 1
1 1 -1 -1 1 1 1 -1 -1
1 -1 1 —1 411 -1 1 —1
1 -1 -1 1 1 -1 -1 1
‘We can then easily obtain
3171—E x2—f§ 5133—7% :164—1
T4 T T T4

2.H.20. 1) (1,7)(2,6)(5,3), ii) (1,6)(6,8)(8,7)(7,3)(2,4), iii) (1,4)(4, 10)(10,7)(7,9)(9, 3)(2,6)(6, 5)
2.H.21. i) 17 inversions, odd, ii) 12 inversions, even iii) 25 inversions, odd
2.H.22. From the knowledge of the inverse matrix F~' we obtain

6 —p 0
F'=(ad—p) F'=|-y « 0 ,
0 0 «ad—py
forany o, 3,7, 9 € R.
2.H.23. The matrices are
1 1 -2 -4

0 1 0o -1 6 -2
@t 9 3 6| ©® <—3+2i 1+i)'
2 1 -6 -10
2.H.24. 1t is easy to check that it is a vector space. The first coordinate does not affect the results of the operations — it is just the vector
space (R, +, -) written in a different way.
2.H.25. There is a unique solution

p=2, q= -2, r=3.

2.H.26.
1/4 —6/4  3/4
V6/4  —1/2  —\/6/4
3/4  6/4 1/4
2.H.27.

5/6 —1/6 1/3
~-1/6 5/6 1/3
/3 1/3 1/3
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2.H.28.
5/9 2/9 —4/9
2/9 8/9 2/9
—4/9 2/9 5/9

2.H.29. The vector that determines the subspace U is perpendicular to each of the three vectors that generate V. The subspaces are thus
orthogonal. But it is not true that R* = U @ V. The subspace V is only two-dimensional, because

(_17 07 _17 2) = (_1,07 17 0) -2 (07 07 17 _1) .
2.H.30.

3 1 3 1
q:(2- §’2\/§+ i)t’ g2 (2+ §772\/§+ §)t

2.H.31. In the first case we have dim U = 2 for ¢t € {1, 2}, otherwise we have dim U = 3. In the second case we have dim U = 2 for
t#0anddimU = 1fort = 0.
2.H.32. Using the Gram-Schmidt orthogonalization process we can obtain the result
((1,1,1,1), (1,1,1,-3), (-2,1,1,0)).
2.H.33. We have for instance the orthogonal bases
((1,0,1,0),(0,1,0,—7))
for the first part, and
((1,2,2,-1),(2,3,-3,2),(2,-1,—-1,-2)).

for the second part.
2.H.34. The solution is a = 9/2, b = —b5, because
1+64+4+040=0, 1-04+0+3—2a=0.

2.H.35. The basis must contain a single vector. It is
3,-7,1,-5,9).

(or any non-zero scalar multiple thereof.
2.H.36. The orthogonal complement V' is the set of all scalar multiples of the vector (4,2, 7,0).
2.H.37.

(@ W' =((1,0,-1,1,0), (1,3,2,1,-3));

() W+ =((1,0,-1,0,0), (1,-1,1,—1,1)).
2.H.38. There are infinitely many possible extensions, of course. A very simple one is

1,-2,2,1), (1,3,2,1), (1,0,0,—1), (1,0,—1,1).

2.H.39. For instance, one can use the inner product that follows from the isomorphism of the space of all real 3 X 3 matrices with the space

R®. If we use the product from R®, we obtain an inner product that assigns to two matrices the sum of products of two corresponding
elements. For the given matrix we obtain

1 2 0 1 2 0 1 2 0
0 2 0 _< 0 2 o0],{o 2 o >:\/12+22+02+02+22+02+12+(—2)2+(—3)2:\/23.
1 -2 -3 1 -2 -3/ \1 —2 -3

2.H.40.

2.H.42. The matrix has only one eigenvalue, namely —1, since the characteristic polynomial is (A + 1)*.
2.H.43. The root —1 of the polynomial | A — X\ E | has multiplicity three.

2.H.44. Possible examples are,

6 0 0 0 6 0 0 0
07 0 0 07 10
@19 07 0" ®fo 0o 7 of
000 7 000 7
6 0 0 0
07 10
©1lo 0o 7 1|
000 7
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2.H.45. There is a triple eigenvalue —1. The corresponding eigenspace is ((1,0,0), (0,2, 1)).

2.H.46. The characteristic polynomial is —(\ — 2)%(\ — 9), that is, the eigenvalues are 2 and 9 with associated eigenvectors
(17270)’(737071) a (1?]-’1)
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CHAPTER 3

Linear models and matrix calculus

where are the matrices useful?

— basically almost everywhere. ..

A. Linear optimization

Let us start with an example of a very simple problem:

3.A.L

bolts are moulded — moulding a box of bolts takes one minute,

A company manufactures bolts and nuts. Nuts and

a box of nuts is moulded for 2 minutes. Preparing the box
The

company has at its disposal two hours for moulding and three

itself takes one minute for bolts, 4 minutes for nuts.

hours for box preparation. Demand says that it is necessary
to manufacture at least 90 boxes of bolts more than boxes of
nuts. Due to technical reasons it is not possible to manufac-
ture more than 110 boxes of bolts. The profit from one box
of bolts is $4 and the profit from one box of nuts is $6. The
company has no trouble with selling. How many boxes of nuts
and bolts should be manufactured in order to have maximal

profit?

Solution. Write the given data into a table:

Bolts 1 box | Nuts 1 box | Capacity

Mould | 1 min./box | 2 min./box | 2 hours

Box 1 min./box | 4 min./box | 3 hours
Profit $4/box $6/box

We have already developed a useful package of tools and
it is time to show some applications of matrix calculus. It
might seem that the assumption of linearity of relations be-
tween quantities is too restrictive. But this is often not so. In
real problems, linear relations may appear directly. A prob-
lem may be solved as a result of an iteration of many linear
steps. If this is not the case, we may still use this approach at
least to approximate real non-linear processes.

We should also like to compute with matrices (and lin-
ear mappings) as easily as we can compute with scalars. In
order to do that, we prepare the necessary tools in the second
part of this chapter. We also present a useful application of
matrix decompositions to the pseudoinverse matrices, which
are needed for numerical mastery of matrix calculus.

We try to illustrate all the phenomena with rather easy
problems. Still some parts of this chapter are perhaps dif-
ficult for first reading. This in particular concerns the very
first part providing some glimpses towards the linear opti-
mization (linear programming), the third part devoted to iter-
ated processes (the Frobenius-Perron theory) and some more
advanced parts of the matrix calculus in the end (the Jodan
canonical form, decompositions, and pseudo-inverses of ma-
trices). The reader should feel free to move forward if getting
lost.

1. Linear optimization

The simplest linear processes are given by linear map-
pings ¢ : V. — W on vector spaces. As we can surely imag-
ine, the vector v € V can represent the state of some system
we are observing, while ¢(v) gives the result after some pro-
cess is realized.

If we want to reach a given result b € W of such a pro-
cess, we solve the problem

p(x) ="b

for some unknown vector x and a known vector b.

In fixed coordinates we then have the matrix A of a map-
ping ¢ and coordinate expression of the vector b. We have
mastered such problems in the previous chapter. Now we
draw more interesting conclusions in the setup of linear opti-
mization models (called also linear programming).
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Denote by z; the number of manufactured boxes of bolts
and by x2 the number of manufactured boxes of nuts. From
the restriction on moulding time and from the restriction on
the box preparation we obtain the following restrictive condi-

tions:

x1 + 219 <120

x1 + 4o < 180
Ty > xo + 90
x1 < 110

The objective function (the function that gives the profit
for given number of manufactured nuts and bolts) is 41 +6x5.
The previous system of inequalities defines a region in R2.
Optimisation of the profit means finding in this region the
point (points) in which the objective function has the max-
imum value, that is, to find the largest k& such that the line
4z; + 629 = k has a non-empty intersection with the given
region. Graphically, we can find the solution for example by
placing the line p into the plane such that it satisfies the equa-
tion 41 4+ 6x2 = 0 and start moving it “upwards” as long
as it has some intersection with the area. It is clear that the
last intersection is either a point or a line parallel to p form-
ing a border of the region. Thus we obtain (see the figure) the

point z1 110 and xo = 5. Maximum possible income is
thus 4 - 110 + 6 - 5 = $470.

3.1.1. Linear optimization. In the practical column, the
7 . previous chapter started with a painting prob-
lem, and we shall continue here in a similar way.
A% =" Imagine that our very specialized painter in a
black&white world is willing to paint facades of either small
family houses or of large public buildings, and that he (of
course) uses only black and white colours. He can arbitrar-
ily choose proportions between x; units of area for the small
houses or xy units for the large buildings. Assume that his
maximal workload in a given interval is L units of area, his
net income (that is, after subtracting the costs) is ¢; per unit
of area for small houses and ¢y per unit of area for large build-
ings. Furthermore, he has only W kg of white colour and B
kg of black colour at his disposal. Finally, a unit of area for
small houses requires w; kg of white colour and b; kg of black
colour. For large buildings the corresponding values are wg
and bs.
If we write all this information as inequalities, we obtain
the conditions

(M T+ 23 <L
(2) W1T] + Wako < w
(3) bl.’El + bQ(EQ S B.

The total net income of the painter, which is the following
linear form h,

h(z1,x2) = c121 + caa,

is to be maximized.

Each of the given inequalities clearly determines a half-
plane in the plane of the variables (x1, z2), bounded by a line
given by the corresponding equality, and we must also assume
that both x; and x5 are non-negative real numbers (because

the painter cannot paint negative areas). Thus we have con-
. . . the axis in the diagram
straints for the values (z1, o) — either the constraints are un- goutd be catied oy
X, satisfiable, or they allow points inside a polygon with at most 192! Add e ine
five vertices. See the diagram. best through one of the
verlices wil
qa T hand-written
X1+XL=L description "optimal
60~ constant value of h
—
"57 5 Xq2 X ¥ 0
301 ! i '
ox 60D = P-[#0,5]
, ) X1 A )8
Jo 60 A% Mo 0 180 :
Z N A
| N~ X 2X, £120 ;‘("‘1‘,
-50 "‘1 ‘
ono
\ X£110 z["’(",
o ATk
-9,
|
3.A.2. Minimisation of costs for feeding. A stable in How to solve such a problem? We seek the maximum

Nisovice u Volyné buys fodder for winter: hay and oats. The value of a linear form h over subsets M of a vector space
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nutritional values of the fodder and required daily portions
for one foal are given in the table:

g/kg Hay | Oats | Requirements
Dry basis 841 860 > 6300 g
Digestible nitrogen stuff | 53 123 > 1150 g
Starch 0.348 | 0.868 <535¢g
Calcium 6 1.6 >30g
Phosphate 2.8 3.5 <44¢
Natrium 0.2 1.4 ~T7g
Cost 1.80 | 1.60

Every foal must obtain in its daily meal at least 2kg of
oats. The average cost (counting the payment for the trans-
portation) is €1.80 per 1kg of hay and €1.60 per 1kg of
oats. Compose a daily diet for one foal which has minimum

O

The previous three examples could be solved by drawing

COSsts.

the diagram and checking all the vertices on the boundary of
the polygonal area M C R2. Morevoer, we know that the
maximum will be at one of the extremes in the direction of
the normal to the defining line from the linear cost function
h.

But the principle works in higher dimensions as well.
If there is a function f : R" — R", f(z1,...,2,) =
+ cpxy, (we call it the objective func-
tion), its values in the points A = (ay,...,a,) and B =
A+u = (a1 +uy,...,a, + uy) differ by f(A — B) =
fw) = flur,...,un) = crus + -+ + cpuy, which is the
scalar product of the vectors (¢, ..., ¢, ) and (uq, ..., uy, ). The

Co + C1T1 =+ -

relation between the scalar product and the cosine of the angle
between vectors ensures that the given function f defines a hy-
persurface in R™ with normal (c1, . . ., ¢;,). This hypersurface
splits the space R™ into two half-spaces. Clearly the given
function grows if moving towards one of those half-spaces
and declines in the other one. This is essentially the same prin-
ciple as we saw when discussing the visibility of segments in
dimension 2 (we checked whether the observer is to the left
or to the right from the oriented segment, cf. 1.5.12).

This observation leads to an algorithm for finding the ex-
tremal values of the linear objective function f on the set M
of admissible points defined by linear inequalities.

We shall deal with the standard problem of linear pro-
gramming. That is, we want to maximize the linear function
h = ci1x1 + -+ + ¢y on the set M given by Az < b and
x > 0 (here the inequality between vectors means the inequal-
ity between all their individual components). As explained in
3.1.6 we may add slack variables x5, one for each equation.

which are defined by linear inequalities. In the plane, M is
given by the intersection of half planes.

Next, note that every linear form over real vector space
& h : V. — R (that is, arbitrary linear scalar
' function) is monotone in every chosen direction.

A . . )
3 Cﬁ“& More precisely, if we choose a fixed starting vec-
&= toru € V and “directional” vector v € V, then

composition of our form h with parametrization yields

t— h(u+tv) = h(u) +th(v).

This expression is indeed either increasing or decreasing, or
constant (depending on whether h(v) is positive, negative or
zero), as a function of t.

Thus, if the set M is bounded as at our picture above,
we easily find the solution by testing the value of h at the
vertices of the boundary polygon. In general, we must expect
that problems similar to the one with the painter are either
unsatisfiable (if the given set with constraints is empty), or the
profit is unbounded (if the constraints allow for unbounded
directions in the space and the form h is non-zero in some of
the unbounded directions) or they attain a maximal solution
in at least one of the “vertices” of the set M. Normally the
maximum is attained at a single point of M, but sometimes it
is attained on a part of the boundary of the set M.

Try to choose explicit values for the parameters w;, wa,
b1, ba, c1, co, draw the above picture for these parameters and
find the explicit solution to the problem (if it exists)!

3.1.2. Terminology. In general we speak of a linear pro-
gramming problem whenever we seek either the maximum or
minimum value of a linear form h over R™ on a set bounded
by a system of linear inequalities which we call linear con-
straints. The vector on the right side is then called the vector
of constraints. The linear form h is also called the objective
function. In real practice we meet hundreds or thousands of
constraints for dozens of variables.

The standard maximization problem is defined by seek-

ing a maximum of the objective function while the restrictive
inequalities are < and the variables are non-negative. On the
other hand, the standard minimization problem is defined by
seeking a minimum of the objective function while the restric-
tive inequalities are > and the variables are non-negative.
It is easy to see that every general linear programming
D problem can be transformed into a standard one
of either types. Aside from sign changes, we
AS—=—" "~ can work with a decomposition of the variables
that have no sign restriction into a difference of two non-
negative ones. Without loss of generality we will work only
with the standard maximization problem.

ILeonid Kantorovich and Tjalling Koopmans shared the 1975 Nobel
prize in economics for their formulations and solution of economical and lo-
gistics problems in a similar way during the second world war. But it was
George B. Dantzig who independently developed general linear program-
ming formulation in the period 1946-49, motivated by planning problems
in US Air Force. Among others, he invented the simplex method algorithm.
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Thus we may restrict ourselves to the problem of maximizing
h on a vector space of solutions of systems of linear equa-
tions with the additional condition that all the values of the
coordinates must be non-negative.

If there are more general inequalities, we can always
change them into our form by multiplying them with —1 and
minimization of value of h corresponds to maximization of
—h.

As explained in more details in 3.1.1 and 3.1.6, we add
the first row of coefficients of h (with minus signs) and use

the simplex tableau:

—C —Cp, ‘ 0
an a1n | b1
Am1 Qmn bn

We start the algorithm if we find m columns (here m
is the number of equations in the problem) such that Gauss
elimination for these columns leads to a unit submatrix in
A and positive values at the positions of all b;. The coordi-
nates corresponding to these columns and values 1 in them
are called the basic coordinates. We restrict ourselves to the
cases where all b; are nonnegative in the original problem and
then we choose all the slack variables as the basic ones and
the initialization of the algorithm is done.

Next we move in the following iterated steps (compare
the more theoretical explanation in 3.1.6):

We choose the first column from the left having a non-
positive value in the first row. In this column (let it be the
J-th column), we pick up the positive entry a;; in A which
provides the minimal relation b;/a;; (we call this entry the
pivor). Finally we eliminate the entire chosen column with the
help of the chosen a;. This means we achieve by elementary
row transformations that the j-th column contains the value 1
at it’s i-th row, with all other values vanishing.

We explain the procedure by a example:

3.A.3. Minimize the function —3x — y — 2z under the con-
ditions x,y, z > 0 and

r — Yy + z > —4
2x + z S 37
z + y + 3z < 8.

Solution. First we multiply the objective function and the first
inequality by —1. We get the equivalent task of maximizing

3.1.3. Formulation using linear equations. Finding an
optimum is not always as simple as in the previous 2-
dimensional case. The problem can contain many variables
and constraints and even deciding whether the set M of the
feasible points is non-empty can be a problem.

We do not have the ambition to go into detailed theory
here. But we mention at least some ideas which show that the
solution can be always found, and then we build an effective
algorithm solving the problem in the next paragraphs.

We begin by comparison with systems of linear equations
— because we understand those well. We write the equations
(1)-(3) in 3.1.1 in the general form:

A-x<b,

where x is now an n-dimensional vector, b is an m-
dimensional vector and A is the corresponding matrix. By an
inequality between vectors we mean individual inequalities
between all coordinates. We want to maximize the product
c- x for a given row vector of coefficients of the linear form h
a the feasible values of x. If we add new auxiliary variables
T, one for every equation and add another variable z for the
value of the linear form h, we can rewrite the whole system
as a system of linear equations
z—c-x

M (é - <A-x+fcs> - @

where the matrix is composed of the blocks with 1 + n +m
columns and 14+m rows, with corresponding individual com-
ponents of the vectors. We call the new variables x ; the slack
variables. Moreover, we require non-negativity for all coordi-
nates x and z . If the given system of equations has a solution,
we seek values for the variables z, x and x4, such that all =
and zs are non-negative and z is maximized. In paragraph
4.1.11 on page 240 we will discuss this situation from the
viewpoint of affine geometry. Now we just notice that being
on the boundary of the set of feasible points M of the problem
is equivalent to having some of the slack variables vanishing.
Our algorithm will try to move from one such position to an-
other while increasing h. But we shall need some conceptual
preparation first.

Specifically, in our problem of the black&white painter
from 3.1.1, the system of linear equations looks like this:

—c 0 _ z
A ET)’L v

z
1 —cg —c2 0 0 O T 0
0 1 1 100 x| | L
0 w1 wo 0 1 0 I3 - w
0 b1 bg 0 0 1 Ty B
L5

3.1.4. Duality of linear programming. Consider the real

{1, matrix A with m rows and n columns, vector of con-

straints b and row vector c¢ giving the objective func-

A tion. From this data we can consider two problems of
linear programming for x € R™ and y € R™.
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the function 3z + y + 2z under the conditions

- 4+ y - z < 4
2z + z < 3
r + y + 3z < 8

Introducing the non-negative slack variables u, v, w, we ob-
tain the tableau with the objective function 3z +y + 2z +0-
u+0-v4+0-w:

-3 -1 -2 0 |

0 0
-1 1 -1 [1] 0o o
2 o 1 o0 0

0

1 1 3
Since the right-hand column is non-negative, setting u = 4,

0
4
3
8

=[]

v =3 w =38 x =y = 2z = 0 provides an admissible
solution to the system which corresponds to the choice of the
basic variables u, v, w, and the algorithm may begin.

The first column is already with a negative entry in the
first row, so we choose this one. We have circled the pivot,
i.e. the value two there (we compare the relations of the ele-
ments and those in the last column, i.e. % and %, and take the
minimal one, since we need to keep the last column positive
during the elimination). Next we eliminate the first column
with the help of the pivot (we multiply the third row by % and
subtract its reasonable multiples from the other rows, not for-
getting the first row of the tableau, so that only zero entries

remain there):

©

0 -1 -3 0 3 o0]3%
o O -5 [ § o|%
il oo 5 0o 3 0]}
o 1§ 0 -3 [ ¥

Now the basic variables are x = 3/2, u = 11/2, w = 13/2,
which reflects the fact that we moved as much from the former
slack variable v to the new basic variable z as possible. This
increased the value of the objective function, which we may
read in the right top corner of the tableau.

Next, we choose the pivot from the second column and
the above rule yields the first row in A (12—1 < 1—23). We have

already circled the 1 in the tableau above. We eliminate:

00—1120‘10
o O -3 1 4 0%
A o 3 0o 5 03
0o 0 3) -1 -1 [1]]1

DUAL PROBLEMS OF LINEAR PROGRAMMING

Maximization problem: Maximize c -  under the condi-
tions A-xz <band z > 0.

Minimization problem: Minimize y” - b under the condi-
tiony” - A > candy > 0.

We say that these two problems are dual problems of lin-
ear programming. Before deriving further properties of lin-
ear programming we need some terminology.

We say that the problem is solvable if there is an admissi-
ble vector x (or admissible vector y”') which satisfies all con-
straints. A solvable maximization (minimization) problem is
bounded, if the objective function is bounded from above (bel-
low) over the set of admissible vectors.

Lemma (Weak duality theorem). If x € R” is an admis-
sible vector for the standard maximization problem, and if
y € R™ is an admissible vector for the dual minimization
problem, then

c-x < yT b

Proor. It is a simple observation. Since x > 0 and ¢ <
yT - A, itfollows thatc-x < y” - A - z. Butalsoy > 0 and
A -z <D, hence

c-xgyT-A-xgyT-b,
which is what we wanted to prove. (]

We see immediately that if both dual problems are solv-
able, then they must be bounded. Even more interesting is the
following corollary, which is directly implied by the inequal-
ity in the previous proof.

Corollary. If there exist admissible vectors x and y of dual
linear problems such that for the objective functions c - x =
yT - b, then both are optimal solutions for the corresponding
problems.

3.1.5. Theorem (Strong duality theorem). Ifa standard prob-
lem of linear programming is solvable and bounded, then its
dual is also bounded and solvable. There exists an optimal
solution for each of the problems, and the optimal values of
the corresponding objective functions are equal.

Proor. As already proved in the latter corollary, once it
is established that the values of the objective functions for the
dual problems equal, we have the required optimal solutions
to both problems. It remains to prove the other implication,
i.e. the existence of an optimal solution under the assump-
tions in the theorem, as well as the fact, that the objective func-
tions share their values in such a case. This will be verified by
delivering an efficient algorithm in the next paragraph.  [J

We notice yet another corollary of the just formulated
duality theorem:

Corollary (Equilibrium theorem). Consider two admissible
vectors x and y for the standard maximization problem and
its dual problem as defined in 3.1.4. Then both vectors are
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Again, we have shifted the new basic variable from u to y and
the objective function increased. The next pivot will be the

circled number 3 in the third column and fourth row:

00 0o 2 3 L|u
o 1] o 2 L ¥
[ o o & 2 -4
o o [ -1 -1 1|4

This is the resulting tableau, where the basic variables

17 —
3F=

are x = %, y = % and their values are read from the
last column. Notice that all the original variables are among
the basic ones and their values are non-zero. This is not al-
ways the case, see the example 3.A.1 above and its explana-
tion via this algorithm in 3.1.6. The maximal value 3—31 for the
objective function is now in the right top corner.

As mentioned in the theoretical explanation, the final
tableau also provides the solution of the dual problem, i.e. the

minimization of 4u + 3v + 8w under the condition

u + 2v + w < 3
—u + w > 1,
u + v + 3w > 2

According to the strong duality theorem (see 3.1.5), the min-
imal value is again 33—1, while the corresponding values of the

variables u, v and w are read off the first row in the corre-

sponding columns: u = % g w = %

You may check directly that the numbers c4, c5, cg in the

v =

first row of the tableau and the value h in the top right corner
satisfy 4c4 + 3¢5 4+ 8cg = h. Indeed, the numbers ¢; tell how
many times the appropriate row (the one with original value 1)
has been added. Thus we obtain the right linear combination
for h. |

3.A.4. Some game theory. Imagine a game played by two
. players — a billionaire and fate. The billionaire would

like to invest into gold, silver, diamonds or stocks of

an important IT software company. The wins and
losses of such investments are well known for the last four
years (for simplicity, we consider only the last four years and

write them into the matrix A = (a;;)):

gold silver diamonds software
2001 2% 1% 4% 3%
2002 3% -1% -2% 6%
2003 1% 2% 3% -4%
2004 -2% 1% 2% 3%

optimal if and only if y; = 0 for all coordinates with index i
Jor which Z?Zl aijz; < by and simultaneously x; = 0 for
all coordinates with index j such that Z:’;l Yiij > C;.

Proor. Suppose both relations regarding the zeros
y among x; and y; are true.

Since the summands with strict inequality
have zero coefficients, we have

m m n m n
E yibi = E Yi g AijTj = E E YiQij T
i=1 i=1  j=1 i=1 j=1

and for the same reason

m n n
i=1j=1 j=1
This shows one implication, by the duality theorem.
Suppose now that both x and y are optimal vectors. Then

D_uibi =) > vy 2 ) ;.
i=1 i=1 j=1 j=1
But the left- and right-hand sides are equal, and hence there
is equality everywhere. If we rewrite the first equality as

m

Z%‘ (bi - Zaijxj) =0,
i=1 =1

then we see that it can be satisfied only if the relation from the
statement holds. But it is a sum of non-negative numbers and
equals zero. From the second equality we similarly derive the
second part and the proof is finished. (|

The duality theorem and equilibrium theorem are use-
ful when solving linear programming problems, because they
show us relations between zeros among the additional vari-
ables and the fulfillment of the constraints. As usual, it is
good to know that the problem is solvable in principle and
to have some theory related to that, but we still need some
clever ideas to make it all into an efficient algorithmic proce-
dure. The next paragraph will provide some insight to this.

3.1.6. The algorithm. As already explained, the linear pro-
4w gramming problem of maximizing the linear objec-
<% tive function h = cz under the conditions Az < b
= 2 can be turned into solving the system of equations (1)
A in 3.1.3, where we added the slack variables z. If all
entries in b are non-negative, then the choice of z; = b and
x = 0 provides an admissible solution of the system with the
value of the objective function h = 0. This is the choice of
the origin * = 0 as one of the vertices of the distinguished
region M of the admissible points. We can understand this as
choosing the variables x5 as the basic variables, whose val-
ues are given by the right hand sides of the equation, while
all the other variables are set to zero.
In the general case (allowing for negative entries in b),
we shall see in 4.1.11 that we always can find an admissible
vertex. That is, the choice of the basic variables in the above
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The billionaire would like to invest for one year only.
How should he split his investment in order to ensure the max-
imal win independently of development on the stock market?
We assume that next year will be some (unknown) probabilis-
tic mix of the previous four ones. In terms of our game, fate
will play some stochastic vector (1, 22, T3, 24) fixing the be-
haviour of the market (as a probabilistic mixture of the previ-
ous ones), while the billionaire will play another stochastic
vector (y1, Y2, Y3, Ya) describing the split of his investment,
The win of the billionaire is Zij:l Ty ;.

The task

which will maximize the minimum of

Solution. is to find the stochastic vector

(Y1, Y2, Y3, Y4)s
all values Z?,j:l z;yja;; for the fixed matrix A and any
stochastic vector (z1, z2, T3, T4).

A very observant reader could imagine that this task is
equivalent to the problem of maximizing z; + 22 + 23 + 24
under the condition ATz < (1, ..., 1)T, 2 > 0 (and the
requested stochastic vector y is then obtained by normalizing
the vector z, the requested optimal value is the inverse of the
optimal value obtained). '

Thus, we have to solve a linear programming problem.
We introduce the slack variables wq, ws, w3, wy, and trans-

form the problem to the standard form

max {21 + 22 + 23 + 21 | (AT|E4) (z,w) = (1,1,1,1)"} .
We work with the table:
-1 -1 -1 =10 0 0 0]0
2 3 1 -2 100 01
1 010 01
(4) - 2 00 101
3 6 -4 3 000 1]1
3 1 1 1 1
0 -2 -z -3 0 0 3 0/g
0o 4 4 s o oo
o -4 % 4 o [0 -k o3
1 3 1 1 1
-3 1 2 0 0 3 013
25 3 3 1
0 @ -7 3 0 0 -7 i

1The observation comes from the proof of the von Neumann Minimax
theorem, 1928. The theorem claims that any probabilistic extension of a
matrix game enjoys an equilibrium state.

sense, describing an admissible solution. Next, we shall as-
sume to have such a vertex already.

The idea of the algorithm is to perform equivalent row
transformations of the entire system in such a way, that we
move to other vertices of the region M and the function h in-
creases. In order to move to more interesting vertices in M,
we must bring some of the slack variables to zero while the
appropriate column for the unit matrix would move to one of
those columns corresponding to the variables z. A simple
check reveals that in order to do this, we must choose some
of the negative entries in the first line of the matrix 3.1.3(1),
pick up this column and choose a line in such a way that using
the Gaussian elimination to push the other entries in this par-
ticular column to zero, the right hand sides of the equations
remain non-negative. The latter condition means that we have
to choose the index ¢ such that b; /a;; is minimal. This entry
in the matrix is called the pivot for the next step in the elimina-
tion. Of course, the non-positive coeflicients a;; are not taken
into consideration, since they would not lead to any increase
in the objective function. When there are no more negative
entries in the first row, we are finished, and the claim is that
the optimal value of h appears in the right hand top corner of
the matrix.

The reader should think of all the above claims in de-
/' \ tail and check whether the algorithm must ter-

S/, minate. But the most striking point is the fol-
@”/ lowing: The slack variables parts of the matrix
TN are closely linked to the dual linear program-
ming problem, and there is an invariant of the entire proce-
dure: Writing (—¢, ¢, ﬁ) for the current first line in the matrix
and (Z, &) for the current values of the variables, we obtain
c-& = ¢ -b= hateach step (check this!). In particular
at the moment of the termination of the above algorithm, the
coeflicients y = ¢, in the first row represent admissible val-
ues of the dual problem (while the values ¢ stay for the slack
variables in the dual problem), and the right hand top corner
provides the value of the corresponding objective function y-b.
Since the two objective functions are equal, we know that the
algorithm provides the optimal solution. Great! (But check
all the details.)

We show how all this works for the simple problem from
3.A.1. In practice, the very first column of the
_ matrix in question does not change during the
procedure at all, so we can omit it completely.
Thus we deal with the matrix:

Q)

-4 —-6(0 0 0 0] O
211 0 0 0] 120
410 1 0 0] 180

-1 1 (0 0 1 0]-9

1 00 0 O 1]j110.

We cannot find an admissible solution by fixing = as the ba-
sic variables here, since there are negative values in b. We try
to initiate the above algorithm by changing the sign in the last
but one row and performing the Gaussian elimination for the
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The last table is already the optimal one, since there are
no negative values in the first row. We can read off the optimal

3, _ 19 . _ .
25> %4 = 35, 21 = 0. The optimal

value (upper right corner) is 21 + 2o + 23 + 24 = %. After

rescaling to a stochastic vector (multiplying with %) we get

solution: zo = %, Z3 =

the solution of the original problem: y; = 0, yo = %, Y3 =

g—g, Yg = %. with the optimal value %. |

B. Difference equations

Distinct linear dependences can be an excellent tool for
describing various models of growth. We begin with a very
popular population model that uses a linear difference equa-

tion of second order:

3.B.1. Fibonacci sequence. In the beginning of spring, a
stork brought two newborn rabbits, male and fe-

male, to a meadow. The female, after being two

and female. The newborns can then start delivering after one
month and then every month. Every female is pregnant for
one month and then she delivers. How many pairs of rabbits

very first column aiming to have only the 1 in the last but one
row there. We obtain:

0 -10]0 0 -4 0 |360
o (3 0 1 0]30
0 5 |0 1 0|9

~1l0 0 -1 0|90
0 1|0 o0 1 20

We choose the boxed entries for the basic variables, this rep-
resents the values 1 = 90, zo = 0, z3 = 30, 2z, = 90,
x5 =0, 26 = 20, and h = 440 = 4-90 = —4 - (—90) which
is an admissible solution. We have also circled the pivot for
the next step, i.e. the element in the second column which we
want to replace with 1 and eliminate the rest of the column
(remember this is the one yilding the smalest ratio with the
last right hand column entry among the positive elements —
30/3 = 10 which is less then 90/5 = 16 and 20/1 = 20).
This leads to the next admissible vertex in our region M and,
of course the value for h will increase:

0 0] 0o -2 0 |460
0 o & 010
0 0|3 ~2 0 | 40
oL o -2 0100
0o o|-3 o (3) 10

with 1 = 100, 5 = 10, 23 = x5 = 0, x4 = 40, zg = 10,
and h = 460 = 4-100+6-10 = & - 120 — % - (—90).
We still have one of the entries in the first line negative. We
circled the next pivot leading to

0 0] 2 0 0 1 [470
0 10 0o 1>
0 0| -2 0 1 |50
0l0 0 0 1 |110
0 0 ]-3 0 315

with the final values x1 = 110, x5 = 5, 3 = 0, x4 = 50,
Is = 15, Te — 0, and

h:470:4~110+6-5:§~120+1~110.

Let us remind why we can be sure that this is the optimal
solution. Thanks to fact that the first line is exclusively non-
negative, we have got admissible solution of the dual problem

which leads to the same value as the solution of the original
one. Thus the equillibrium theorem claims we are done!

3.1.7. Notes about linear models in economy. Our simple
1 scheme of the black&white painter from the para-
graph 3.1.1 can be used to illustrate one of the typi-

= 22" cal economical models, the model of production plan-

TU'" ning. The model tries to capture the problem com-
pletely, that is, to capture both external and internal relations.
The left-hand sides of the equations (1), (2), (3) in 3.1.1, and
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will be there after nine months (if none of them dies and none

“move in”)?

Solution. After one month, there is still one pair, but the fe-
male is already pregnant. After two months, first newborns
are delivered, thus there are two pairs. Every next month,
there are that many new pairs as there were pregnant females
one month before, which equals to the number of at least one
month-old pairs, which equals the number of pairs that were
there two months ago. The total number of pairs p,, after n
months is thus the sum of the number of pairs in the previ-
ous two months. For the number of pairs we thus have the

following homogeneous linear recurrent formula

ey

pn+2:pn+1+pn7 nzlv"'7

which, along with the initial conditions p; = 1 and p» = 1,
uniquely determines the number of pairs of rabbits at the
meadow in individual months. Linearity of the formula
means that all members of the sequence (p,) appear to the
first power. Hopefully the meaning of the word recurrence
is clear. For the value of the n-th member we can derive an
explicit formula. In searching for the formula we can use the
observation that for certain r the function 7" is a solution of
the difference equation without initial conditions. This r can

be obtained by substitution into the recurrent relation:

T‘"+2

7" 4™ and after dividing by ™ we obtain

r? r+1.

This is the characteristic equation of the given recurrent for-
mula. Thus our equation has roots 1*7\/5 and % and the
sequences a, = (155 ‘[) and b, (HT‘@)" n > 1 satisfy
the given relation. The relation is also satisfied by any linear
combination, that is, any sequence ¢, = sa,, + tb,, s,t € R,
The numbers s and ¢ can be chosen so that the resulting com-
bination satisfies the initial conditions, in our case ¢; = 1,
c2 = 1. For simplicity, it is convenient to define the zero-th

member of the sequence as cp = 0 and compute s and t from

the equations for ¢y and c;. We find that s = f’ t = %
and thus
L+V5)" — (1 —V5)"

2n(\/5)

Such a sequence satisfies the given recurrent formula and also
the initial conditions ¢y = 0, ¢; = 1. Hence it is the unique
sequence given by these requirements. Note that the value of

Pr, in the formula (2) is an integer for any natural n (all terms

the objective function h(x1,x2) express various production
relations. Depending on the character of the problem, we
have on the right-hand sides either exact values (and so we
solve equations) or capacity constraints and goal optimization
(then we obtain linear programming problems).

Thus in general we can solve the problem of source al-
location with supplier constraints and either minimize costs
or maximize income. We can also interpret duality from this
point of view. If our painter would like to quantify his ef-
forts related to the total amount of his work by ¥, per unit,
the white colour painting adds yw -, while the additional work
related to the black colour is yp, then he minimizes the ob-
jective function

L-yr +Wyw + Byp

with constraints

yr +wiyw +biys > c1
Yr + wayw + bayp > ca.

But that is exactly the dual problem to the original one and the
theorem 3.1.5 says that the optimal state is when the objective
functions have the same value.

Among economical models, we can find many modifi-
cations. One of them is the problem of financial planning,
which is connected to the optimization of portfolio. We are
setting up a volume of investment into individual investment
possibilities with the goal to meet the given constraints for
risk factors while maximizing the profit, or dually minimize
the risk under the given volume.

Another common model is marketing application, for in-
stance allocation of costs for advertisement in various media
or placing advertisement into time intervals. Restrictions are
in this case determined by budget, target population, etc.

Very common are models of nutrition, that is, setting up
how much of different kinds of food should be eaten in order
to meet total volume of specific components, e.g. minerals
and vitamins.

Problems of linear programming arise with personal
tasks, where workers with specific qualifications and other
properties are distributed into working shifts. Common are
also problems of merging, problems of splitting and problems
of goods distribution.

2. Difference equations

We have already met difference equations in the first
. chapter, albeit briefly and of first order
£y .. only. Now we consider a more general
theory for linear equations with constant
coefficients. This not only provides very
practlcal tools but also represents a good illustration for the
concepts of vector spaces and linear mappings.
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in the Fibonacci sequence are integers), although it might not
seem so at the first glance. g

We do some exercises about solving linear difference
equation of the second order with constant coefficients. The
sequence satisfying the given recurrence equation of the sec-
ond order is uniquely determined whenever we prescribe any
two neighbouring members. Note a further use of complex
numbers: to determine the explicit formula for the n-th mem-
ber of the sequence of real numbers we might require calcu-
lations with complex numbers. This happens when the char-
acteristic polynomial of the difference equation has complex

roots.

3.B.2. Find an explicit formula for the sequence satisfying
the following linear difference equation with the initial condi-

tions:

Tnta =2Tpn + N, T1 =2, 3 = 2.

Solution. The homogeneous equation is
Tnta = 2Tp.

Its characteristic polynomial is x2 —2, its roots are ++/2. The

solution of the homogeneous equation is of the form
a(\/ﬁ)n + b(_\/i)n7

We look for the particular solution using the method of in-

forany a,b € R.

determinate coefficients. The non-homogeneous part of the
equation is a linear polynomial n. Thus a particular solution
will be of the form of a linear polynomial in the variable n.
That is, kn + [, where k,I € R. By substituting into the

original equation we obtain
En+2)+1=2(kn+1)+n.

By comparing the coefficients of the variable n on both sides
of the equation, we obtain the relation k = 2k+1, thatis, k =
—1. By comparing the absolute terms we obtain 2k 4 [ = 21,
that is, | = —2. Thus the particular solution is the sequence
—n — 2.

Thus the solution of the non-homogeneous difference
equation of the second order without initial condition is of

the form

a(vV2)" +b(—V2)" —n—2, a,be R

HoOMOGENEOUS LINEAR DIFFERENCE EQUATION OF ORDER k

3.2.1. Definition. A homogeneous linear difference equa-
tion (or homogeneous linear recurrence) of order k is given
by the expression

ag 7& 0 ag 7& 07
where the coefficients a; are scalars, which can possibly de-
pend on n.

We usually denote the sequence in question as a func-
tion

ATy + a1Tp—1 + -+ apTp—p =0,

w0 = f(n) = —ﬂfm—l)—---—j—’;f(n—k).

ag
A solution of this equation is a sequence of scalars z;,
for all © € N (or 7 € Z), which satisfy the equation with any
n.

By giving any k consecutive values x; in the sequence,
all other values of x; are determined uniquely.
. Indeed, we work over a field of scalars, thus the
AS—=——" "~ values ag and a; are invertible and hence, us-
ing the recurrent definition, any x,, can be computed uniquely
from the preceding k values, and similarly for z,,_;. Induc-
tion thus immediately proves that all remaining values are
uniquely determined.

The space of all infinite sequences x; forms a vector
space, where addition and multiplication by scalars works
coordinate-wise. The definition immediately implies that a
sum of two solutions of a homogeneous linear difference
equation or a multiple of a solution is again a solution. Anal-
ogously as with homogeneous linear systems we see that the
set of all solutions forms a subspace.

Initial conditions on the values xg,...,x;_1 of the so-
lution reprezent a k-dimensional vector in K*. The sum of
initial conditions determines the sum of the corresponding
solutions, similarly for scalar multiples. Note also that substi-
tuting zeros and ones into initial k£ values immediately yields
k linearly independent solutions of the difference equation.
Thus, although the vectors are infinite sequences, the set of
all solutions has finite dimension. The dimension equals the
order of the equation k. Moreover, we can easily obtain a ba-
sis of all those solutions. Again we speak of the fundamental
system of solutions and all other solutions are its linear com-
binations.

As we have just checked, if we choose k indices ¢,
14+ 1,...,% + k — 1 in sequence, the homogeneous linear
difference equation gives a linear mapping K¥ — K>
of k-dimensional vectors of initial values into infinitely-
dimensional sequences of the same scalars. The indepen-
dence of such solutions is equivalent to the independence
of the initial values — which can be easily checked by a de-
terminant: If we have a k-tuple of solutions (J:L1 Lol ]),
it is independent if and only if the following determinant,
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Now, by substitution in the initial conditions, we deter-
mine the indeterminate a,b € R. To simplify the calcula-
tion, we use a little trick: from the initial conditions and the
given recurrence relation we compute the member zg : xg =
3(x2 —0) =
the conditions g = 1 and ;1 = 1 is then clearly satisfied by

1. The given recurrence formula along with

the same formula that satisfies the original initial conditions.

Thus we have the following relations for a, b:

X - a(\/§)0 + b(—\/§)0 — 2 = 1,
1 V2a —V/2b =5,

thus a +b =3,

whose solution gives us a = 6+Z‘/§, h= 6= S‘f The solu-

tion is thus the sequence

6+ 5\/5(\/5),,1 n

Tn = 4 - 5\/5*(_\/5)" -

— 2.
1 n

O

3.B.3. Determine the basis of the space of all solutions of

the homogeneous difference equation
Tn+4 = Tnp+3 + Tn+1l — Tn,

Express your solution in terms of real valued functions.

Solution. The characteristic polynomial of the given equa-

tion is z* — 23 — x + 1. If we are looking for its roots, we

solve the equation
=2 —x+1=0

The left side factors as

(x—1)*(z* +x+1)
with two complex roots x1 = —3 + z§ = cos(27/3) +
isin(2m/3) and 2o = — 5 — ’L\[ = cos(2m/3) — isin(27/3)

and a double root 1. Thus the basis of the vector space
of the sequences that are a solution of the difference
equation in question is the following quadruple of se-
{(_% + i\/g)n}%o:p {(_’ o Z\[)” n=1»

{1}52, (constant sequence) and {n}5° . If we are looking

quences:

for a basis of real valued functions, we must replace two
of the generators (sequences) from this basis by some
sequences that are real only. As these generators are power
series whose members are complex conjugates, it suffices to
take as suitable generators the sequences given by the half of
the sum and by the half of the i-th multiple of the difference

of that complex generators. This yields the following real

sometimes called the Casoratian, is non-zero for one n

o gl
[111 Uc]1
o, =| , T L
1 k
“’Ez]wcq e $£1]+k71

which then implies the non-vanishing of C,, for all n.

3.2.2. Recurrences with constant coefficients. It is diffi-
cult to find a universal mechanism for finding a solution (that
is, a directly computable expression) of general homogeneous
linear difference equations. We shall come back to this prob-
lem in the end of chapter 13.

In practlcal models there are very often equations, where
the coefficients are constant. In this case it is
possible to guess a suitable form for the solu-
tion and indeed to find k linearly independent
solutions. This would then be a complete solu-
tion of the problem, since all other solutions would be linear
combinations of them.

For simplicity we start with equations of second order.
Such recurrences are very often encountered in practical prob-
lems, where there are relations based on two previous values.
A linear difference equation (recurrence) of second order with
constant coeflicients is thus a formula

(D fm+2)=afn+1)+bf(n)+c

where a,b,c are known scalar coefficients.

Consider a population model. We assume that the indi-
viduals in a population mature and start breeding two seasons
later (that is, they add to the value f(n + 2) by a multiple
b f(n) with positive b > 1), while immature individuals at
the same time weaken and destroy part of the mature popula-
tion (that is, the coefficient a at f(n+1) is negative). Further-
more, it might be that somebody destroys (uses, eats) a fixed
amount c of individuals every season.

A similar situation with ¢ = 0 and both other coefficients
positive determines the famous Fibonacci sequence of num-
bers yo, Y1, - . ., Where Yn4+2 = Ynt1 + Yn, see 3.B.1.

If we have no idea how to solve a mathematical problem,
we can always blindly try some known solutions of a similar
problems. Thus, let us substitute into the equation (1) with co-
efficient ¢ = 0 a similar solution as with the linear equations
from the first chapter (cf. 1.2.1), that is, we try f(n) = A" for
some scalar A. By substitution into the equation we obtain

A" = XN —aX—b) =0

)\7L+2 _ a)\n-i-l _

This relation will hold either for A\ = 0 or for the choice of
the values

Va2 + 4b).

It is easy to see that such solutions work. We just had to
choose the scalar A suitably. But we are not finished, since
we want to find a solution for any two initial values f(0) and

1 1
AL = §(a+ a? +4b), A= i(a—
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basis of the solution space: {1}°2, (constant sequence),
{n}32,, {cos(2nm/3)}2,, {sin(2nm/3)}32,. 0

3.B.4. Solve the following difference equation:

Tnt+d = Tpt3 — Tpy2 T Tpgl — Tpe

Solution. From the theory we know that the space of the solu-
tions of this difference equation is a four-dimensional vector
space whose generators can be obtained from the roots of the
characteristic polynomial of the given equation. The charac-
teristic polynomial is

-4+ —z+1=0.

It is a reciprocal equation (that means that the coefficients at
the (n — k)-th and k-th power of , k = 1,. .., n, are equal).
We can use the substitution v = x + % After dividing the
equation by 22 (zero cannot be a root) and substituting (note

that 22 + ?12 = u? — 2) we obtain

2 1 1 2
:U—:E—&-l—f—&-ﬁ:u —u—1=0.
T

. From there

Thus we obtain the indeterminates uy 2 =
2

14+V5
2

then by the equation z° — ux + 1 = 0 we determine the four

roots

1+vV5++v—-10+2V5
I .

Note that the roots of the characteristic equation could

r1,2,34 =

have been “guessed” right away since

o +1=(z+1)(z* -2+ 22—z +1).

Thus the roots of the polynomial z* —2 +22 —2+1 are also

the roots of the polynomial ° + 1, which are exactly the fifth
roots of the —1. By this we obtain that the solutions of the
characteristic polynomial are the numbers 21 5 = cos(§) £
") 4 isin(2F). Thus the real basis
of the space of the solution of the given difference equation
), sin("),
which are sines and cosines of the

isin(%) and 234 = cos(3F

is for instance the basis of the sequences cos( "2
cos(22T) and sin(227),
arguments of the corresponding powers of the roots of the
characteristic polynomial.

Note that we have incidentally derived the algebraic

expressions for cos(§) = 1+\/5’ sin(Z) @’
cos(¥) = \/54 and sin( %) = \/W . This is because

all the roots of the equation have absolute value 1, they are

the real and imaginary parts of the corresponding roots). [J

f(1). So far, we have only found two specific sequences satis-
fying the given equation (or possibly even only one sequence
if Ao = Ap).

As we have already derived for linear recurrences, the
sum of two solutions f1(n) and fa(n) of our equation f(n +
2) —a f(n+1) —b f(n) = 0is again a solution of the same
equation. The same holds for scalar multiples of the solution.
Our two specific solutions thus generate the more general so-
lutions

f(??) = C’1>\71I + CQ/\S
for arbitrary scalars C; and Cs. For a unique solution of the
specific problem with given initial values f(0) and f(1), it
remains only to find the corresponding scalars C and Cs.

3.2.3. The choice of scalars. We show how this can work
with an example. Consider the problem:

ey

Here A1 2 = 3(1 £ /3) and clearly
Yo=C1+Cy =2

Y1 = %Cl(l +3) + 302(1 —V3)

1
Ynt2 = Ynt1 + oY Yo = 2, y1=0.

is satisfied for exactly one choice of these constants. Direct
calculation yields C; = 1 — £v/3, Co = 1+ /3 and our
problem has unique solution

J(n) VB) g (V) 4 (142 VE) 5 (1 VB)™

1
=(1-3 V3) m

Note that even if the found solution for our equation with
rational coefficients and rational initial values looks compli-
cated and is expressed with irrational numbers, we know a
priori that the solution itself is again rational. But without
this “step aside” into a larger field of scalars, we would not
be able to describe the general solution.

We will often meet similar phenomena. Moreover, the
general solution often allows us to discuss qualitative be-
haviour of the sequence of numbers f(n) without direct enu-
meration of the constants. For example, we may see whether
the values approach some fixed value with increasing n or
oscillate in some interval or whether they are unbounded.

3.2.4. General homogeneous recurrences. We substitute
x, = A" for some (yet unknown) scalar A into
the general homogeneous equation from the def-
inition 3.2.1 (with constant coeflicients). For ev-
ery n we obtain the condition

AR (@ AP + a AL ) = 0.

This means that either A = 0 or A is the root of the so-called
characteristic polynomial in the parentheses. The character-
istic polynomial is independent of n.

Assume that the characteristic polynomial has & distinct
roots A1, ..., Ag. For this purpose, we can extend the field
of scalars we are working in, for instance Q into R or C. Of
course, if the inicial conditions are in the original field then
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3.B.5. Determine the explicit expression of the sequence
satisfying the difference equation x,, 4o = 22,41 — 22, with

initial values x1 = 2, o = 2.

Solution. The roots of the characteristic polynomial 22 — 22+
2 are 1 4+4 and 1 — <. The basis of the (complex) vector space
of the solution is thus formed by the sequences y,, = (141)"
and z, = (1 — 7)". The sequence in question can thus be
expressed as a linear combination of these sequences (with
complex coefficients). It is thus ,, = a - y,, + b - z,,, where
a = aq + iag, b = by + iby. From the recurrent relation we
compute rg = %(29@1 — x2) = 0 and by substitution n = 0

and n = 1 into the expression of x,, we obtain

a1 + iag + by + ibg
(a1 + Z(LQ)(]. + Z) + (b1 + ZbQ)(]. — Z)

12330 =

2:$1 =

By comparing the real and the complex part of both equa-
tions, we obtain a linear system of four equations with four

indeterminates
al + b1 =
a9 + b2 =
ay—az+by+by =

(=

a1 +as —by +by =

These equations imply that a; = by = by = % and as =

—1/2. Thus we can express the sequence in question as

- (; - ;z) (L+0)" + (; + ;z) (1—i)".
The sequence can also be expressed using the real basis of
the (complex) vector space of the space of solutions, that is,
using the sequences u, = % (Y, +2,) = (V/2)" cos(%*) and
Uy = 2i(2, — yn) = (V2)"sin(%%). The transition matrix

for the changing the basis from the complex one to the real

1 _ 1,
T (% 12?) ,
7 2t

1

one is

the inverse matrix is 7~ ! =

1
z) , for expressing the se-
quence x,, using the real basis, that is, for expressing the co-

ordinates (c, d) of the sequence x,, under the basis {u,, vy},

(@) =m6)=0)

we have

the solutions stay there since the recurrence equation itself
does. Each of the roots gives us single possible solution

We need k linearly independent solutions.

Thus we should check the independence by substituting
k values forn = 0,...,k — 1 for k choices of \; into the
Casoratian (see 3.2.1). Thus we obtain the Vandermonde ma-
trix. It is a good but not entirely trivial exercise to show that
for every k and any k-tuple of distinct \; the determinant of
such a matrix non-zero, see 2.B.7 on the page 92. It follows
that the chosen solutions are linearly independent.

Thus we have found the fundamental system of solutions
of the homogeneous difference equation in the case that all
the (possibly complex) roots of its characteristic polynomial
are distinct.

Now we suppose A is a multiple root. We ask whether
x, = nA"™ could be a solution. We arrive at the condition

agnA" + -+ ap(n — E)A"F = 0.
This condition can be rewritten as
Mag\" + -+ ap\" )Y =0

where the dash denotes differentiation with respect to A (cf.
the infinitesimal definition in 5.1.6, and 12.2.7 for the purely
algebraic treatment).

Moreover, a root ¢ of a polynomial f has multiplicity
greater than one if and only if it is a root of f’, see 12.2.7
for the proof. Our condition is thus satisfied.

With greater multiplicity ¢ of the root of the character-
istic polynomial we can proceed similarly and
y, . ), use the (now obvious) fact that a root with multi-
plicity ¢ is a root of all derivatives of the polyno-
mial up to order /—1 (inclusively). Derivatives

<A

logk like this:

FO) =ao\" + -+ apgA"F
F'(A) = agnA™ '+ -+ ag(n — B)AVF!
f//(/\) = aon(n_l))\nfli__ .. +ak(n—k)(n—k—1))\”*’€*2

f(f) :aon...(n_g+1)/\"—z+...
+ap(n—Fk)---(n—k—£0+1)A"FE
We look at the case of a triple root A and try to find a
solution in the form n2\™. By substitution into the definition,
we obtain the equation
agn®\" + - +ap(n — k)2\"F = 0.

Clearly the left side equals the expression A2 f”(\) + Af/(\)
and because ) is a root of both derivatives, the condition is
satisfied.

Using induction, we prove that even for the general con-
dition of the solution in the form x,, = nf\",

agn\" 4 .. .ap(n — k)'A"F =0,
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thus we have again an alternative expression of the sequence
z,, where there are no complex numbers (but there are square
roots):
nmw nmw
Z, = (V2)" cos (T) + (V/2)" sin (T) .

We could have obtained these by solving two linear equations
in two variables ¢, d, thatis, 1 = xg = ¢-ug +d-vg = cand
2=x1=c-u;+d-vy =c+d. O

3.B.6. A simplified model for the behaviour of gross do-
mestic product. Consider the difference equation

M Ykt2 — a(l 4+ D) yp41 + abyy = 1,

where yy, is the gross domestic product at the year k. The
= constant a is the consumption tendency,
re? 3, which is a macro economical factor that
gives the fraction of money that the peo-
ple spend (from what they have at their disposal). The con-
stant b describes the dependence of the measure of investment
of the private sector on the consumption tendency.
Further, we assume that the size of the domestic product
is normalised such that the right-hand side of the equation is
1.

Compute the values y,, fora = 3,b =4, yo = 1,1 = 1.

Solution. Look first for the solution of the homogeneous
equation (the right side being zero) in the form of r*. The
number 7 must be a solution of the characteristic equation
.9 1
thatis, z© — = + 1 =0,

which has a double root % All the solutions of the homoge-

x? —a(l +b)x 4 ab =0,

neous equation are then of the form a(3)™ + bn(3)".

Note also that if we find some solution of the non-
homogeneous equation (the particular solution), then we can
add to it any solution of the homogeneous solution, to obtain
another solution of the non-homogeneous equation. It can
be shown that all solutions of the non-homogeneous equation
can be found in this way.

In this problem, it is easy to check that the constant func-
tion y,, = cis a solution provided ¢ = 4. All solutions of the
difference equation

1
yk+2—yk+1+1'yk =1
are thus of the form 4 + a($)" + bn(3)". We require that

Yo = y1 = 1 and these two equations give a = b = —3.

the solution can be obtained as a linear combination of the
derivatives of the characteristic polynomial starting with the
expression (check the combinatorics!)

¢
N 4 (2) Ntpte=n)

We have thus come close to the complete proof of the follow-
ing:

HomoGENoUs EQUATIONS WITH CONSTANT COEFFICIENTS

Theorem. The solution space of a homogeneous linear dif-
ference equation of order k over the field of scalars K = C s
the k-dimensional vector space generated by the sequences
Xy, = PN, where )\ are (complex) roots of the characteris-
tic polynomial and the powers € run over all natural numbers
0,...,7x — 1, where r) is the multiplicity of the root \.

Proor. The relation between the multiplicity of roots
and the derivatives of real polynomials will be proved later
(cf. 5.3.7), while the fact that every complex polynomial has
exactly as many roots (counting multiplicities) as its degree
will appear in 10.2.11. It remains to prove that the k-tuple
of solutions thus found is linearly independent. Even in this
case we can prove inductively that the corresponding Casora-
tian is non-zero. We have done this already in the case of the
Vandermonde determinant before.

To illustrate of our approach we show how the calculation
looks for the case of a root \; with multiplicity one and a root
Ao with multiplicity two:

AT NS nAy
CAT, A3, nAy) = AL AR+ (n 4 1)ag™!
APP2ONETE (4 2)05 7
1 1 n

= /\?)\gn A1 A9 (n + 1)/\2
A2N2 (n+2))\3

1 1 n
=ATAZY N =X 0 N
AM(Ar—X2) 0 A3

_ _\n\2n )‘1 - >\2 >\2

= —ATh MM —A2) A3

= APAT (A = A2)? #0.

In the general case the proof can be carried on inductively in
a similar way. (|

3.2.5. Real basis of the solutions. For equations with real
7 = coeflicients, initial real conditions always
Y I lead to real solutions (and similarly with
scalars Z or Q). However, the correspond-
ing fundamental solutions derived using the above theorem
might exist only in the complex domain.
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Thus the solution of this non-homogeneous equation is

1 n 1 n
n=4-3(=) —3n(=]) .
1(5) ()

Again, as we know that the sequence given by this formula
satisfies the given difference equation and also the given ini-
tial conditions, it is indeed the only sequence characterized
by these properties.

|

3.B.7. Find a sequence which satisfies the given non-

homogeneous difference equation with the initial conditions:

Tn+2 = Tyl + 22, +1, @1 =2, 22 = 2.

Solution. The general solution of the homogeneous equa-
™ 4+ b2",
the constant —1/2. The general solution of the given non-

tion is of the form a(— A particular solution is

homogeneous equation without initial conditions is thus

, n 1

a(—1)" +b2" — 3

Substituting in the initial conditions, then gives the constants
a = —-5/6,b =
initial conditions is thus satisfied by the sequence

5 5 1
n=—— -1 n 7271—1 _ .
* sV T3 2

5/6. The given difference equation with

O

3.B.8. Determine the sequence of real numbers that satisfies
the following non-homogeneous difference equation with ini-

tial conditions:

20p40 = —Tpy1 +2n +2, 21 =2, 39 =3.

Solution. The general solution of the homogeneous equation
™+ b(1/2)™.
the constant 1. The general solution of the non-homogeneous

is of the form a(— A particular solution is

equation without initial conditions is thus

a(=1)" +b (;) 41

By substitution with the initial conditions, we obtain the con-
stants a = 1, b = 4. The given equation with initial condi-

tions is thus satisfied by the sequence

1 n
Tn = (—1)"+4 <2) +1.

We try therefore to find other generators, which will be
more convenient. Because the coefficients of the characteris-
tic polynomial are real, each of its roots is either real or the
roots are paired as complex conjugates.

If we describe the solution in polar form as

" = |A|"(cos ng + isinnp)
" = |A|"(cosng — isinnep),

we see immediately that their sum and difference leads to two
linearly independent solutions

zy, = |A|[" cosng, y, = |A|"sinne.

Difference equations very often appear as a model of dy-
namics of some system. A nice topic to think about is the
connection between the absolute values of individual roots
and the stability of the solution. We will not go into details
here, because only in the fifth chapter we will speak of conver-
gence of values to some limit value. There is space for some
interesting numerical experiments: for instance with oscilla-
tions of suitable population or economical models.

3.2.6. The non-homogeneous case. As in the case of sys-

7 . tems of linear equations we can obtain all so-
" Tutions of non- homogeneous linear difference
~_ equations

ag(n)x, + a1 (n)xp—1 + -+ + ax(n)z,—r = b(n),

where the coefficients a; and b are scalars which might depend
on n, with ag(n) # 0, ax(n) # 0. Again, we proceed by
finding one solution and adding the complete vector space of
dimension k of solutions to the corresponding homogeneous
system. Indeed each such sum yields a solution. Since the
difference of two solutions of a non-homogeneous system is
a solution of the homogeneous system, we obtain all solutions
in this way.

When we were working with systems of linear equations,
it was possible that there was no solution. This is not pos-
sible with difference equations. But it is not always easy to
find that one particular solution of a non-homogeneous sys-
tem, particularly if the behaviour of the scalar coefficients in
the equation is complicated. Even for linear recurrences with
constant coefficients it may not be easy to find a solution if
the right-hand side is complicated.

But we can always try to find a solution in a form similar
to the right hand side. Consider the case when the correspond-
ing homogeneous system has constant coeflicients and b(n) is
a polynomial of degree s. The solution can then be found in
the form of the polynomial

S

Ty =00 togn—+ -+ agn

with unknown coefficients c;, ¢ = 1,...,s. By substitution
into the difference equation and comparing the coefficients
of the individual powers of n we obtain a system of s 4 1
equations for s + 1 variables «;. If this system has a solution,
then we have found a solution of our original problem. If
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3.B.9. Determine sequences satisfying

Tpt2 — 6Tpt1 + Dxy, =ne™.

Solution. Solve first the homogeneous part. We get:

2

S()" 4o - 5™

:Cl

To find the particular solution we can use the method of
variation of the constant. The Wronski determinant is

19+1  gi+l i
Wj+1 = det ( 1j+2 5j+2 =4- 5]+ .
Thus,
n—1 n—1 .
1 ; jel ,
_ En o - n
Tp=c1+C2-b 4Z]e+ 1541 )
=0 j=0
Cc1,C2 € R. O

3.B.10. Determine an explicit expression of the sequence sat-
isfying the difference equation 12 = 3z,4+1 + 3z, with

members 1 = 1 and 25 = 3. O

3.B.11. Determine an explicit formula for the n-th member

of the unique solution {z,}5 , that satisfies the following

conditions:
Tn+2 = Tp+1 — Tp, T1 = 1, z9 = 5.

O

3.B.12. Determine an explicit formula for the n-th member
of the unique solution {x,}52 ; that satisfies the following

conditions:
171:1,132:].,583:]..
O

3.B.13. Determine an explicit formula for the n-th member

—Tn+4+3 = 2zn+2 + 2111—0—1 + Zn,

of the unique solution {z,}52, that satisfies the following

conditions:
—Tp43 = 3£Cn+2 + 3fﬂn+1 +xn, T1 = 1, To — 1, T3 = 1.

O

C. Population models

Population models, which we consider now, have recur-
rence relations in vector spaces. The unknown in this case
is not a sequence of numbers but a sequence of vectors. The
role of coeflicients is played by matrices. We begin with a

simple (two-dimensional) case.

it has no solution, we can try again with an increase in the
degree s of the polynomial in question.

For instance, the equation x,, — x,,_2 = 2 cannot have
a constant solution, because substitution of the potential solu-
tion z,, = «g yields the requirement ag — a9 = 0 = 2. But
by setting z,, = oo + 11 we obtain a solution z,, = a9 +n,
with o arbitrary. Thus the general solution of our equation
is

z, = C1 + Cg(—l)n +n.

We use this method, the method of indeterminate coeffi-
cients for example in 3.B.6.

3.2.7. Variation of constants. An other possible way to
. solve such an equation is the variation of constants
> method. Here we find first a solution

k

> cifi(n)

i=1

y(n) =

of the homogeneous equation, where we consider the con-
stants ¢; as functions ¢;(n) of the variable n. Then we look
for a particular solution of the given equation in the form

[
E

. Ci (n)ft (n)

We illustrate the method on second order equations. Sup-
pose that the homogeneous part of the second order non-
homogeneous equation

Tn42 + AnTLn+4+1 + bnxn - fn
has arg,,l) and x£,2 ) as a basis of solutions. We will be looking
for a particular solution of the non-homogeneous equation in
the form

Ty = An.T + B”r(l)
with some conditions on A,, and B,, to be imposed. We have

1
Tn+1 = ATL-‘rleEL—&)-l + Bn"rlxn—i-l - A” n+1 + bemgr—&)-l_F

(Apy1 — Az S}rl + (Bny1 — Bz 5;2411

= Ana:n_H + B,Lsr(2)1 + 5Anac,,+1 + (5B,L5r£72_il,
where 0A,, = A,41 — A, and 6B,, = B, 11 — B,,.

In order to be able to use the same A,,, B,, in the expres-
sion for x,,1, we impose for all n the condition

§A,a), + 6B = 0.

Thus, for all n

Tn+1 = Anzfll_;,)_l + Bn,If_?_l,

and in particular

" — 1) (2
Tny2 = A7L+1xn+2 + BnJrlanrQ

= Anx(l)Q +B x(2)2 + 5Anx(1)2 +0B :cfi)rz.
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3.C.1. Savings. A friend and I save for a holiday together by
monthly payments in the following way. At the beginning I
give 10 €and he gives 20 €. Every consecutive month each
of us gives as many as last month plus one half of what the
other has given the month before. How much will we have
after one year? How much money will I pay in the twelfth

month?

Solution. Let the amount of money I pay in the n-th month
be denoted by x,,, and the amount my friend pays is y,,. Thus
in the first month we deposit z; = 10,y; = 20. For the
following payments we can write down a recurrent relation:
Tpi1 = Tp + SYn
Yn+1 = Yn + 5Tn

If we denote the common savings by z, = z,, + Y, then by

summing the equations we obtain 2,41 = 2, + lzn = %zn.
n—1

This is a geometric sequence and we obtain z, = 3. ( )

In a year we will have z1 4+ 22 + - - - + z12. This partial sum
is easy to compute

11 3\12 _
3 3 (2)
3(1+4+---+ (= =32
< 2 (2)> 5—1

In a year we will have saved over 772 €.

= 772,5.

The recurrent system of equation describing the savings

system can be written by matrices as follows:

Tn+1 — 1 % T
Yn41 % 1 Yn
It is thus again a geometric sequence. Its elements are now

vectors and the quotient is not a scalar, but a matrix. The

solution can be found analogously:

(-G C)

The power of the matrix acting on the vector (21,y1) can be

found by expressing this vector in the basis of eigenvectors.

The characteristic polynomial of the matrix is (1-X\)2—1 -0

and the eigenvalues are thus Ay » = The Correspondlng

33
eigenvectors are thus (1, 1) and (1, —1). For the initial vector
(1,2) we compute

IRCECRE
BEONOEIONES

That means that in the 12th month I pay

3 12 112
=(2) —(=2) =1
e (3) (a) o

Now,
fn=Tni2+ anTpi1 + bpxpnie
= An(z SJ)rz +a SJ)A + bn35511+)2) + By (x512+)2+
Ly + buinls) + SAnT Ly + 0Bzl
= 5Anx511]r2 +4B :En+)2
Hence the variations § A,, and § B,, are subject to the systems

§A,xl) + 6B,z =0

5A7L¢(1)2 +4B x512+)2 = fn

with solutions (compute the inverse matrix e.g. by means of
the algebraic adjoint and the determinant)

farlh
0A, = Apyr — Ay = nn
“ Woi1
fnT 1.;,)_1
6B, = B,.1 — B, = ~=ntl
i Wit

where W, 41 is the Wronski determinant

x(l) . x(2) .
Wn+1 = det ?ﬁ) IELQJ)F .
n—+2 n+2
It follows that

n—1
f7 +1
A, — Ay = ==
jZ_:O WH—I

n—1
B, — By = fity

§=0 Wit1
Setting Ag = By = 0 we obtain
n—1 (2)
fizida
A, = -
;) Wit
n—1 (1)
B, = 3 Dt
l =0 Wit

and the aquired general solution of our recurrence equation is

2, = CrzV + Cozx@ +

n—1 n—1 (1)
firih fiz
(1) Jitj1 (2)
—— |z, + T
;) ”j+1 ;J ”]—l—l

This method is used to solve the example 3.B.9.

3.2.8. Linear filters. Now we consider infinite sequences

z=(...,

As in the case of systems of linear equations, we work
with an operation 7" that maps the sequence x to the sequence
z = Tz with elements

x—n7x—n+17' "ax—17x07x17~-~;zna"')'

Zp = Q0Tp + A1Tp—1 + ** + ATn—k-
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€and my friend pays basically the same amount. ]
Remark. The previous example can be solved also without
matrices by rewriting the recurrent equation: zp41 = T, +
3Yn =

The previous example was actually a model of growth (in

1 1

this case, growth of saved money). We go now to the models
of growth describing primarily the growth of a population.
The Leslie model of population growth with which we have
dealt with in great detail in the theoretical part describes very
well not only populations of sheep (according to which it was
developed), but can be also applied in modelling of the fol-

lowing populations:

3.C.2. Rabbits for the second time. We show how the
Leslie model can describe the population of the rabbits on a
meadow with which we have worked in exercise (3.B.1). Sup-
pose that the rabbits are dying after reaching the ninth year of
age (in the original model the rabbits were immortal). De-
note the number of rabbits according to their age in months
attime ¢ (in months) as 1 (t), z2(t),..., g (t). Then the num-
ber of rabbits in individual categories are described after one
month by the formula z1 (t+1) = z2(¢)+a5(t)+ - - +x9(t),
zi(t+1)=ax;-1(t), fori =2,3,...,10, or

z1(t+1)

T2 (t + 1)

l‘3(t + 1)

I4(t =+ 1)

z5(t+1) | =

ze(t+ 1)

$7(t + 1)

l‘g(t —+ 1)
:Eg(t —+ 1)

cocoocoococo~O
coococoor o
coococorOOR
coocorooOR
cooroocoor
coroco0o0OoOR
orococo0o0cOoOR
—ooo0oocooOr
ER=R=R=R=R=R=N<-N=

8

S}

—~

=

N2

The characteristic polynomial of the given matrix is A2 —\7 —
D P
are hard to explicitly express, but we can estimate one of them
very well — A\; = 1.608 (why must it be smaller than (v/5 +
1)/2)7). Thus the population grows according to this model

1. The roots of this polynomial

approximately with the geometric sequence 1.608°.

3.C.3. Pond. Suppose we have a simple model of a pond
where there lives a population of white fish (roach, bleak,
vimba, nase, etc.). Assume that 20 % of babies survive their
second year and from that age on they are able to reproduce.
For these young fish, approximately 60 % of them survive
their third year and in the following years the mortality can be
ignored. Furthermore we assume that the birth rate is three
times the number of fish that can reproduce.

Such a population would clearly fill the pond very
quickly. Thus we want to maintain a balance by using a

As already noticed, the sequences = = (z,,) are vectors
with respect to coordinate-wise operations,
and the vector space of all such sequences
is infinitely-dimensional. The operation T is
clearly a linear mapping on this space.

T he sequences can be imagined as discrete values of a
signal, often captured in very short time units. 7" plays the
role of a filter that works with the signal. For example, this
is how the sampling of an audio signal looks like. We are
interested in estimating the properties such a linear filter can
have.

Signals are often a linear combination of superimposed
parts, which are themselves periodical. From our definition
it is clear that periodic sequences x,,, that is, sequences satis-
fying for some fixed natural number p

Tntp = Tn

will also have periodic images z = Tz
Zn4p = A0Tn4p + A1 Tpn—14p +-+ ATy —k+p

= aoTn +a1Tp—1+ -+ ATk = 2n

with the same period p.

We are interested in which input periodic sequences T'x
remain roughly the same (up to a scalar multiple), and in
which T’z will be suppressed close to zero values. Also, we
are looking for the kernel of our linear mapping 7'. That is,
the subspace of sequences given by the homogeneous differ-
ence equation

AoTp + @1 Tp—1 + -+ AxZn—rp =0, ay#0 ap#0,

which we are able to solve.

3.2.9. Bad equalizer. Asanexample, consider a very simple
linear filter given by the equation

n=T2), =2p+ Tp_2.

Clearly, the kernel of T is generated by x,, = cos(5n)

and x, = sin(gn), while the solutions to
") Tnio = Tp correspond to the requirement
(T'x),, = 2x,. The results of such an operation

i on a signal are illustrated by the two diagrams
below. There we use two different frequencies of signals and
display their discrete sampling (the solid lines and the points
x,, on them). The dashed line represents the sampling z,, of
the filtered signal.
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predator, for instance esox. Assume that one esox eats per
year approximately 500 mature white fish. How many esox
should be put into the pond in order for the population to

remain constant?

Solution. If we denote by p the number of babies, by m the
number of young fish and by 7 the number of adult fish, then

the state of the population in the next year is given by:

p 3m + 3r
m | — 0.2p ,
r 0.6m +7r

where 1 — 7 is the relative mortality of the adult fish caused

by the esox. The corresponding matrix describing this model

is then
0 3 3
02 0 O
0 06 7

If the population is to stagnate, (ie. remain constant), then this
matrix must have eigenvalue 1. In other words, one must be
the root of the characteristic polynomial of this matrix. That
is of the form A2(7 — \) + 0.36 — 0.6.(7 — A\) = 0. That
means that 7 must satisfy
7—140.36—-06(r—1)=0
047 —-0.04=0

In the next year only 10 % is allowed to survive and the rest
should be eaten by the esox. If we denote the desired number
of esox by x, then together they eat 500« fish, which, accord-
ing to the previous computation, should be 0.9r. The ratio of
the number of white fish to the number of esox should thus

be ~ = %. That is, one esox for (approximately) 556 white
fish. (|
3.C.4. In the population model, let the number of predators

be Dy, and the number of preys be K, in month k. The relation
of these between month k£ and month k 4 1 is given by one of

the three linear systems

(a)
Dy = 06D, + 0.5Kyg,
Kk+1 = —-0.16D, + 1.2K;
(b)
D1 = 0.6D; + 05Ky,
Ky = —-017D, + 12Ky,
(©)
Dpir = 0.6D, + 05K,
Ky = —-0135D, + 12K

Analyse the behaviour of this model for large time values.

The first case shows an amplifying of the signal, while
the second frequency is close to the kernel which is killed by
the filter. Notice that the filtered signal suffers serious shifts
in phase, which varies with the frequencies. Cheap equalisers
work in such a bad way.

Notice also how badly the original signal is sampled on
the second picture. This is due to the fact that the sampling
frequency is not much higher than the frequency of the signal.

3. Iterated linear processes

3.3.1. Tterated processes. In practical models we often en-
8 counter the situation where the evolution of a
"' system in a given time interval is given by a
2= linear process, and we are interested in the be-

— haviour of the system after many iterations. The
linear process often remains the same, thus from the mathe-
matical point of view we are dealing with an iterated multipli-
cation of the state vector by the same matrix.

While solving the systems of linear equation require only
minimal knowledge of properties of linear mappings, in order
to understand the behaviour of an iterated system, we shall ex-
ploit the features of eigenvalues, eigenvectors and other struc-
tural features.

In fact, the determination of the solution of a linear recur-
rence equation by a set of intital conditions can be described
as an iterated process. Imagine we keep the state vector of the
last n values

Y, = (xn; vee awn7k+1)
(filled by the initial condition in the beginning of the process).
In the next step we update the state vector

YTL+1 = (mn+17 Tny oo 7$n7k+2)7

where the first entry ,,4+1 = a1, + - - - + Qg Ty 41 iS COM-
puted by means of a homogeneous difference equation, while
the other entries are just a shift by one position with the last
one forgotten. The corresponding square matrix of order k
that satisfies Y, 11 = A - Y,, is as follows:

ayp a2 ap—1 Qg
1 0 0 0
A=|0 1 0 0
0 0 1 0

A while ago, we derived an explicit procedure for the com-
plete formula for the solution of such an iterated process with
a special type of matrix. In general, it will not be easy even
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Solution. Note that the individual variants differ from each
other only in the value of the coefficients at Dy, in the second

equation. Thus we can express all three cases as

D\ (06 0.5 Dy_1
()= (%0 13)- (1) wem
where we set a = 0.16, a = 0.175, a = 0.135. The value of

the coeflicient a represents here the average number of preys

killed by one predator per month. When denoting

0.6 0.5
= (—a 1.2>

we obtain

Using the powers of the matrix 7' we can determine the evolu-
tion of the populations of predators and prey after a very long
time.

We compute the eigenvalues for the matrix 7'
(a) M1 =1, X =0.3;
(b) A1 =0.95, Ay =0.85;
() A1 =1.05, X2 =0.75.
The respective eigenvectors are
@ (5,47, (5.2
® (10,7, 21"
© (10,9)", (10,3)".

For k € N we obtain
(a)
ok (5 5). (1 0 (5 5\
4 2)\0 08) \4 2)
ph_ (102 (095 0\ (10 2\
“\7 1) Lo os8) \7 1) °
(©
ok _ (10 10\ (105 0 \* /10 10\
“\o 3 o o) \o 3) -

From there we have for large k£ € N that

€))

(b)

T’“%(
1
10

for very similar systems. A typical case is the study of the dy-
namics of populations in some biological systems which we
discuss below.

The characteristic polynomial |A — X E| of our matrix is

pY) = (1) (A —an At~

as we can check directly or by expanding the last column and
employing induction on k.

Thus, the eigenvalues are exactly the roots A of the char-
acteristic polynomial of the linear recurrence. We should
have expected this, because having a nonzero solution z,, =
A" to the linear recurrence means that the matrix A must
bring (A*, ..., A\)T toits \-multiple. Thus every such \ must
be eigenvalue of the matrix A.

C—ay),

3.3.2. Leslie model for population growth. Imagine that
- we are dealing with some system of individuals
(cattle, insects, cell cultures, etc.) divided into m
groups (according to their age, evolution stage,
etc.). The state X, is thus given by the vector

Xn:(ul,..., )T

depending on the time £,, in which we are observing the sys-
tem. A linear model of evolution of such system is then given
by the matrix A of dimension n, which gives the change of
the vector X, to

»&%

Um

Xn+1 = AXn

when time changes from ¢,, to ,,41.
As an example, we consider the Leslie model for popula-
tion growth. Here there is the matrix

fi fo f3 . fm—1 [m

n 0 0 ... 0 0

0 7 0 ... 0 0
A=19 o .0 0 |-

0 0 0 Tme1 0O

whose parameters are tied with the evolution of a population
divided into m age groups such that f; denotes the relative
fertility of the corresponding age group (in the observed time
shift from N individuals in the i-th group arise new f; N ones

— that is, they are in the first group), while 7; is the relative

mortality in the i-th group in one time interval. Clearly such
a model can be used with any number of age groups.

All coefficients are thus non-negative real numbers and
the numbers 7; are between zero and one. Note that when all
T are equal one, it is actually a linear recurrence with constant
coeflicients and thus has either exponential growth/decay (for
real roots A of the characteristic polynomial) or oscillation
connected with potential growth/decay (for complex roots).

Before we introduce a more general theory, we consider
in more detail this specific model.

Direct computation with the Laplace expansion of the
last column yields the characteristic polynomial p,,, (\) of the
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(b)
-1
s (10 2\ (0 0\ (10 2
r=(7 )6 o) (7))
(©
ok (1010 (105% 0\ (10 10\"'
“\9 3 0 0 9 3

_ 1.05% /=30 100
—-27 90 )’

60
because for large £ € N we can set

(@)
1 0\ /1 0},
0 08) “\o o)’
(b)
095 0\ (0 0\
0o 08) ~\0 0)°
©

105 0 \" _ (105F 0
0o 07) ~ 0 0/
Note that in variant (b), that is for ¢ = 0.175, it is not neces-

sary to compute the eigenvectors.
Thus we have

€))
Dy _ 1 (=10 25 Do
K.) T 10\ -8 20) \K,
_ 1 (5(=2Dg +5Kp)) .
10 \4(—2Dy +5Ky) )’

(b)
D\ _ (0 0 Do\ _ (0
K.) ~\o o) \K,) \0o)’

(©

_ L05* /=30 100\ (Dp

60 \—27 90 K,
1.05% /10 (—3Dy + 10K,)
60 \ 9(—3Dy+10K,) /-

These results can be interpreted as follows:

(a) If2Dy < 5Ky, the sizes of both populations stabilise on
non-zero sizes (we say that they are stable); if 2Dy >

5K, both populations die out.
(b) Both populations die out.

(c) For 3Dy < 10K, begins a population boom of both
kinds; for 3Dy > 10K, both populations die out.

matrix A for the model with m groups:
pm,()\) - 7)‘pm—1()\) + (71)m71fm7—1 oo Tm—1-

By induction we derive that this characteristic polynomial is
of the form

p(N) = (-1 ("

The coefficients a1, . . . , a,,, are all positive if all parameters
7, and f; are positive. In particular,

— AT N = ag).

Ay = fm’Tl...Tmfl.

Consider the distribution of the roots of the polynomial
{1 DPm. We write the characteristic polynomial in the

G Pm(A) = £A™(1 = q(N))
where ¢(A) = a;A™! + - + @, AT™ is a strictly decreas-
ing non-negative function for A > 0. For A positive but very
small the value of ¢ will be arbitrarily large, while for large
A, it will be arbitrarily close to zero. Thus, evidently there ex-
ists exactly one positive A for which ¢(\) = 1 and thus also
pm(A) = 0. In other words, for every Leslie matrix (with
all the parameters f; and 7; positive), there exists exactly one
positive real eigenvalue. For actual Leslie models of popula-
tions a typical situation is when the only real eigenvalue A; is
greater or equal to one, while the absolute values of the other
eigenvalues are strictly less than one.

If we begin with any state vector X, given as a sum of
eigenvectors

X=X+ +Xn
with eigenvalues \;, then iterations yield
AP X = 2PX 0N X,

Thus under the assumption that |\;| < 1 for all ¢ > 2, all
components in the eigensubspaces decrease very fast, except
for the component A\ X If .

The distribution of the population among the age groups
are thus very fast approaching the ratios of the components of
the eigenvector to the dominant eigenvalue A;.

As an example, consider the matrix below where individ-
val coefficients are taken from the model for sheep breeding,
that is, the values 7 contain both natural deaths and activities
of breeders.

0 02 08 06 0
095 0 0 0 O
0.8 0 0 0

0
0

A=1 0
0 0 07 O
0 0 0 06

The eigenvalues are approximately
1.03, 0, —0.5, —0,27 + 0.744, —0.27 — 0.74¢

with absolute values 1.03, 0, 0.5, 0.78, 0.78 and the eigen-
vector corresponding to the dominant eigenvalue is approxi-
mately

X' = (302721 148).
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Even a small change in the size of a can lead to a com-
pletely different result. This is caused by the constancy of the
value of a: it does not depend on the size of the populations.
Note that this restriction (that is, assuming a to be constant)
has no interpretation in reality. But still we obtain an estimate
on the sizes of a for stable populations. |

3.C.5. Remark. Another model for the populations of preda-
tors and preys is the model by Lotka and Volterra, which de-
scribes a relation between the populations by a system of two
ordinary differential equations. Using this model both popu-

lations oscillate, which is in accord with observations.

Other interesting and well-described models of growth
can be found in the collection of exercises after this chapter.
(see 3.G.2

In linear models an important role is played by primitive
matrices (3.3.3).

3.C.6. Which of the matrices

1/2 0 1/3
A:((l) é;;), B=|0 1 1/2],
1/2 0 1/6
1/3 1/2 0 0
0 1 0
c=11/4 0 1/2|, D= /2 1/3 0 0
3/4 0 1/2 0 1/6 1/6 1/3
1/6 0 5/6 2/3
0 1 0 0
0 0 01
E= 10 0 0
0 01 0
are primitive?
Solution.
3/8 1/4 1/4
AQZ(%?Z 463//4499), C®=11/4 3/8 1/4
3/8 3/8 1/2

So the matrices A and C' are primitive, since (respectively)
A? and C® are positive matrices. The middle column of the
matrix B" is always (for n € N) the vector (0, 1,0) which

contains the entry 0. Hence the matrix B cannot be primitive.

The product

1/3 12 0 0\ /0 0

12 13 0 0 | [0 0

0 1/6 1/6 1/3||a af6+b/3 [@PER
16 0 5/6 2/3) \b 50,6 + 2b/3

a,b € R, implies that the matrix D? has in the right upper
corner a zero two-dimensional (square) sub-matrix. By induc-

tion, the same property is shared by the matrices D3 = D-D?,

We have chosen the eigenvector whose coordinates sum to
100, thus it directly gives us the percentage distribution of
the population.

Suppose instead that we wish for a constant population,
and that one year old sheep are removed for consumption.
Then we need ask how to decrease 7 so that the dominant
eigenvalue would be one.

A direct check shows that the farmer could then eat about
10% more of one year old sheep to keep the population con-
stant.

3.3.3. Matrices with non-negative elements. Real matri-
ces which have no negative elements have very
special properties. They are very often present

A , in practical models. Thus we introduce the
“Hr=<sz=—— Perron-Frobenius theory which deals with such
matrices. Actually, we show some results of Perron, we omit
the more general situations due to Frobenius.’

We begin with some definitions in order to formulate our
ideas.

POSITIVE AND PRIMITIVE MATRICES

Definition. A positive matrix means a square matrix A all of
whose elements a;; are real and strictly positive. A primitive
matrix is a square matrix A whose power A is positive for
some positive k € N,

Recall that spectral radius of a matrix A is the maximum
of absolute values of all (complex) eigenvalues of A. The
spectral radius of a linear mapping on a (finite dimensional)
vector space coincides with the spectral radius of the corre-
sponding matrix for some basis.

In the sequel, the norm of a matrix A € R™ or of a
vector ¢ € R™ will mean the sum of the absolute values of
all elements. For a vector z we write || for its norm,

The following result is very useful and hopefully under-
standable. But the difficulty of its proof is rather not typical
for this textbook. If you prefer, read just the theorem and skip
the proof till later on.

PERRON THEOREM

Theorem. If A is a primitive matrix with spectral radius
A € R, then X is a root of the characteristic polynomial
of A with multiplicity one and X is strictly greater than the
absolute value of all other eigenvalues of A. Furthermore,
there exists an eigenvector x associated with X such that all
elements x; of x are positive.

Proor. We shall present rather a sketch of the proof and
we shall rely on intuition from elementary geometry.

20skar Perron and Ferdinand Georg Frobenius were two great German
mathematicians at the break of the 19th and 20th centuries. Even in this
textbook we shall meet their names in Analysis, Number Theory, Algebra.
Look up the index.
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D*=D-D3,..., D" = D-D" 1 ... thusthe matrix D is
not primitive. The matrix £ is a permutation matrix (in every
row and every column there is exactly one non-zero element,
1). It is not difficult to see that a power of a permutation ma-
trix is again a permutation matrix. Thus the matrix E is also
not primitive. This is easily verified by calculating the powers
E2, E3, E*. The matrix F* is a unit matrix. U

D. Markov processes

3.D.1. Sweet-toothed gambler. A gambler bets on a coin —
whether a flip results in a head or in a tail. At the start of the
game he has three sweets. On every flip, he bets on a sweet. If
he wins, he gains one additional sweet. If he looses, he looses
the sweet. The game ends when he loses all sweets or has at
least five sweets. What is the probability that the game does

not end after four bets?

Solution. Before the j-th round we can describe

the state of the player by the random vector X; =
(Po(9), 1(5), 2(4): P3(5) Pa(4), P5(5)), where p; is the

probability that the player has i sweets. If the player has
before the j-th bet ¢ sweets (¢ = 2, 3, 4), then after the bet he
has (i — 1) sweets with probability 1/2, and he has (i + 1)
sweets with probability 1/2. If he attains five sweets or loses
them all, the number of sweets does not change. The vector
X1 is then obtained from the vector X; by multiplying it

with the matrix

1 05 0 0 0 0
0O 0 05 O 0 0
A 0 05 0 05 0 O
10 0 05 0 05 0
0 0 0 05 0 O
0 0 0 0 05 1
At the start,
0
0
0
X, = 1
0
0
After four bets the situation is described by the vector
1/8
3/16
Xs—Atx, = | Y
5 — 1= 5/16 b)
0
3/8

Notice that the matrices A and A* share the eigenvec-
tors, while the corresponding eigenvalues are A and \* re-
spectively. Thus the assertion of the theorem holds if and
only if the same is true for A*. In particular, we may assume
the matrix A itself is positive, without any loss of generality.

Many of the necessary concepts and properties will be
&\ discussed in chapter four and in the subsequent
$, chapters devoted to analytical aspects, so the

The first step is to show the existence of an
eigenvector which has all elements positive. Consider the
standard simplex

S:{x:(xl,..

Since all elements in the matrix A are positive, the image A-x
for z € S has all coordinates positive too. The mapping

z |[A-z|7HA - 2)

thus maps S to itself. This mapping S — S satisfies all the as-
sumptions of the Brouwer fixed point theorem® and thus there
exists vector y € S such that it is mapped by this mapping to
itself. That means that

A-y=Ay, A=Ay

and we have found an eigenvector that lies in .S. By assump-
tion, A - y has got all coordinates positive, thus y must have
the same property. Moreover, A > 0.

In order to prove the rest of the theorem, we consider
the mapping given by the matrix A in a more suitable basis,
where the coordinates of the eigenvector would be (A, ..., A).
Moreover, We multiply the mapping by by the constant A~ !,
Thus we work with the matrix B,

B=X1'v1.4.v),

where Y is the diagonal matrix with coordinates y; of the
above eigenvector y on its diagonal. Evidently B is also a pos-
itive matrix. By the construction, the vector z = (1,...,1)T
is its eigenvector with eigenvalue 1, because Y - z = y.

It remains to prove that 4 = 1 is a simple root of the
characteristic polynomial of the matrix B and that all other
roots have absolute value strictly smaller than one. Then the
proof of the Perron thoerem is finished.

In order to do that we use an auxiliary lemma. Consider
for the moment the matrix B to define the linear mapping that
maps the row vectors

a)T, x| = 1,2, >0,i=1,...,n}.

u=(Up,...,up) — u-B=uv,

that is, using multiplication from the right (i.e. B is viewed
as the matrix of a linear map on one-forms). Since z =
(1,...,1)7 is an eigenvector of the matrix B, the sum of the

coordinates of the row vector v
n

Z 71/7ibij = zn:uz = 1,
i=1

ij=1

3This theorem is a great example of a blend of (homological) Algebra,
(differential) Topology and Analysis. We shall discuss it in Chapter 9, cf. ??
on page ??.
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that is, the probability that the game ends in the fourth
bet or sooner is one half.

Note that the matrix A describing the evolution of the
probabilist vector X is itself probabilistic, that is, in each col-
umn the sum is one. But it does not have the property required
by the Perron-Frobenius theorem. By a simple computation
you can check (or you can see it straight without any compu-
tation) that there exist two linearly independent eigenvectors
corresponding to the eigenvalue 1. These correspond to the
case that the player has no sweet, thatis = (1,0,0,0,0,0)7,
or to the case when the player has 5 sweets and the game
thus ends with him keeping all the sweets, that is, * =
(0,0,0,0,0,1)T. All other eigenvalues (approximately 0.8,
0.3, —0.8, —0.3) are in absolute value strictly smaller than
one. Thus the components in the corresponding eigensub-
spaces with iteration of the process with arbitrary initial distri-
bution vanish and the process approaches the limiting value
of the probabilistic vector of the form (a,0,0,0,0,1 — a),
where the value a depends on the initial number of sweets. In
our case it is a = 0.4, if there were 4 sweets at the start, it
would be @ = 0.2 and so on. ]

3.D.2. Car rental. A company that rents cars every week
has two branches — one in Prague and one in Brno. A car
rented in Brno can be returned in Prague and vice versa. After
some time it has been discovered that in Prague, roughly 80
% of the cars rented in Prague and 90 % of the cars rented
in Brno are returned there. How to distribute the cars among
the branches such that in both there is at the start of the week
always the same number of cars as in the week before? How
will the situation look like after a long time, if the cars are

distributed at the start in a random way?

Solution. Denote the components of the vector in question,
that is, the initial number of cars in Brno and in Prague by

xp and z p respectively. The distribution of the cars between
x
B ) . Ifwe
rp
consider such a multiple of the vector = such that the sum

branches is then described by the vector x = (

of its components in 1, then its components give the per-

centage distribution of the cars. According to the statement,

the state at the end of the week is described by the vector
0.1 0.2\ (zB . _ (0.1 0.2

(09 0.8> (a:p)' The matrix A = (

09 08 thus de-
scribes our (linear) system of car rental. If at the end of the

week in the branches there should be the same number of cars
as at the beginning, we are looking for such a vector = for

whenever u € S. Therefore the simplex .S maps onto itself
and thus has in S a (row) eigenvector w with eigenvalue one
(a fixed point, by the Brouwer theorem again). Because some
power B is positive by our assumption, the image of the sim-
plex S under B lies inside of .S.

We continue with the row vectors. Denote by P the shift
of the simplex S into the origin by the eigenvector w we have
just found. Thatis, P = —w+S. Evidently P is a set contain-
ing the origin and is defined by linear inequalities. Moreover,
the vector subspace V' C R™ generated by P is invariant with
respect to the action of the matrix B through multiplication of
the row vectors from the right. Restriction of our mapping to
P, and P itself satisfy the assumptions of the auxiliary lemma
proved below and thus all its eigenvalues are strictly smaller
than one.

Now, the entire space decomposes as the sum R” = V' &
span{w} of invariant subspaces, w is the eigenvector with
eigenvalue 1, while all eigenvalues of the restriction to V' are
strictly smaller in absolute value.

The theorem is nearly proved. We have just to consider
the problem that the mapping under question was given by
multiplication of the row vectors from the right with the ma-
trix B, while originally we were interested in the mapping
given by the matrix B and multiplication of the column vec-
tors were from the left. But this is equivalent to the multipli-
cation of the transposed column vectors with the transposed
matrix B in the usual way — from the left. Thus we have
proven the claim about eigenvalues for the transpose of B.
But transposing does not change the eigenvalues and so the
proof is complete. (|

A bounded polyhedron in R™ is a nonempty subset de-
fined by linear inequalities, sitting in some large enough ball.
Simplex .S from the proof or any its translation are examples.

Lemma. Consider any bounded polyhedron P C R", con-
taining a ball around origin 0 € R"™. If some iteration of the
linear mapping ¢V : R™ — R™ maps P into its interior (that
is )(P) C P and the image does not intersect with the bound-
ary), then the spectral radius of the mapping ) is strictly less
than one.

Proor. Consider the matrix A of the mapping v in the
standard basis. Because the eigenvalues of A are the k-th
powers of the eigenvalues of the matrix A, we may assume
(without loss of generality) that the mapping v already maps
P into P. Clearly ¢ cannot have any eigenvalue with absolute
value greater than one.

We argue by contradiction and assume that there exists
an eigenvalue A with || = 1. Then there are two possibilities,
either \* = 1 for suitable k or there is no such k.

The image of P is a closed set (that means that if the
points in the image 1 (P) get arbitrarily close to some point y
in R™, then the point y is also in the image — this is a general
feature of the linear maps on finite dimensional vector spaces).
By our assumption, the boundary of P does not intersect with
the image. Thus ¥ cannot have a fixed point on the boundary

165



CHAPTER 3. LINEAR MODELS AND MATRIX CALCULUS

which that Ax = x. That means that we are looking for an
eigenvector of the matrix A associated with the eigenvalue 1.

The characteristic polynomial of the matrix A is (0.1 —
A)(0.8—X)—0.9.0.2=(A—1)(A+0.1) and 1 is indeed an
eigenvalue of the matrix A. The corresponding eigenvector

x= ("B satisfies the equation —0.9 0.2 B =
T —0.2 Tp

P 0.9
. . 0.2 .
0. It is thus a multiple of the vector < . For determining

0.9

the percentage distribution we are looking for a multiple such

that zp+xp = 1. That s satisfied by the vector 11—1 (0'2) =
0.18
0.82

and Brno is such that 18% of the cars are in Brno and 82% of

. The suitable distribution of the cars between Prague

the cars are in Prague.

x
If we choose arbitrarily the initial state z = xB , then
P
the state after n weeks is described by the vector z,, = A™x.
It is useful to express the initial vector z in the basis of the
eigenvectors of A. The eigenvector for the eigenvalue 1 has
already been found. Similarly we find eigenvectors for the
-1
1)
The initial vector can be expressed as a linear combina-

0'2) +b (_11> . The state after n weeks is then

eigenvalue —0.1. That is for instance the vector

0.9

e (§) ()
—a (8;2) +b(—0.1)" <‘11>

The second summand is approaching zero for n — oco. Thus

tionx—a(

. 8 . .
the state stabilises at a ( ) That is, the coordinate of

0.82
the initial vector at the direction of the first eigenvector. The

coefficient can be easily expressed using the initial states of

the cars: @ = ZEEEE, O
3.D.3. In a certain game you can choose one of two oppo-

nents. The probability that you beat the better one is 1/4,
while the probability that you beat the worse one is 1/2. But
the opponents cannot be distinguished, thus you do not know
which one is the better one. You await a large number of
games. For each of them you can choose a different opponent.

Consider the following two strategies:

1. For the first game choose the opponent randomly. If you
win a game, carry on with the same opponent; if you lose

a game, change the opponent.

and there cannot even be any point on the boundary to which
some sequence of points in the image would converge.

The first argument excludes that some power of X is one,
because such a fixed point of 1)* on the boundary of P would
then exist and thus it would be in the image. In the remaining
case there would be a two-dimensional subspace W C R" on
which the restriction of 1) acts as a rotation by an irrational an-
gle and thus there exists a point y in the intersection of W with
the boundary of P. But then the point y could be approached
arbitrarily close by the points from the set ¢)* () (through all
iterations) and thus would have to be in the image too. This
leads to a contradiction and thus the lemma is proved. (]

3.3.4. Simple corollaries. Once we know the Perron theo-
7 - rem, the following very useful claim has a sur-
% 7 prisingly simple proof. It shows how strong is
A /=2 _the primitivity assumption of a matrix.

Corollary. If A = (a;;) is a primitive matrix and x € R" is
its eigenvector with all coordinates non-negative and eigen-
value )\, then A > 0 is the spectral radius of A. Moreover,

n n
minje(1, o} Y G <A< maXjeqr, o} Y Gij-

=1 i=1

Proor. Because A is primitive, we can choose k such
that A" has only positive elements. Then A% - x = Mz is a
vector with all coordinates strictly positive. Obviously A > 0.

According to the Perron theorem, the spectral radius 1 of
A s an eigenvalue and the associated eigenvectors y have pos-
itive coordinates only. Thus we may choose such an eigenvec-
tor with the property that the difference x — y has only strictly
positive coordinates. Then for all (positive integer) powers m
we have

0<A™ - (z—y) ="z — p™y,

butalso A < u. If u = A+ a, a > 0, then

0< ANz — A+ )"y < A" (x —y— m%y)
which is clearly negative for m large enough. Hence A\ = p.
It remains to estimate the spectral radius using the min-
imum and maximum of sums of individual columns of the
matrix. We denote them by by,i, and byax. Choose x to be
the eigenvector with the sum of coordinates equal to one and
count:

i Qi T5 = i)\l’l =
i=1

ij=1
n n n
A= Z(Z aij>wj < meaxxj = bmax
j=1 VNi=1 j=1
n n n
A=Y (z ) >3 buninty = b
j=1 Vi=1 j=1 O
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2. For the first two games, choose an opponent randomly.
Then for the next two games, if you lost both the previ-
ous games, change the opponent, otherwise stay with the

same opponent.
Which of the two strategies is better?

Solution. Both strategies define a Markov chain. For simplic-
ity denote the worse opponent by A and the better opponent
by B. In the first case for the states "game with A" and "game

with B" (in this order), we obtain the probabilistic transition

(o).

This matrix has all of its elements positive. Thus it suffices

matrix

to find the probabilistic vector z ., which is associated with

the eigenvalue 1. We compute

Its components correspond to the probabilities that after a
long sequence of games the opponent is the player A or player
B. Thus we can expect that 60 % of the games will be played
against the worse of the two opponents. Because
2 31 21

55275 1
there will be roughly 40 % against the better of the two oppo-
nents.

For the second strategy, use the states "two games in a
row with A" and "two games in a row with B" which lead to

the probabilistic transition matrix
3/4 9/16
1/4 7/16)°

It is easily determined that now

_ (9 4\
Too=\13713) -

Against the worse opponent one would then play (9/4)-times
more frequently than against the better one. Recall that for the
first strategy it is (3/2)-times more frequently. The second
strategy is thus better. Note also that for the second strategy,
roughly 42,3 % of the games are winning ones. It suffices to

enumerate

11 9
0.423—%—1—3~

N

1+4
2 13

Note that for instance all Leslie matrices from 3.3.2, as
soon as all their parameters f; and 7; are strictly positive, are
primitive. Thus we can apply the just derived results to them.
(Compare this with the ad hoc analysis of the roots of the
characteristic polynomial from 3.3.2)

3.3.5. Markov chains. A very frequent and interesting case
of linear processes with only non-negative ele-
__ments in a matrix is a mathematical model of a
system which can be in one of m states with var-
ious probabilities. At a given point of time the
system is in state ¢ with probability x;. The transition form
the state ¢ to the state j happens with probability £;;.

We can write the process as follows: at time n the system
is described by the stochastic vector (we also say probability
vector) T, = (u1(n),. .., um(n))T.

This means that all components of the vector = are real
non-negative numbers and their sum equals one. Components
give the distribution of the probability of individual possibil-
ities for the state of the system. The distribution of the prob-
abilities at time n 4 1 is given via multiplication by the tran-
sition matrix T' = (t;;), that is,

Tnt1 =1 - Tp.

Since we assume that the vector x captures all possible states
of the system and moves again to some of these states with
the total probability one, all columns of 7" are also given by
stochastic vectors. We call such matrices stochastic matrices.
Note that every stochastic matrix maps every stochastic vector
z to a stochastic vector T’z again:

Ztijl‘j = Z(Ztij>.%‘j = Z.’L‘j =1.
0, J i J

Such a sequence z,,+1 = Tz, is called a (discrete) Markov
process and the resulting sequence of vectors xg, x1, ... is
called a Markov chain x,,.

Now we can exploit the Perron-Frobenius theory in its
full power. Because the sum of the rows of the matrix is al-
ways equal to the vector (1,...,1), we see that the matrix
T — FE is singular and thus one is an eigenvalue of the matrix
T'. Furthermore, if T" is a primitive matrix (for instance, when
all elements are non-zero), we know from the corollary 3.3.4
that one is a simple root of the characteristic polynomial and
all others have absolute value strictly smaller than one. This
leads to:

Erconic THEOREM

Theorem. Markov processes with primitive matrices T sat-
isfy:
® there exists a unique eigenvector T, of the matrix T
with the eigenvalue 1, which is stochastic,
o the iterations T" o approach the vector & for any ini-
tial stochastic vector x.
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3.D.4. Absent-minded professor. Consider the following
situation. An absent-minded professor carries an umbrella
with him, but with probability 1/2 he forgets it from wher-
ever he is leaving.

In the morning, he leaves home to go to his office. From
his office, he goes for lunch at a restaurant, and then goes
back to his office. After he is finished with his work at the
office, he leaves for home. Suppose (for simplicity) that he
does not go anywhere else. Suppose also that if he leaves
it in the restaurant, it will remain there until the next time.
Consider this situation as a Markov process and write down
its matrix. What is the probability that after many days in
the morning the umbrella is located in the restaurant? It is
convenient to choose one day as a time unit: from morning to
morning.

Solution.

11/16 3/8 1/4
3/16 3/8 1/4
1/8 1/4 1/2

Compute the element a%, that is, the probability that the

A:

umbrella starts its day at home and stays there, that is, it will
be there the next morning. There are three distinct possibili-

ties for the umbrella:

D the professor forgets it when leaving home in the morning

_ 1
P11 =3

DPD the professor takes it to the office, then he forgets to take

it on to lunch and in the evening he takes it home: py; =

Intotal a} = p1 +p2 + p3 = 5.

The eigenvector of this matrix corresponding to the dom-
inant eigenvalue 1 is (2,1, 1), and thus the desired probability
isl/2+1+1)=1/4. O

3.D.5. Algorithm for determining the importance of
pages. Internet browsers can find (almost) all pages contain-
ing a given word or phrase on the Internet. But how can
a user sort the pages such that a list is sorted according to
the relevance of the given pages? One of the possibilities is
the following algorithm: the collection of all found pages is
considered to be a system, and each of the found pages is one
of its states. We describe a random walk on these pages as
a Markov process. The probabilities of transitions between
pages are given by the hyperlink: each link, say from page

Proor. The first claim follows directly from the positiv-
i1, ity of the coordinates of the eigenvector derived in the
(= % Perron theorem.
A2 Next, assume that the algebraic and geometric
‘ multiplicities of the eigenvalues of the matrix 7' are
the same. Then every stochastic vector zo can be written (in
the complex extension C™) as a linear combination

To = C1Too + C2Y2 + -+ - + Cn¥Yn,

where ys . . ., Y, extend z o to a basis of the eigenvectors. But
then the k-th iteration gives again a stochastic vector

2 =TF 20 = 1200 + Aé’czyg 4+ 4 )\fl’cnyn.

Now all eigenvalues Ao, - - - \,, are in absolute value strictly
smaller than one. So all components of the vector x but the
first one approach (in norm) zero. But zy, is still stochastic,
thus the only possibility is that ¢c; = 1 and the second claim
is proved.

In fact, even if the algebraic and geometric multiplicities
of eigenvalues do not coincide we reach the same conclusion
using a more detailed study of the root subspaces of the ma-
trix 7. (We meet them when discussing the Jordan matrix
decomposition later in this chapter.) Consequently, even in
the general case the eigensubspace span{z.,} comes with
the unique invariant (n — 1)-dimensional complement, on
which are all eigenvalues in absolute value smaller than one
and the corresponding components in zj, approach zero as
before. See the note 3.4.11 where we finish this argument in
detail. (]

3.3.6. Iteration of the stochastic matrices. We reformulate
the previous theorem into a simple, but surpris-
ing result. By convergence to a limit matrix in
the following theorem we mean the following: if

- we say that we want to bound the possible error
e > 0, then we can find a lower bound on the number of it-
erations k after which all the components of the matrix differ
from the limit one by less than €.

Corollary. Let T' be a primitive stochastic matrix from a
Markov process and let x© o be the stochastic eigenvector for
the dominant eigenvalue 1 (as in the Ergodic Theorem above).
Then the iterations TF converge to the limit matrix T, whose
columns all equal to x .

Proor. Columns in the matrix T'* are images of the vec-
tors of the standard basis under the corresponding iterated lin-
ear mapping. But these are images of the stochastic vectors
and thus they all converge t0 T . (]

Before leaving the Markov processes, we think about
their more general versions with matrices which are not prim-
itive. Here we would need the full Frobenius-Perron theory.
Without going into technicalities, consider a process with a
block wise diagonal or an upper triangular matrix 7',

(1 o)
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A to page B, determines the probability (1/(total number of
links from the page A)), with which the process moves from
page A to page B. If from some page there are no leading
links, we consider it to be a page from which a link leads
to every other page. This gives a probabilistic matrix M
(the element m;; corresponds to the probability with which
we move from the i-th page to the j-th page). Thus if one
randomly clicks on links in the found pages (and from a
linkless page one just chooses randomly the next one) the
probability that at a given time (sufficiently large from the
beginning) one is located on the i-th page corresponds to
the i-th component of the unit eigenvector of the matrix M,
corresponding to the eigenvalue 1. Looking at the sizes of
these probabilities we define the importance of the individual
pages.

This algorithm can be modified by assuming that users
stop clicking from a link to a link after certain time and again
starts on a random page. Suppose that with probability d he
chooses a new page randomly, and with probability (1 — d)
keeps on clicking. In such a situation the probability of tran-
sition between any two pages S; and S is non-zero — it is
d/n + (1 — d)/total number of links at the page \S; if from
S; there is a link to S;, and d/n otherwise (if there are no
links at S;, thenitis 1/n). According to the Perron-Frobenius
theorem the eigenvalue 1 is with multiplicity one and domi-
nant, and thus the corresponding eigenvector is unique (if we
chose transitional probabilities only as described in the previ-
ous paragraph, it would not have to be so).

For an illustration, consider pages A, B, C and D. The
links lead from A to B and to C, from B to C and from C to A,
from D nowhere. Suppose that the probability that the user
chooses a random new page is 1/5. Then the matrix M looks

as follows:
1/20 1/20 17/20 1/4
M= 9/20 1/20 1/20 1/4
“19/20 17/20 1/20 1/4
1/20 1/20 1/20 1/4

The eigenvector corresponding to the eigenvalue 1 is
(305/53,175/53,315/53,1), the importance of the pages
is thus given according to the order of the sizes of the
corresponding components, thatis, C' > A > B > D.

Another various applications of the Markov chains are in
the additional exercises after this chapter, see 3.G.3

and imagine first that P, ) are primitive and R = 0. Here
we can again apply the above results block wise. In words, if
we start in a stay zo with all probability concentrated in the
first four coordinates, the process converges to the value
which again has all the probability distributed among the first
block of coordinates, and the same for the other block.

If R > 0 then we can always jump to the states corre-
sponding to the first block from those in the second block
with a non-zero probability and the iterations get more com-
plicated:

_(P? P-R+R-Q
r= (5 TEEC)
T _ P? P2.R+P R-Q+R-Q?
=% 0’

An interesting special case is when P = E and R is positive.
Then @@ — E must be a regular matrix and a simple compu-
tation yields the general iteration (notice £ and () commute
andthus (E—Q)(E+Q+---+ Q" 1) =E—-Q"

re— (B RE-Q P

Thus, the entire first block of states is formed by eigenvectors
with eigenvalue 1 (so these states stay constant with probabil-
ity 1), while the behavior on the other block is more compli-
cated.

4. More matrix calculus

We have seen that understanding the inner structure of
matrices is a strong tool for both computation and analysis.
It is even more true when considering numerical calculations
with matrices. Therefore we return now to the abstract theory.

We introduce special types of linear mappings on vector
spaces. We consider general linear mappings whose struc-
ture is understood in terms of the Jordan normal form (see
3.4.10). In all these cases, complex scalars are essential. So
we extend our discussion of scalar product to complex vector
spaces. Actually, in many areas the complex vector spaces
are the essential platform necessary for introducing the math-
ematical models. For instance, this is the case in the so-called
quantum computing, which became a very active area of the-
oretical computer science. Many people hope to construct an
effective quantum computer soon.

3.4.1. Unitary spaces and mappings. The definitions of

scalar product and orthogonality easily extend to

the complex case. But we do not mean the com-

plex bilinear symmetric forms «, since there the

: quadratic expressions «(v, v) are not real in gen-

eral and thus we would not get the right definition of length
of vectors. Instead, we define:

NS S
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E. Unitary spaces

In the previous chapter we defined the scalar product for
real vector spaces (2.3.18). In this chapter we extend its defi-

nition to the complex spaces (3.4.1).

3.E.1. Groups O(n) and U(n). If we consider all linear
mappings from R? to R? which preserve the given scalar prod-
uct, that is, with respect to the definitions of the lengths of
the vectors and deviations of two vector all linear mappings
that preserve lengths and angles. Then these mappings form
a group (see 1.1.1) with respect to the operation of composi-
tion. The composition of two such mappings is, by definition
also a mapping that preserves lengths and angles, the unit el-
ement of the group is the identity mapping, and the inverse
element for a given mapping is its inverse mapping. Such a
mapping exists by the condition on the lengths preservation.
The matrices of such mappings thus form a group with the
operation of matrix multiplication (see ); it is called the or-
thogonal group and is denoted by 0(n). It is a subgroup of
the group of all invertible mappings from R" to R".
Moreover, if we require that the matrices have determi-
nant one, then we speak of the special orthogonal group
SO(n). In general the determinant of a matrix in O(n) can
be either 1 or —1. Similarly we define the unitary group U (n)
as the group of all (complex) matrices that correspond to the
complex linear mappings from C” to C™ which preserve a
given scalar product in a unitary space. Analogously, SU (n)
denotes the subgroup of matrices in U(n) with determinant
one. In general, the determinant of a matrix in U(n) can be

any complex unit.

3.E.2. Consider the vector space V of functions R — C.
Determine whether the mapping ¢ from the unitary space V'

is linear when:

i) ¢(u) = Au where A € C

i) p(u) =u*
iii) ¢(u) = u?(= u.u)
iv) pu) = &

For suitable functions V' is a unitary space of infinite di-
mension. The scalar product is then defined by the relation

3.E.3. Show that if H is a Hermitian matrix, then U =

exp(iH) = Y7 2 (iH)™ is a unitary matrix and compute

its determinant.

UNITARY SPACES

Unitary space is a complex vector space V along with the
mapping V x V — C, (u,v) — u - v called scalar product
and satisfying for all vectors u, v, w € V and scalars a € C
the following axioms:

(1) uw-v = v-u (the bar stands for complex conjugation),

2) (au)-v=a(u-v),

3 (ut+v) - w=u-w+v-w,

(4) if u # 0, then u - u > 0 (notice u - u is always real).
The real number /v - v is called the norm of the vector

v and a vector is normalized, if its norm equals one. Vectors

u and v are said to be orthogonal if their scalar product is

zero. A basis composed of mutually orthogonal and normal-

ized vectors is called an orthonormal basis of V.

At first sight this is an extension of the definition of Eu-
clidean vector spaces into the complex domain. We will con-
tinue to use the alternative notation (u, v) for the scalar prod-
uct of vectors u and v. As in the real domain, we obtain im-
mediately from the definition the following simple properties
of the scalar product for all vectors in V' and scalars in C:

u-uelR
u=20

u-u =0 ifand only if

u- (av) = a(u - v)
u-(v+w)=u-v+u-w
©u-0=0-u=0

(O aius) - (Z bjv;) = Zavﬁj(ui “v;),

2

where the last equality holds for all finite linear combinations.
It is a simple exercise to prove everything formally. For in-
stance, the first property follows from (1) since the product
u - u has to be the complex conjugate to itself.

A standard example of the scalar product over the com-
plex vector space C" is

wxn)T . (ylw-‘-,xn)T — xlgl + - +xngn

This expression is also called the standard (positive definite)
Hermitian form on C™, By conjugation of the coordinates of
the second argument, this mapping satisfies all the required
properties. The space C™ with this scalar product is called
the standard unitary space of dimension n. We can denote
this scalar product of vectors x and y with matrix notation as
g7 - x (here the complex conjugation indicated by the bar is
performed on all components of y).

As usual, those mappings which leave the additional
structure invariant are of great importance.

(.Th..

UNITARY MAPPINGS

A linear mapping ¢ : V. — W between unitary spaces is
called a unitary mapping, if for all vectors u,v € V'

w-v = p(u) - p(v).

Unitary isomorphism is a bijective unitary mapping.
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Solution. From the definition of exp we can show that
exp(A + B) = exp(A). exp(B) just as with the exponential
mapping in the domain of real numbers. Because (u+v)* =
u* + v* and (cv)* = év*, we obtain

o0

Ut = (30— H)") = Y (il
n=0 n=0
and since H* = H, then
* - n ]‘ - n "
U = Z_:OH) —(iH)" = exp(—iH).

Thus
U*U = exp(iH) exp(—iH) = exp(0) = 1.
det(U) = efraceGH)
(|

3.E.4. Hermitian matrices A, B, C satisfy [4,C] =
[B,C] = 0 and [A, B] # 0, where [,] is a commutator of
matrices defined defined by the relation [A, B = AB — BA.
Show that at least one eigensubspace of the matrix C' must
have dimension > 1.

Solution. We prove it by contradiction. Assume that all
eigensubspaces of the operator C' have dim = 1. Then for
any vector u we can write u =y, cru) where uy, are lin-
early independent eigenvectors of the operator C' associated
with the eigenvalue A\ (and ¢ = wu.uy) For these eigenvec-

tors
0= [14, C]uk = ACuk — CAuk = )\kAuk — C(Auk)

From there it follows that Auy, is an eigenvector of the matrix
C with the eigenvalue \;. But then that Auy, =

some number ;. Similarly, Buj, = APy, for some number

My, for

AP For the commutator of matrices A and B is then obtained
[A, Bluy, = ABuy, — BAup = Mo MBup — ABX up =0
so that
[A, Bju=[A, B> cxur — Y _ cx[A, Blug = 0.
k k
Because w is arbitrary, it follws that [A, B] = 0, which is a
contradiction. O

3.E.5. Applications to quantum physics. In quantum
\\17, physics we do not use numbers as in classical
é@:— physics, but a Hermitian operator. This is nothing

but a Hermitian mapping, which can (and often

<

Y

does) lead to a linear transformation between unitary spaces

of infinite dimension. We can imagine this as a matrix

3.4.2. Real and complex spaces with scalar product. In
the previous chapter we have already de-
rived some simple properties of spaces
with scalar products. The properties and
proofs are very similar to the complex case.

In the sequel we shall work with real and complex spaces
simultaneously and write K for R or C. In the real case the
conjugation is just the identity mapping (it is the restriction
of the conjugation in the complex plane to the real line). As
in the real case, we define the orthogonal complement for a
vector subspace U C V in the unitary space V" as

Ut={veV;u-v=0foralluc U},

which is clearly also a vector subspace in V.

Athough we deal exclusively with finitely-dimensional
spaces now, the results in the next two theorems have a nat-
ural generalization for Hilbert spaces, which are infinitely-
dimensional spaces with scalar products. We shall meet them
later, in connection with approximation in vector spaces of
real or complex valued functions.

Theorem. For every finitely-dimensional space V' of dimen-
sion n with scalar product we have:

(1) There exists an orthonormal basis in V.

(2) Every system of non-zero orthogonal vectors in 'V is lin-
early independent and can be extended to an orthogonal
basis.

(3) For every system of linearly independent vectors
(u1,...,ux) there exists an orthonormal basis
(v1,...,0,) such that (v1,...,v;) = (ug...,u;),
Jorall 1 <1 <k, ie. its vectors consecutively generate
the same subspaces as the vector u;.

(4) If (u1,...,uy) is an orthonormal basis V, then the co-
ordinates of every vector u € V are expressed via

w=(u-u)u; + -+ (u- up)Up.

(5) In any orthonormal basis, the scalar product has the co-
ordinate form

wev =71 =21f1 + -+ Tnn

where x and y are columns of coordinates of the vectors
u and v in a chosen basis. Notably, every n-dimensional
space with scalar product is isomorphic to the standard
Euclidean R™ or the unitary C".

(6) The orthogonal sum of unitary subspaces Vi + - - - + Vi,
in 'V is always a direct sum.

(7) If A C V is an arbitrary subset, then A~ C V is a
vector subspace (and thus also unitary), and (A)*+ C
V' is exactly the subspace generated by A. Furthermore,
V =span A& AL,

(8) V' is an orthogonal sum of n one-dimensional unitary
subspaces.
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of infinite dimension. Vectors in this unitary space then
represent the states of the given physical system. When
measuring a given physical quantity we obtain only values
that are eigenvalues of the corresponding operator.

For instance, instead of the coordinate « we have an op-
erator of the coordinate Z, that results in multiplication by x.
If the state of the system is described by the vector V, then
Z(v) = xv. This corresponds to the multiplication of the
vector by the real number z. At first glance this Hermitian
operator is different from the cases of finite dimension. Evi-
dently every real number is an eigenvalue and (Z has a contin-
uous spectrum). Similarly, instead of speed (more precisely,
momentum) we have the operator p = —1-- d . The eigenvec-
tors are the solution of the differential equation —z% = .
Even in this case the spectrum is continuous. This expresses
the fact that the corresponding physical quantity is continu-
ous and can attain any real value. On the other hand, we have
physical quantities, for instance energy, that can attain only
discrete values (energy exists in quanta). The corresponding
operators are then really similar to the Hermitian matrices.

They have infinitely many eigenvalues.

3.E.6. Show that Z and p are Hermitian and that

[2,p] =i

Solution. For any vector v

d(x
[&,plv = &pv — piv = x(—7%) +1i (zv)

from which the result follows. |

3.E.7. Show that

Solution. Evidently [Z, %] = 0 and [p, p] = 0 The result fol-
lows from the linearity of the commutator from the previous
exercise. |

3.E.8. Jordan form. Find the Jordan form of the following
matrices. What is the geometric interpretation of this decom-

position of the matrix?
. (-1 1
A= <—6 4)
. (-1 1
ii) A= <_4 3>

Proor. (1), (2), (3): First we extend the given system of
,  vectors into any basis (u1, ..., u,) of the space

complex case. It ylelds an orthogonal basm with

propertles as required in (3). But from the Gramm-Schmidt
orthogonalization algorithm it is clear that if the original %k
vectors formed an orthogonal system of vectors, then they
continue to do so after the othogonalization process is applied.
Thus we have also proved (2) and (1).

@): If u = aiuq + - - - + anuy,, then

weup = ar(ur - wi) + o an(un - w) = aillu])? = a;

G fu=z1ur+ -+ Tpupn, v =y1u1 + - - + YnUn, then

u.y:(z1u1+..‘

:m1g1+...

+ xnun) . (y1U1 + -+ ynun)

+ xngn M

(6): We need to show that for any tuple V;, V; from the given
subspaces their intersection is the zero vector. If u € V; and
u € Vj, thenu L u, thatis, v - u = 0. This is possible only
for the zero vector u € V.

(7): Let u,v € A+, Then (au + bv) -w = 0 for all w € A,
a,b € K (from the distributivity of the scalar product). Thus
A% is asubspace in V. Let (v1, . .., vx) be a basis of span A
chosen among the elements of A, and let (uq,...,u) be
the orthonormal basis resulting from the Gramm-Schmidt
orthogonalization of the vectors (vy,...,vg). We extend
it to an orthonormal basis of the whole V' (both exist by

the already proven parts of this proposition). Because it
is an orthogonal basis, necessarily span{ug41,...,un} =
spanf{uy,...,ux}t = A+ and A C span{upy1,...,up}t

(this follows from expressing the coordinates under the or-
thonormal basis). If u L span{uky1, ..., un }, then u is nec-
essarily a linear combination of the vectors uq, ..., ug, but
that happens whenever it is a linear combination of the vec-
tors vy, . . ., U, which is equivalent to u being in span A.

(8): This is equivalent to the formulation of the existence of
the orthonormal basis. (Il

3.4.3. Important properties of the norm. Now we have ev-

- erything prepared for basic properties related to
our definition of the norm of vectors. We speak
also of the length of vectors defined by the scalar
product. Note also that all claims always con-
51der ﬁnlte sets of vectors, Their validity does not depend on
the dimension of the space V' where it all takes place.

PROPERTIES OF NORM

Theorem. Let V' be a vector space with scalar product, u

and v vectors in' V. Then

(1) ||lu+v|| < |lull +||v|l. Equality holds if and only if u
and v are linearly dependent. This is called the triangle
inequality.
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Solution. i) First compute the characteristic polynomial of
the matrix A

|AME|‘—1—/\ 1

— )2 _
6 4_)\‘)\ X +2

The eigenvalues of the matrix A are the roots of this poly-
nomial, that means that A\; o = 1,2. Since the matrix is of

order two, and has two distinct eigenvalues, its Jordan form
10
0 2
associated with the eigenvalue 1 satisfies 0 = (A — E)x =

is a diagonal matrix J = ) The eigenvector (z,y)

(:é :1))) <z), that is, —2x + y = 0. So the eigenvectors

are the multiples of the vector (1,2).
Similarly the eigenvector associated with the eigenvalue
2 is (1,3). The matrix P is then obtained by writing these

1 1
eigenvectors into tho columns, thatis, P = (2 3). For the

matrix A, A = P -J - P!, The inverse of P is P~ =
3 -1 d
2 1 )
-1 1\ (1 1 1 0 3 -1
-6 4/ \2 3 0 2 -2 1

This decomposition says that the matrix A determines a lin-
ear mapping that has as basis of the eigenvectors (1, 2), (1, 3),
the aforementioned diagonal form. Geometrically, this means
that in the direction (1, 2) nothing is changing and in the di-
rection (1, 3) every vector is being stretched twice.

ii) The characteristic polynomial of the matrix A is in

this case

=N -224+1=0

|A—)\E|:‘_1_)\ 1 ‘

—4 3—-A

There is a double root A = 1 and the corresponding eigenvec-

tor (x,y) satisfies

0=(A-Ez= (_421 §> @)

The solutions are, as in the previous case, multiples of the vec-
tor (1, 2). The fact that the system does not have two linearly

independent vectors as a solution says that the Jordan form in
11
this case is not optimal, but it will be a matrix (O 1) . The

basis for which A has this form is the eigenvector (1, 2) and a

vector that maps on this vector by the mapping A — E. Thus

)

it is a solution of the system of equations

-2 11 -2 1
-4 2|2 0 O

(2) |u-v| < ||lul|||v]l. Equality holds if and only if u and
v are linearly dependent. This property is called the
Cauchy inequality.

(3) If (e1, - . ., ex) is a orthonormal system of vectors, then

lull® 2 fu - ex|* + -+ fu - el
This property is called the Bessel inequality.

(4) If (e1, ..., ex) is an orthonormal system of vectors, then

u € span{ey, ..., e} if and only if
lull® = fu- 1 + -+ fu- ex,
This is called the Parseval equality.

(5) If (e1, - - ., ex) is an orthonormal system of vectors and
u €V, then the vector

w=(u-er)er + -+ (u-ex)er

is the only vector which minimizes the norm ||u — v||
among all v € span{ey, ..., e}

Proor. The verifications are all based on direct compu-
tations:
(2): The result is obvious if v = 0. Otherwise, define the

vector w = u — %v, that is, w L v and compute

ol = flul® = S (- v) — ity (v - ) 4+ QT2
ol = al®lloll” = 2(u - v) @) + (u - v) (@)

These are non-negative real values and thus, |jul/?||v||* >
|u - v|? and the equality holds if and only if w = 0, that is,
whenever v and v are linearly dependent.

(1): Tt suffices to compute

ol =l + ol + w0+ 0
= [[ul® + o] + 2 Reu -v)
< Jul® + 1ol +2fu- o] < ul® + o] + 2l o]
= (lull+ [lolp?

Since we deal with squares of non-negative real numbers, this
means that | + v|| < |Ju|| + ||v||. Furthermore, equality
implies that in all previous inequalities equality also holds.
This is equivalent to the condition that v and v are linearly
dependent (using the previous part).

(3), (4): Let (eq, . - ., ex ) be an orthonormal system of vectors.
We extend it to an orthonormal basis (eq, ..., e,) (that is al-
ways possible by the previous theorem). Then, again using
the previous theorem, we have for every vector u € V

n n k
[l =Y (u-e)@e) = |u-e = |u-ef
i=1 i=1 i=1

But that is the Bessel inequality. Furthermore, equality holds
ifand only if u-e; = O forall< > k, which proves the Parseval
equality.
(5): Choose an arbitrary v € span{ey,...,ex} and ex-
tend the given orthonormal system to the orthonormal basis
(e1,...,en). Let (uq,...,uy,) and (21, ...,2%,0,...,0) be
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The solutions are multiples of the vector (1, 3). We obtain the

same basis as in the previous case and we can write
G =)l ) (5 )
-4 3 2 3/\0 1/\-2 1
The mapping now acts on the vector as follows: the compo-
nent in the direction (1, 3) stays the same. The component
in the direction (1, 2) is multiplied by the sum of the coeffi-

cients that determine the components in the directions (1, 3)
and (1,2). O

3.E.9. Find the Jordan form of the matrices A1 and As, and

write down the decomposition. What is the geometric inter-
5 -1
-2 4

and show how the vectors v = (3,0), Ajv

pretation of this decomposition? A; = and

5 —1
-1
Az =3 (4 1 )
and Asv decompose with respect to the basis of the eigenvec-

W=

tors of the matrix A; o.

Solution. The matrices have the same Jordan forms as the
matrices in the previous exercise. In the basis of the vectors
(1,2) and (1,-1),

DR E96
-6 606 )

For the vector v = (3,0), v = (1,2) + 2(1,—1). For its

images, A;v = (5,-2) = (1,2)+2-2-(1,-1) and Asv =
(5,4) = (2+1)-(1,2) +2- (1, -1). O

F. Matrix decompositions

3.F.1. Prove or disprove:

e Let A be a square matrix n x n. Then the matrix AT A
is symmetric.
o Let A be a square matrix with only real positive eigenval-

ues. Then A is symmetric.

3.F.2. Find an LU-decomposition of the following matrix:

-2 1 0
-4 4 2
-6 1 -1
Solution.
1 0 0 -2 1 0
2 1 0 0o 2 2
3 -1 1 0 0 1

First multiply the matrices that correspond to the Gaussian

elimination, we thus obtain for the original matrix A, XA =

coordinates of u and v under this basis. Then
Ju=2||? = lur—a1 P+ +|up—2p P+ |ugr1 |+ - A un)?

and this expression is clearly minimized when choosing the
individual vectors tobe z1 = uy, ..., T = Uk. (Il

3.4.4. Unitary and orthogonal mappings. The properties
of orthogonal mappings have direct analogues
in the complex domain. We can easily formu-

Proposition. Consider the linear mapping (endomorphism)
@V — V on the (real or complex) space with scalar prod-
uct. Then the following conditions are equivalent.

(1) @ is unitary or orthogonal transformation,
(2) @ is linear isomorphism and for every u,v € V

p(u) v =mu-p~'(v),

(3) the matrix A of the mapping ¢ in any orthonormal basis
satisfies A=Y = AT (for Euclidean spaces this means
that A=' = A7),

(4) The matrix A of a mapping ¢ in some orthonormal basis
satisfies A™1 = AT,

(5) The rows of the matrix A of the mapping  in an orthonor-
mal basis form an orthonormal basis of the space K"
with standard scalar product,

(6) The columns of the matrix A of the mapping  in an or-
thonormal basis form an orthonormal basis of the space
K" with standard scalar product.

Proor. (1) = (2): The mapping ¢ is injective, there-
fore it must be onto. Also p(u) - v = p(u) - p(p~1(v)) =
u-p~t(v).

(2) = (3): The standard scalar product is in K™. It is given
for columns x, y of scalars by the expression -y = §/ E x =
y x, where E is the unit matrix. Property (2) thus means that
the matrix A of the mapping ¢ is invertible and y7 Az =
(A=1y)Tx. This means that (7 A — (A~1y)T)z = 0 for
all z € K™, By substituting the complex conjugate of the
expression in the parentheses for = we find that equality is
possible only when A7 = A~!. (We may also rewrite the
expression as g7 (A — (A~1)T)x and see the conclusion by
substituting the basis vectors for x and y.)

(3) = (4): This is an obvious implication.

(4) = (5) In the relevant basis, the claim is expressed via the
matrix A of the mapping ¢ as the equation AA” = E, which
is ensured by (4).

(5) = (6): We have |[ATA| = |E| = |AAT| = |A||A] =
1, there exists the inverse matrix A~'. But we also have
AAT A = A, therefore also AT A = E which is expressed
exactly by (6).

(6) = (1): In the chosen orthonormal basis

o(u) - p(v) = (Ay) Az = AT Az = 7 Ba = §7x

where x and y are columns of coordinates of the vectors u
and v. That ensures that the scalar product is preserved. [
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U, where X is a lower triangular matrix given by the Gaussian
reduction, and U upper triangular. From this equality A =

X~1U, which is the desired decomposition. (Thus we have

to compute the inverse of X). U
3.F.3. Find the LU-decomposition of the matrix
1 1 0
1 -1 2 |. O
- 1 -1

3.F4. Ray-tracing. In computer 3D-graphics the image is
very often displayed using the Ray-tracing algorithm. The
basis of this algorithm is an approximation of the light waves
by a ray (line) and an approximation of the displayed objects
by polyhedrons. These are bounded by planes and it is nec-
essary to compute where exactly the light rays are reflected
from these planes. From physics we know how the rays are
reflected — the angle of impact equals the angle of reflection.
We have already met this topic in the exercise 1.E.10.

The ray of light in the direction v = (1,2, 3) hits the
plane given by the equation 4+ y + 2z = 1. In what direction

is it reflected?

Solution. The unit normal

%(17 1,1). The vector that gives the direction of

vector to the plane is
n =
the reflected ray vg lies in the plane given by the vectors
v,n. We can express it as a linear combination of these
vectors. Furthermore, the rule for the angle of reflection says
that (v,n) = —(vg,n). From there we obtain a quadratic
equation for the coefficient of the linear combination.

This exercise can be solved in an easier, more geometric

way. From the diagram we can derive directly that
vg =v —2{v,n)n

. In our case, vgp = (—3,—2,—1). O

3.F.5. Singular decomposition, polar decomposition,

pseudoinverse. Compute the singular decomposition of the

matrix
0o 0 -1
A=|-1 0
0 0 O

. Then compute its polar decomposition and find its pseudoin-

verse.

Solution. First compute AT A:

0 -10\/0 0 —3 1 0 0
ATA={0 o0 o|(-1 0 0 ]=(0 o0 0
-3 0 0/ \0 0 0 00 1%

Characterizations from the previous theorem deserve
4 some notes. The matrices A € Mat, (K) with the
=% property A~! = AT are called unitary matrices for
A2 complex scalars (in the case R we have already used

A the name orthogonal matrices for them). The defini-
tion itself immediately implies that a product of unitary (or-
thogonal) matrices is again unitary (orthogonal). The same
is true for inverses. Unitary matrices thus form a subgroup
U(n) C Gl,(C) in the group of all invertible complex ma-
trices with the product operation. Orthogonal matrices form
a subgroup O(n) C Gl,(R) in the group of real invertible
matrices. We speak of a unitary group and of an orthogonal
group.

The simple calculation

1 =det E = det(AA”) = det Adet A = | det A|?

shows that the determinant of a unitary matrix has norm equal
to one. For real scalars the determinant is +1. Further-
more, if Ax = Ax for a unitary or orthogonal matrix, then
(Ax) - (Ax) = - = |A\|*(z - ). Therefore the real eigen-
values of orthogonal matrices in the real domain are £1. The
eigenvalues of unitary matrices are always complex units in
the complex plane.

The same argument as we have seen with the orthogo-
nal mappings imply that orthogonal complements of invari-
ant subspaces with respect to unitary mappings ¢ : V — V
are also invariant. Indeed, if p(U) C U,u € Uandv € U+
are arbitrary, then

p(v) - (™ (w) =v- o7 (u).
Because the restriction ;7 is also unitary, it is a bijection.
Notably ¢! (u) € U. Butthen p(v)-u = 0, becausev € U~.
Thus ¢(v) € UL,
This leads to an immediate useful corollary in the com-
plex domain

Corollary. Let ¢ : V. — V be a unitary mapping of com-
plex vector spaces. Then V is an orthogonal sum of one-
dimensional eigensubspaces.

Proor. There exists at least one eigenvector v € V,
since complex eigenvalues always exist. Then the restriction
of ¢ to the invariant subspace (v)~ is again unitary and also
has an eigenvector. After n such steps we obtain the desired
orthogonal basis of eigenvectors. After normalising the vec-
tors we obtain an orthonormal basis. (]

Now it is possible to understand the details of the proof of
the spectral decomposition of the orthogonal mapping from
2.4.7 at the end of the second chapter. The real matrix of an or-
thogonal mapping is interpreted as a matrix of a unitary map-
ping on a complex extension of Euclidean space. We observe
the corollaries of the structure of the roots of the real charac-
teristic polynomial over the complex domain. Automatically
we obtain invariant two-dimensional subspaces given by pairs
of complex conjugated eigenvalues and hence the correspond-
ing rotation for restricted original real mapping.
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to obtain a diagonal matrix. We need to find an orthonormal
basis under which the matrix is diagonal and the zero row is
the last one. This can be obtained by rotating about the x-
axis through a right angle. The y-coordinate then goes to z

and z goes to —y. This rotation is an orthogonal transforma-

1 0 0O
tion given by the matrix V.= [0 0 1 |. By this, we
0 -1 0

have found the decomposition ATA = VBVT, here, B is

diagonal with eigenvalues (1, ,0) on the diagonal. Because

B = (AV)T(AV), the columns of the matrix

0 0 —3\ /1 0 0 0 3 0
Av=|-10 0 ]|0 0 1]=[-1 0 0
00 0/\0 -10 0 0 0

form an orthogonal system of vectors, which we nor-
malise and extend to a basis. That is then of the form
(0,—1,0),(1,0,0),(0,0,1).

changing from this basis to the standard one is then

The transition matrix of

0
-1
0

1 0
U= 0 0
01

Finally, we obtain the decomposition A = Uv/BV”
0 O

-1 0

0 0

0
= | -1
0

N

1 0 1 0 1 0
0 0 0 0 0 0
0 1 0 0 0 1

o= O

0
0
The geometrical interpretation of decomposition is the follow-
ing: first, everything is rotated through a right angle by the
z-axis, then follows a projection to the xy plane such that the
unit ball is mapped on the ellipse with major half-axes 1 and
%. The result is then rotated through a right angle about the
z-axis.

The polar decomposition A = P - W can be obtained
from the singular one: P := UvVBUT and W := UVT, that

is,

0 1 0\ /1 0 0\ /0 -1 0
P=(-10 0|0 2 o)1 0 O
0 0 1/\0 0 0/ \0 0 1
3 00
=10 1 0
000
and
0 1 0\ /10 0 0 0 -1
W=|(-10 0|00 -1)]=|-10 0
0 0 1/\0 1 0 0 1 0

3.4.5. Dual and adjoint mappings. When discussing vec-

41 tor spaces and linear mappings in the second chapter,
= » we mentioned briefly the dual vector space V'* of all
AZAL linear forms over the vector space V/, see 2.3.17. This
il duality extends to mappings:

DuUAL MAPPINGS

For any linear mapping ¢ : V' — W, the expression

(D (v,9%(a)) = ($(v), @),

where ( , ) denotes the evaluation of the linear forms (the
second argument) on the vectors (the first argument), while
v € V and o € W* are arbitrary, defines the mapping " :
W* — V* called the dual mapping to 1.

Choose bases v in V', w in W and write A for the matrix
of the mapping % in these bases. Then we compute the ma-
trix of the mapping 1" in the corresponding dual bases in the
dual spaces. Indeed, the definition says that if we represent
the vectors from W™ in the coordinates as rows of scalars,
then the mapping ¢* is given by the same matrix as v, if we
multiply by it the row vectors from the right:

U1

= (v, 9" (@)).

Un

~Tlhis means that the matrix of the dual mapping ¥* is the trans-
Pose AT, because o - A = (AT - oT)T.

Assume further that we have a vector space with scalar
product. Then we can naturally identify V and V* using the
scalar product. Indeed, choosing one fixed vector w € V', we
substitute this vector into the second argument in the scalar
product in order to obtain the identification V' %
Hom(V,K)

~

Vow— (v (v,w)) € V*.

The non-degeneracy condition on the scalar product ensures
that this mapping is a bijection. Notice it is important to use
w as the fixed second argument in the case K = C in order to
obtain linear forms. Since factorizing complex multiples in
the second argument yields complex conjugated scalars, the
identification V' ~ V'* is linear over real scalars only.

It is clear that the vectors of an orthonormal basis are
mapped to forms that constitute the dual basis, i.e. the or-
thonormal basis are selfdual under our identification. More-
over, every vector is automatically understood as a linear
form, by means of the scalar product.

How does the above dual mapping W* — V* look in
terms of our identification? We use the same notation ¢* :
W — V for the resulting mapping, which is uniquely given
as follows:
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From this it follows that

0 0 —% % 0 0 0 0 -1
-1 0 0 ]=(0 10 -1 0 0
0 0 O 0 0 0 0 1 0
The pseudoinverse matrix is then given by the expression
100
ACD =V SUT, where ' = |0 2 0 |. Thus,
0 00
AED —
1 0 0 1 00 0 -1 0
=0 0 1 0 2 0 1 0 0
0 -1 0 0 00 0 0 1
0 -1 0
=(0 0 O
2 0 0
O
3.F.6. QR decomposition. The QR decomposition of a ma-

trix A is very useful when we are given a system of linear
equations Az = b which has no solution, but an approxi-
mation as good as possible is needed. That is, we want to
minimize ||Az — b|. According to the Pythagorean theorem,
[ Az = b]|* = [[ Az — by||* + [|bL

into b which belongs to the range of the linear transformation

2 where b is decomposed

A, and into b , which is perpendicular to this range. The pro-
jection on the range of A can be written in the form QQ7 for
a suitable matrix Q). Specifically for this matrix we obtain it
by the Gram-Schmidt orthonormalisation of the columns of
the matrix A. Then Az — b = Q(QT Az — Q™). The sys-
tem in the parentheses has a solution, for which || Az — b|| =
I ||, which is the minimal value. Furthermore, the matrix
R := QT Ais upper triangular and therefore the approximate
solution can be found easily.
Find an approximate solution of the system
r+2y=1
20 +4y =4

Solution. Consider the system Az = b with A = (; i)

and b = which evidently has no solution. We orthonor-

1

4 >
malise the columns of A. We take the first of them and divide
it by its norm. This yields the first vector of the orthonormal

basis % <;) But the second is twice the first and thus it
will be after orthonormalisation. Therefore Q = \}g é .

The projector on the range of A is then QQT = % (; i) ‘

ADJOINT MAPPING

For every linear mapping ¢ : V' — W between spaces with
scalar products, there is the adjoint mapping ¥* uniquely
determined by the formula

2 (¥ (u),v) = (u, " (v)).
The parentheses means the scalar products on W or V, re-
spectively.

Notice that the use of the same parenthesis for evaluation
of one-forms and scalar products (which reflects the identifi-
cation above) makes the defining formulae of dual and adjoint
mappings look the same.

Equivalently we can understand the relation (2) to be the
& definition of the adjoint mapping ¥*. By substi-
@ tuting all pairs of vectors from an orthonormal
X N basis for the vectors u and v we obtain directly
.22 all the values of the matrix of the mapping ¢*.

Using the coordinate expression for the scalar product,
the formula (2) reveals the coordinate expression of the ad-
joint mapping:

o) =T A 1
=(/‘1T- ; )T- ¢ | = o,

It follows that if A is the matrix of the mapping v in an or-
thonormal basis, then the matrix of the adjoint mapping 1™ is
the transposed and conjugated matrix A — we denote this by
A* = AT,

The matrix A* is called the adjoint matrix of the matrix
A. Note that the adjoint matrix is well defined for any rect-
angular matrix. We should not confuse them with algebraic
adjoints, which we used for square matrices when working
with determinants.

We can summarise. For any linear mapping ¢ : V. — W
between unitary spaces, with matrix A in some bases on V'
and W, its dual mapping has the matrix A7 in the dual basis.
If there are scalar products on V and W, we identify them (via
the scalar products) with their duals. Then the dual mapping
coincides with the adjoint mapping ¥* : W — V, which
has the matrix A*. The distinction between the matrix of the
dual mapping and the matrix of the adjoint mapping is thus in
the additional conjugation. This is of course a consequence
of the fact that our identification of the unitary space with its
dual is not a linear mapping over complex scalars.

3.4.6. Self-adjoint mappings. Those linear mappings
,  which coincide with their adjoints: P* =,
are of particular interest. They are called
= “’ = self-adjoint mappings. Equivalently we can
say that they are the mappings whose matrix A satisfies
A = A* in some (and thus in all) orthonormal basis.
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Next,

-5 9() -

R:%u 2)(; i):\}g(s) 9).

The approximate solution then satisfies Rz = Q'b, and here

and

that means 5z + 9y = 9. (The approximate solution is not

unique). The QR decomposition of the matrix A is then

E )05

O
2 -1 -1
3.F.7. Minimise |Az —b|[forA=[—-1 2 —1]and
-1 -1 2
1
b = | 0 ]. Hence write down the QR decomposition of the
0
matrix A.

Solution. The normalised first column of the matrix A is

2
e1 = % —1 | . From the second column, subtract its com-
-1
ponent in the direction e;. Then
AN 3
> =

and therefore

-1 -1 2 2 0
1 1 1
2 1-{1 2], —=-1])—=1|-1]==1(3
-1 -1 V6 -1 V6 -1 2 3
By this we have created an orthogonal vector, which we nor-
0
malise to obtain e = \% 1 |. The third column of the
-1

matrix A is already linearly dependent (verify this by com-
puting the determinant, or otherwise). The desired column-

orthogonal matrix is then

1 2 0
o-— (-1 v3
6 1 -3
Next,
2 1 -1
2 -1 -1
— T A4 — L _ —
R_QA_“E(O V3 _\/§> —1 —21 21

-3

=% (g 3V3 —;\3/?3>

) 0] -5 0

and

r, 1 (2 -1
=75 (0 3

In the case of Euclidean spaces the self-adjoint mappings
are those with symmetric matrices (in orthonormal basis).
They are often called symmetric mappings.

In the complex domain the matrices that satisfy A = A*
are called Hermitian matrices or also Hermitian symmetric
matrices. Sometimes they are also called self-adjoint matri-
ces. Note that Hermitian matrices form a real vector subspace
in the space of all complex matrices, but it is not a vector sub-
space in the complex domain.

Remark. The next observation is of special interest. If we
multiply a Hermitian matrix A by the imaginary unit, we ob-
tain the matrix B = i A, which has the property

B =iAT = -B.

Such matrices are called anti-Hermitian or Hermitian skew-
symmetric. Every real matrix can be written as a sum of its
symmetric part and its anti-symmetric part,

1 1
A=A+ AT) + (A= AT).
In the complex domain we have analogously

1 1
A= (A4 A% +i=(A— A%

In particular, we may express every complex matrix in a
unique way as a sum

A=B+:iC

with Hermitian symmetric matrices B and C. This is an anal-
ogy of the decomposition of a complex number into its real
and purely imaginary component and in the literature we of-
ten encounter the notation
1 1
B=reA= §(A—|— A*), C=imA = 2—(A — A").
1
In the language of linear mappings this means that every
complex linear automorphism can be uniquely expressed by
means of two self-adjoint mappings playing the role of the
real and imaginary parts of the original mapping.

3.4.7. Spectral decomposition. Consider a self-adjoint
4. mapping ¥ : V — V with the matrix A in some
[=.®» orthonormal basis. Proceed similarly as in 2.4.7
A when we diagonalized the matrix of orthogonal
mappings.

Again, consider arbitrary invariant subspaces of self-
adjoint mappings and their orthogonal complements. If a self-
adjoint mapping ¥ : V. — V leaves a subspace W C V
invariant, i.e. 1) (W) C W, then forevery v € W+, w € W

(W(w),w) = (v,p(w)) = 0.

Thus also, ¥(W+) c W+,

Next, consider the matrix A of a self-adjoint mapping in
an orthonormal basis and an eigenvector z € C",i.e. A-x =
Az. We obtain

Mz, x) = (Az, x) = (x, Az) = (z,\z) = Xz, x).
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The solution of the equation Rz = Q7bis x = y = z. Thus,
multiples of the vector (1,1, 1) minimize ||Az — b||.
The mapping given by the matrix A is a projection on the

plane with normal vector (1,1, 1).

O

3.F.8. Linear regression. The knowledge obtained in this
chapter can be successfully used in practice for solving prob-
lems with linear regression. It is about finding the best ap-
proximation of some functional dependence using a linear
function.

Given a functional dependence for some points that is,

fla},....al) = yi...., f(ak,adk, ...

have thus more equations than unknowns) and we wish to find

Lan) = yp. k> n (we

the “best possible” approximation of this dependency using a
linear function. That is, we want to express the value of the
S Tp) = bixy +bowe +
-+ 4+ by, + c. We choose to define “best possible” by the

property as a linear function f(x1, ..

minimisation of
2

Z Yi —

i=1 i

k n
(bjzj +c)
i=1

with regard to the real constants by,...,b,, c. The goal is
to find such a linear combination of the columns of the ma-
trix A = (a;'-) (with coefficients by, ..., b,), that is closest
to the vector (y1,...,ys) in R*. Thus it is about finding an
orthogonal projection of the vector (y1,...,yx) on the sub-
space generated by the columns of the matrix A. Using the

theorem 3.5.7 this projection is the vector (by,...,b,)T =

A(_l) (yl, ey bn)

3.F.9. Using the least squares method, solve the system

2x4+y+2z = 1

r+y+3z = 2

2c+y+2z = 0
r+z = -1

Solution. The system has no solution, since its matrix has
rank 3, and the extended matrix has rank 4. The best approx-
imation of the vector b = (1,2,0, —1) can thus be obtained
using the theorem 3.5.7 by the vector AC"Vb. AAVp is
then the best approximation — the perpendicular projection

The positive real number (x, ) can be cancelled on both sides
and thus A = ), and we see that eigenvalues of Hermitian
matrices are always real.

The characteristic polynomial det(A — AE) has as many
complex roots as is the dimension of the square matrix A (in-
cluding multiplicities), and all of them are actually real. Thus
we have proved the important general result:

Proposition. The orthogonal complements of invariant sub-
spaces of self-adjoint mappings are also invariant. Further-
more, the eigenvalues of a Hermitian matrix A are always
real.

The very definition ensures that restriction of a self-
adjoint mapping to an invariant subspace is again self-adjoint.
Thus the latter proposition implies that there always exists an
orthonormal basis of V' composed of eigenvectors. Indeed,
start with any eigenvector v1, normalize it, consider its lin-
ear hull V; and restrict the mapping to V. Consider next
another eigenvector vy € Vi', take Vo = span(Vy U {va}),
which is again invariant. Continue and construct the sequence
of invariant subspaces V; C Vo C ... V,, =V, building the
orthonormal basis of eigenvectors, as expected.

Actually, it is easy to see directly that eigenvectors as-
sociated with different eigenvalues are perpendicular to each
other. Indeed, if ¥(u) = Au, ¥(v) = pv then we obtain

Mu, v) = (P(u),v) = (u,¥(v)) = Blu, v) = p(u, v).

Usually this result is formulated using projections onto
eigensubspaces. Recall the properties of projections along
subspaces, as discussed in 2.3.19. A projection P : V — V
is a linear mapping satisfying P2 = P. This means that the
restriction of P to its image is the identity and the projector is
completely determined by choosing the subspaces Im P and
Ker P.

A projection P : V' — V is called orthogonal if Im P L
Ker P. Two orthogonal projections P, ) are called mutually
perpendicular if Im P | Tm Q).

SPECTRAL DECOMPOSITION OF SELF-ADJOINT MAPPINGS

Theorem (Spectral decomposition). For every self-adjoint
mapping ¥ : V. — V on a vector space with scalar prod-
uct there exists an orthonormal basis composed of eigenvec-
tors. If A1, ..., \g are all distinct eigenvalues of ¥ and if
P, ..., Py are the corresponding orthogonal and mutually
perpendicular projectors onto the eigenspaces correspond-
ing to the eigenvalues, then

Y=MP+ -+ MNP

The dimensions of the images of these projections P; equal
the algebraic multiplicities of the eigenvalues \;.
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of the vector b on the space generated by the columns of the
matrix A.

Because the columns of the matrix A are linearly

independent, its pseudoinverse is given by the relation
(AT A)=* AT, Hence
A=D
2 1 2 !
11 3 2 1 1 21 2 1
= 9 1 1 1 110 1 110
101 2 3 11 2 311
105 10\\ /21 21
= 5 3 6 1 1 1 0
10 6 15 2 3 11
3/5 -1 0 21 21
=|-1 10/3 —2/3|[1 1 1 0
0 -2/3 1/3)\2 3 1 1
1/5 -2/5 1/5 3/5
=10 1/3  2/3 —5/3
0 1/3 -1/3 1/3

The desired x is
AVy = (-6/5,7/3,1/3)T.

The projection (the best possible approximation to
the column of the right side) is then the vector

(3/5,32/15,4/15, —13/15). O

3.4.8. Orthogonal diagonalization. Linear mappings
« Wwhich allow for orthonormal bases as in the
S ) latter theorem on spectral decomposition are
called orthogonally diagonalizable. Of course,
they are exactly the mappings for which we
can ﬁnd an orthonormal basis in which the matrix of the
mapping is diagonal. We ask what they look like.

In the Euclidean case, this is simple: diagonal matrices
are first of all symmetric, thus they are the self-adjoint map-
pings. As a corollary we note that an orthogonal mapping of
an Euclidean space into itself is orthogonally diagonalizable
if and only if it is self-adjoint. They are exactly the self-adjoint
mappings with eigenvalues +1.

The situation is much more interesting on unitary spaces.
Consider any linear mapping ¢ : V' — V on a unitary space.
Let ¢ = ¥ + in be the (unique) decomposition of ¢ into its
Hermitian and anti-Hermitian part. If ¢ has diagonal matrix
D in a suitable orthonormal basis, then D = Re D +i¢Im D,
where the real and the imaginary parts are exactly the matri-
ces of Y and 7). This follows from the uniqueness of the de-
composition. Knowing this in the particular coordinates, we
conclude the following computation relations at the level of
mappings 1) o = 1 o ¥ (i.e. the real and imaginary parts of
( commute), and p o p* = ¢* o ¢ (since this clearly holds
for all diagonal metrices). The mappings ¢ : V — V with
the latter property are called the normal mappings.

A detailed characterization is given by the following the-
orem (stated in the notation of this paragraph):

Theorem. The following conditions on a mapping p :' V —

V' on a unitary space V' are equivalent:

(1) @ is orthogonally diagonalizable,

(2) ©* o = po* (pisanormal mapping),

(3) 1 on = n o (the Hermitian and anti-Hermitian parts
commute),

(4) if A = (asj) is the matrix of @ in some orthonormal basis,
