
Defence in Depth

Petr Ročkai

Defence in Depth 2/44 November 20, 2018

Overview

• Part 1: Layered Security

• Part 2: Code Review & Open Design

• Part 3: Mitigation Techniques

• Part 4: Dropping and Separating Privileges

• Part 5: Related Issues

Defence in Depth 3/44 November 20, 2018

Part 1: Layered Security

Defence in Depth 4/44 November 20, 2018

Goal: Secure Systems

• no privilege or access violations

• no leaks of private data

• no unauthorised resource abuse

• availability of service

Solution: Write Bulletproof Code

• never works in practice

• but see also seL4

Defence in Depth 5/44 November 20, 2018

Alternative Solution

• write good, even if imperfect, code

• keep it simple

• use established components / libraries

• code reviews (both security and correctness)

• mitigation techniques (ASLR, Stack Guard,…)

• least privilege & privilege separation

• minimise inter-component trust

Defence in Depth 6/44 November 20, 2018

Layered Security

• secure each component / layer separately

• many fences: make life hard for the attacker

• log all suspicious failures in your programs

Rules

• if you detect an attack early, you win

− before anything of value is stolen or compromised

− if the attacker gives up you also win

• if you win, it doesn’t matter how

− howmany holes the attacker punched in your defence

Defence in Depth 7/44 November 20, 2018

Why Many Layers

• each layer slows the attacker down

• each layer has a chance to detect and report the attack

• the attacker may fail to penetrate further at any point

• obstacles→ frustration→mistakes

• more attacker mistakes = better chance that you win

Defence in Depth 8/44 November 20, 2018

Layering Example

• your run a C program & it was reviewed for security

• but a tricky buffer overϐlow slipped past

• the attacker discovers the overϐlow

• they attempt an exploit, but you use stack guard

• the program crashes, alerting the sysadmin

• the system goes into lockdown

• the buffer overϐlow is identiϐied and ϐixed

• you win

Defence in Depth 9/44 November 20, 2018

Single Points of Failure

• certain SPOFs are unavoidable

• prime example: the user

• common failure modes can be mitigated

• bad passwords × 2FA

• social engineering × least privilege & strict protocols

• bad mitigation: password policies

Defence in Depth 10/44 November 20, 2018

Part 2: Code Review & Open Design

Defence in Depth 11/44 November 20, 2018

Code Review

• the practice of reading and understanding code

• done by yourself, your team-mates, an external audit

• catches the most egregious security violations

• not a foolproof method

• the law of diminishing returns applies

Defence in Depth 12/44 November 20, 2018

Code Review: Open Source

• with enough eyeballs, all bugs are shallow

• sounds nice, but is not true

• counterexamples: heartbleed, shellshock,…

• still very helpful

Defence in Depth 13/44 November 20, 2018

Security by Obscurity

• the polar opposite of open source

• keep the design secret

• might use proprietary encryption

• keep the source code secret

• obfuscate binaries &c.

Does Not Work

Defence in Depth 14/44 November 20, 2018

Insecurity by Obscurity

• rarely, if ever, independently reviewed

• the only interested party is the attacker

• often riddled with basic ϐlaws and inadequate crypto

• attackers are often good at reverse engineering

− disassemblers, debuggers and emulators

− decompilers and automated control ϐlow analysis

• insider attacks are a thing

Defence in Depth 15/44 November 20, 2018

Insecurity by Obscurity: Famous Examples

• GSM encryption (A5/1)

− also an example of intentionally weakened crypto

− and a practical downgrade attack

• MSWireless Keyboard (XOR the MAC, CVE-2010-1184)

• MIFARE Classic (reverse engineered & found vulnerable)

• car remotes (Keelog, VW,…)

• ~ every copy protection / DRM scheme ever

Defence in Depth 16/44 November 20, 2018

Obscurity Beneϐits

• obscurity could also work in your favour

• think non-updateable software in tamper-proof boxes

• hire expert programmers & reviewers

• stick with established crypto

• contract a few security labs for external review

Defence in Depth 17/44 November 20, 2018

Compromise: Open Design

• you may have reasons to avoid opening your source

• you can still document and open the design

• this allows beneϐicial independent review

Defence in Depth 18/44 November 20, 2018

Use Established Modules

• use standard, tested and widely deployed components

− especially for cryptography

• use standard protocols, formats &c.

• they had a lot more review than your code

• never implement your own cryptography

− implementation bugs are common

− especially side channels

− sources of randomness are a serious problem

Defence in Depth 19/44 November 20, 2018

Part 3: Mitigation Techniques

Defence in Depth 20/44 November 20, 2018

Mitigation

• assumption: bugs are inevitable

• idea: make them hard or impossible to exploit

• not a substitute for good code

• part of a layered security approach

Defence in Depth 21/44 November 20, 2018

Mitigation Approaches

• make common bugs harder to exploit

• isolate components from each other

• principle of least privilege

• keep each component simple

• fail securely whenever possible

Defence in Depth 22/44 November 20, 2018

Exploit Mitigations

• W^X – write XOR execute

• address space layout randomisation

• boot-time library randomised relinking

• trap sleds (as opposed to nop sleds)

• guard pages

• malloc & mmap randomisation

• secure randomness by default

Defence in Depth 23/44 November 20, 2018

Isolation: Motivation

• stop propagation of faults

• protect unrelated applications

• make attacks harder to conduct

Defence in Depth 24/44 November 20, 2018

Isolation: Approaches

• separate processes

• separate user accounts

• lightweight containers (freebsd jails, linux lxc)

• virtual machines

• physical separation

Defence in Depth 25/44 November 20, 2018

Sandboxing

• further restrict dangerous code

• SELinux, AppArmor (Linux)

• pledge (OpenBSD), capsicum (FreeBSD)

• Chromium content processes (also Edge, also Safari)

• ZeroVM

Defence in Depth 26/44 November 20, 2018

Isolation Failures

• hyper-threading (SMT) side channels (CVE-2005-0109)

• rowhammer (CVE-2015-0565)

• MMUside channel attack (defeatsASLR, CVE-2017-5925)

Isolation: Not Applicable

• how do you protect the database from wordpress?

• bookmarks, cookies or history from the browser?

Defence in Depth 27/44 November 20, 2018

Simplicity

• complex code often has more bugs

• simpler code means fewer bugs

• applies to design as well

• keep the code clean and readable

• avoid clever hacks and dubious optimisation

• resist adding unnecessary features

Defence in Depth 28/44 November 20, 2018

Minimise Trust

• trust is the opposite of isolation

• servers should not trust clients & vice versa

• never trust your inputs (see previous lectures)

• do not trust the network

• never run unsigned code

• faults propagate along trusted channels

Defence in Depth 29/44 November 20, 2018

Fail Safe vs Fail Secure

• behaviour during failure is often very important

• fail safe: do not endanger lives or property

• fail secure: ensure security is not broken

• not an either-or choice

• but not completely orthogonal either

Defence in Depth 30/44 November 20, 2018

Compare:

if (check_access() == EDENIED)

die("access denied");

with

if (check_access() != OK)

die("access denied");

Whathappens ifcheck_access() returnsENOMEM?

Defence in Depth 31/44 November 20, 2018

Errors are Hard to Test

• error paths often contain vulnerabilities

• often inadequately tested

• use automated tools (fuzzing, static analysis)

Errors are Info Leaks

• stack traces, database details

• the padding oracle attack

Defence in Depth 32/44 November 20, 2018

Part 4: Dropping & Separating

Privileges

Defence in Depth 33/44 November 20, 2018

Principle of Least Privilege

• give only privilege required to get the job done

• applies to both programs and users

• does not prevent security holes

• this is again a mitigation technique

• Saltzer & Schröder 1975

Defence in Depth 34/44 November 20, 2018

Dropping Privileges

• how to get rid of excessive privilege?

• use dedicated, restricted user accounts

• chroot jailing to restrict ϐile system access

• sandboxing (selinux, pledge,…)

Defence in Depth 35/44 November 20, 2018

Privilege Drop: Common Example

• opening ports below 1024 requires root

• so does reading SSL private keys

• nothing much else in httpd does, though

• after startup, drop to an unprivileged user

• maybe also lock out ϐilesystem with chroot

Defence in Depth 36/44 November 20, 2018

Trusted Computing Base

• the entirety of code important for security

• includes most application software

• capable of violating user’s security constraints

• should be as small as possible

• usually very large in practice

• sufϐiciently sandboxed code is not part of the TCB

Defence in Depth 37/44 November 20, 2018

Privilege Separation

• multiple processes

• separate responsibilities

• simple & robust inter-process protocol

• more powerful than the least privilege approach

• capable of removing code from the TCB

Defence in Depth 38/44 November 20, 2018

OpenSSH

• all network code runs in a separate process

• under a special user & chrooted

• privileged process is well isolated

• the latter decides everything security-relevant

Defence in Depth 39/44 November 20, 2018

Other Examples

• mail software: qmail, postϐix

• OpenBSD relayd, httpd, bgpd, ntpd,…

• chromium (see also sandboxing)

Defence in Depth 40/44 November 20, 2018

Part 5: Related Issues

Defence in Depth 41/44 November 20, 2018

Programming Languages

• not all languages are equal from security POV

• C is among the worst options

• C++ is better if used correctly

• Java is better yet (memory safe)

• yet safer languages exist (Rust, Haskell,…)

Defence in Depth 42/44 November 20, 2018

Keep Yourself Informed

• what is the security record of the components you use?

• learn from your mistakes

• or even better, frommistakes of others

• learn about the latest trends

• read security blogs, papers,…

Defence in Depth 43/44 November 20, 2018

Security Patterns

• like software design patterns (Gang of Four)

• commonly used designs and techniques

• recommended as good design by multiple sources

http://www.munawarhafiz.com/securitypatterncatalog/index.php

Defence in Depth 44/44 November 20, 2018

Summary

• never assume your code is perfect

• every defence could (and will) fail

• always stack multiple approaches

• be prepared for the worst case

Questions?

