
Binary Exploitation 2
Return Oriented Programming

Where Are We ?

2

Where Are We ?

• Executable, No Canaries and No ASLR.

• Overwrite return address.

• Shellcode in stack.

3

Where Are We ?

• Executable, No Canaries and No ASLR.

• Overwrite return address.

• Shellcode in stack.

• Non Executable, No Canaries and No ASLR.

• Overwrite the return address.

• Reurn to libc restricted by system().

4

Where Are We ?

• Executable, No Canaries and No ASLR.

• Overwrite return address.

• Shellcode in stack.

• Non Executable, No Canaries and No ASLR.

• Overwrite the return address.

• Reurn to libc restricted by system().

• Non Executable, No Canaries and No ASLR.

• Overwrite return address.

• Return Oriented Programming.

• Execute arbitrary code.

5

Return Oriented Programming Attacks

• Discovered by Hovav Shacham of Stanford University

• Subverts execution.
– As with the regular ret-2-libc, can be used with non executable stacks since the

instructions can be legally executed.

– Unlike ret-2-libc does not require to execute functions in libc (can execute any

arbitrary code).

6

The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls
on the x86

Stack : Function Call

EBP

Parameters
for function

return Address

Locals of function

prev frame pointer

push $3

push $2

push $1

Stack

push %ebp
movl %esp, %ebp
sub $20, %esp

%ebp : Frame Pointer

In main In function

ESP

ESP

ESP

ESP

ESP

ESP

%esp : Stack Pointer

7

Call instruction has 2 steps:
 Push the contents pointed to by EIP.
 Decrease ESP by 4 (32bit machine)

Stack : Function Return

EBP

Parameters
for function

return Address

Locals of function

prev frame pointer

Stack

%ebp : Frame Pointer

ESP

ESP

ESP

ESP

ESP

ESP

%esp : Stack Pointer

8

Ret instruction has 2 steps:
 Pops the contents pointed to by
 ESP into EIP

 Increment ESP by 4 (32bit machine)

movl %ebp, %esp
In function

push $3

push $2

push $1

In main

Action by leave instruction

Target Payload

Lets say this is the payload needed to be executed by an attacker.

Suppose there is a function in libc, which has exactly this sequence of

instructions … then we are done.. we just need to subvert execution

to the function

9

Target Payload

Lets say this is the payload needed to be executed by an attacker.

Suppose there is a function in libc, which has exactly this sequence of

instructions … then we are done.. we just need to subvert execution

to the function

What if such a function does not exist?

If you can’t find it then build it

10

Step 1: Find Gadgets

• Find gadgets.

• A gadget is a short sequence of instructions followed by a return.

• Useful instructions : should not transfer control outside the gadget.

• This is a pre-processing step by statically analysing the libc library.

useful instruction(s)

ret

11

Step 2: Stitching

• Stitch gadgets so that the payload is built

Program Binary

movl %esi, 0x8(%esi)
ret

G1

movb $0x0, 0x7(%esi)
ret G2

movb $0x0, 0xc(%esi)
ret G3

movl $0xb, %eax

ret
G4

12

Step 3: Construct the Stack

13

xxx

xxx

xxx

AG1

AG2

AG3

AG4

xxx

buffer
xxx

Return Address

Program Binary

movl %esi, 0x8(%esi)
ret

G1

movb $0x0, 0x7(%esi)
ret G2

movb $0x0, 0xc(%esi)
ret G3

movl $0xb, %eax

ret
G4

Program Stack
AGi: Address of Gadget i

Finding Gadgets

• Static analysis of libc

• To find
1. A set of instructions that end in a ret (0xc3).

 The instructions can be intended (put in by the compiler) or unintended.

2. Besides ret, none of the instructions transfer control out of the
 gadget.

14

Intended vs Unintended Instructions

• Intended : machine code intentionally put in by the compiler

• Unintended : interpret machine code differently in order to build new
instructions

15

F7 C7 07 00 00 00 0F 95 45 C3 Machine Code :

What the compiler intended..

What was not intended

Highly likely to find many diverse instructions of this form in x86.
Not so likely to have such diverse instructions in RISC processors.

Geometry

• Given an arbitrary string of machine code, what is the
probability that the code can be interpreted as useful
instructions.
– x86 code is highly dense.

– RISC processors like (SPARC, ARM, etc.) have low geometry.

• Thus finding gadgets in x86 code is considerably more easier
than that of ARM or SPARC.

• Fixed length instruction set reduces geometry.

16

Finding Gadgets

• Static analysis of libc.

• Find any memory location with 0xc3 (RET instruction).

• Build a trie data structure with 0xc3 as a root.

• Every path from leaf to the root is a possible gadget.

17

C3

00

24

37

24

46

43

16

89

94

child of

Finding Gadgets

• Scan libc from the beginning toward the end

• If 0xc3 is found
– Start scanning backward

– With each byte, ask the question if the subsequence forms a valid
instruction

– If yes, add as child

– If no, go backwards until we reach the maximum instruction length (20
bytes)

– Repeat this till (a predefined) length W, which is the max instructions
in the gadget

18

33 b2 23 12 a0 31 a5 67 22 ab ba 4a 3c c3 ff ee ab 31 11 09

Finding Gadgets Algorithm

19

Finding Gadgets Algorithm

20

is this sequence of instructions valid x86 instruction?

Boring: not interesting to look further;
Eg. pop %ebp; ret;;;; leave; ret (these are boring if we want to ignore intended instructions)
Jump out of the gadget instructions

Found 15,121 nodes in

~1MB of libc binary

Gadgets : Constant into Register

Loading a constant into a register (edx deadbeef)

21

deadbeef
GadgetAdd

stack

pop %edx

ret
esp

• A previous return will pop the gadget address into %eip
• %esp will also be incremented to point to deadbeef

 (4 bytes on 32 bit platform)
• The pop %edx will pop deadbeef from the stack and

increment %esp to point to the next 4 bytes on the stack

Gadgets : Arbitrary Data into eax

22

pop %edx

ret

G1

mov 64(%edx), %eax
ret

G2

G2

addr
G1

stack

esp

deadbeef

+64

Load arbitrary data into %eax register using

Gadgets G1 and G2

Gadgets: Store Constants

• Store the contents of a register to a memory location in the
stack

23

GadgetAddr 2

0

GadgetAddr 1

stack

pop %edx

ret
esp

mov %eax, 24(%edx)
ret

24

Gadget: Addition

24

addl (%edx), %eax

push %edi
ret

Add the memory pointed

to by %edx to %eax.
The result is stored in %eax

pushes %edi.. onto the stack
why is this present?
…. This is unnecessary, but
this is best gadget that we can

find for addition

But can create problems!!

We need work arounds!

GadgetAddr2

GadgetAddr

stack

esp
Modified

Some gadget

Gadgets: Addition with NOP

25

addl (%edx), %eax

push %edi
ret

1. First put gadget ptr for 0xC3 into

%edi
2. 0xC3 corresponds to NOP in

ROP
3. push %edi in gadget 2 just pushes

0xc3 back into the stack
Therefore not disturbing the stack

contents
4. Gadget 3 executes as planned

GadgetAddr3

Gadget_RET

GadgetAddr2

Gadget_RET

GadgetAddr1

stack

esp 0xc3

0xc3 is ret in ROP and ret is equivalent to NOP instruction

pop %edi
ret

Unconditional Branches

• Changing the %esp

26

GA

stack

esp

pop %esp

ret

Conditional Branches

27

In x86 instructions conditional branches have 2 parts.

1. An instruction which modifies a condition flag (eg CF, OF, ZF).
 eg. CMP %eax, %ebx (will set ZF if %eax = %ebx)
2. A branch instruction (eg. JZ, JCC, JNZ, etc).
 which internally checks the conditional flag and

 changes the EIP accordingly.

In ROP conditional branches have 3 parts.

1. An ROP which modifies a condition flag (eg CF, OF, ZF).
 eg. CMP %eax, %ebx (will set ZF if %eax = %ebx)
2. Transfer flags to a register or memory.
3. Perturb %esp based on flags stored in memory.

In ROP, we need flags to modify %esp register instead of EIP
Needs to be explicitly handled

Step 1 : Set the flags

Find suitable ROPs that set appropriate flags

28

CMP %eax, %ebx

RET
subtraction

Affects flags CF, OF, SF, ZF, AF, PF

NEG %eax

RET
2s complement negation

Affects flags CF

Step 2: Transfer flags to

memory or register

• Using lahf instruction
 stores 5 flags (ZF, SF, AF, PF, CF) in the %ah register

• Using pushf instruction
 pushes the eflags into the stack

ROPs for these two not easily found.

A third way – perform an operation whose result depends on the flag
contents.

29

where would one
use this
instruction?

Step 2: Indirect way to transfer flags
to memory

Several instructions operate using the contents of the flags

30

ADC %eax, %ebx : add with carry that performs eax <- eax + ebx + CF.

(if eax and ebx are 0 initially, then the result will be either 1 or 0 depending on the CF)

RCL : rotate left with carry.

RCL %eax, 1

(if eax = 0. then the result is either 0 or 1 depending on CF)

Gadgets: Transfer Flags to Memory

31

%edx will have value A

%ecx will contain 0x0

A

Step 3: Perturb %esp depending
on flag

32

If (CF is set){
 perturb %esp

}else{
 leave %esp as it is
}

What we hope to achieve

* CF stored in a memory location
(say X).
* Current %esp.
* Delta, how much to perturb %esp.

What we have

negate X

offset = Delta & X

%esp = %esp + offset

One way of achieving …

1. Negate X (eg. Using instruction negl)
 finds the 2’s complement of X

 if (X = 1) 2’s complement is 111111111…

 if (X = 0) 2’s complement is 000000000...
2. offset = Delta if X = 1

 offset = 0 if X = 0
3. %esp = %esp + offset if X = 1

 %esp = %esp if X = 0

Gadgets: Example

33

Gadgets: Example

34

Gadgets: Example

35

“Buffer Overflow”

Gadgets: Example

36

Gadgets: Example

37

Gadgets: Example

38

Gadgets: Example

39

Gadgets: Another Example

40

Gadgets: Another Example

41

Gadgets: Another Example

42

Gadgets: Another Example

43

Gadgets: Another Example

44

“Buffer Overflow”

Gadgets: Another Example

45

Gadgets: Another Example

46

Gadgets: Another Example

47

Gadgets: Another Example

48

Gadgets: Another Example

49

Turing Complete

• Gadgets can do much more…
 invoke libc functions,

 invoke system calls, ...

• For x86, gadgets are said to be turning complete.

– Can program just about anything with gadgets.

• For RISC processors, more difficult to find gadgets.

– Instructions are fixed width.

– Therefore can’t find unintentional instructions.

• Tools available to find gadgets automatically.

Eg. ROPGadget (https://github.com/JonathanSalwan/ROPgadget)

 Ropper (https://github.com/sashs/Ropper)

50

https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://github.com/sashs/Ropper

Exploiting Large Binaries

51

Binary Testing Methods

• White Box Testing.

• Testing with full knowledge.

• Access to source code & architecture documents.

• Black Box Testing.

• Without knowledge of specification.

• No access to the source code & architecture.

• Attacker model.

• Grey Box Testing.

52

Windows PE Format

53

Windows PE Format

54

Windows PE Format

55

Windows PE Format

56

Windows PE Format

57

Windows PE Format

58

Windows PE Format

59

Black Box Exploitation

• Establishing a Working Environment.

• Fuzzing.

• Input Generation.

• Fault Injection.

• Fault Delivery.

• Fault Monitoring.

• Binary Auditing.

60

Black Box Exploitation Example

61

Black Box Exploitation Example

62

Black Box Exploitation Example

63

Black Box Exploitation Example

64

Black Box Exploitation Example

65

Black Box Exploitation Example

66

Black Box Exploitation Example

67

Black Box Exploitation Example

68

Black Box Exploitation Example

69

Black Box Exploitation Example

70

Black Box Exploitation Example

71

Black Box Exploitation Example

72

Black Box Exploitation Example

73

Black Box Exploitation Example

74

Black Box Exploitation Example

75

Black Box Exploitation Example

76

Black Box Exploitation Example

77

Black Box Exploitation Example

78

Black Box Exploitation Example

79

Black Box Exploitation Example

80

Black Box Exploitation Example

81

Jumping to Shellcode

• jump (or call) a register that points to the shellcode.

82 https://github.com/abatchy17/ExploitDevSnippets/tree/master/Corelan

Jumping to Shellcode

• pop return.

83 https://github.com/abatchy17/ExploitDevSnippets/tree/master/Corelan

Jumping to Shellcode

• push return.

84 https://github.com/abatchy17/ExploitDevSnippets/tree/master/Corelan

Jumping to Shellcode

• jmp [reg + offset].

85 https://github.com/abatchy17/ExploitDevSnippets/tree/master/Corelan

Jumping to Shellcode

• blind return.

86 https://github.com/abatchy17/ExploitDevSnippets/tree/master/Corelan

Jumping to Shellcode

• popad.

87 https://www.abatchy.com/2017/05/jumping-to-shellcode.html

Jumping to Shellcode

• Backward jumps.

88 https://github.com/abatchy17/ExploitDevSnippets/tree/master/Corelan

Jumping to Shellcode

• Jump ESP.

89 https://github.com/abatchy17/ExploitDevSnippets/tree/master/Corelan

Jumping to Shellcode

: Windows SEH

90

● Exception Registration Record.

● Pointer to exception handler function.

Jumping to Shellcode

: Windows SEH

91

● Exception Record.

Jumping to Shellcode

: Windows SEH

92

Jumping to Shellcode

: Windows SEH

93

Summary

94

● Basic binary exploitation model.

– Buffer overflow.

● Bypassing ASLR.

● Other stack attacks.

– Format string vulnerabilities.

– Integer overflows.

● Heap overflows.

● Hardware side channels.

– Effective due to lower frequency of hardware updates.

Resources

95

 “Return-Oriented Programming: Systems, Languages, and Applications” by

 RYAN ROEMER, ERIK BUCHANAN, HOVAV SHACHAM and STEFAN

 SAVAGE University of California, San Diego.

 https://www.blackhat.com/presentations/bh-usa-

08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf

 http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf

 Bypassing browser memory protections in Windows Vista by A Sotirov,

 M Dowd - Blackhat USA, 2008.

 https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-

stack-based-overflows/

https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/

That’s for the classes

