
Module Integrity, Temporary Files

Petr Ročkai



Module Integrity, Temporary Files 2/53 December 3, 2018

Overview

• Part 1: Dynamic Linking

• Part 2: Signatures and Trust

• Part 3: Temporary Files

• Part 4: DRM and Code Obfuscation

• Part 5: Homomorphic Cryptosystems



Module Integrity, Temporary Files 3/53 December 3, 2018

Part 1: Dynamic Linking



Module Integrity, Temporary Files 4/53 December 3, 2018

Static Linking

• library code is built into the executable

• distributed as .a (UNIX) or .lib (Windows)

• library is not needed to run the program

• easy distribution – no external dependencies

Resource Use

• disk space is taken up by many copies of the same code

• so is RAM when programs are loaded (executed)



Module Integrity, Temporary Files 5/53 December 3, 2018

Static Linking: Vulnerability Management

• each application ships with its own copy of the code

• what if a problem is found in the library?

• each application needs to be updated separately



Module Integrity, Temporary Files 6/53 December 3, 2018

Detour: How a Linker Works

• programs need addresses of things

− global variables

− procedures

• the compiler often does not know the address

• object ϐiles (.o) contain relocations

• the linker replaces symbols (names) with addresses



Module Integrity, Temporary Files 7/53 December 3, 2018

Detour: Copy on Write

• multiple running programs share text

• this is because fork() does not copy everything

• saves a lot of RAM when many copies of a program run

• implemented using a memory management unit

• works on a page-by-page (4K on x86) basis



Module Integrity, Temporary Files 8/53 December 3, 2018

Dynamic Linking

• allows a single library to be shared by many programs

• stored in .so (UNIX) or .dll ϐiles (Windows)

• UNIX: ld.so implements runtime linking

• part of the linking process done at execution time



Module Integrity, Temporary Files 9/53 December 3, 2018

Dynamic Linker

• loads all the pieces into memory

• performs relocation in memory

• hands off execution to the program

• this is actually naive and inefϐicient

• in practice

− position-independent code

− lazy binding



Module Integrity, Temporary Files 10/53 December 3, 2018

Position-Independent Code

• normal code must be loaded at a ϐixed address

− e.g. absolute jump and call instructions

− direct references to global data

• runtime linker can rewrite those addresses

− takes too much time

− we lose sharing

• compilers can emit position-independent code

− use relative addresses when possible

− use address tables for indirection (GOT, PLT)



Module Integrity, Temporary Files 11/53 December 3, 2018

Lazy Binding

• do not relocate at load time

• replace inter-library calls with stubs

• the stub asks the linker to relocate

• the linker rewrites the stub with a jump

• unused parts of the code are never relocated



Module Integrity, Temporary Files 12/53 December 3, 2018

Library Preloading

• the runtime linker can load additional libraries

− via LD_PRELOAD on UNIX

− AppInit_DLLs on Windows

− DYLD_INSERT_LIBRARIES on OS X

• those extra libraries can override functionality

− useful for hooking into library calls

− but also compromises the integrity of the application



Module Integrity, Temporary Files 13/53 December 3, 2018

Plugins

• often implemented using shared libraries

• not linked into the application

• explicitly loaded at runtime

− using dlopen (UNIX) or LoadLibrary (Windows)

− based on the ϐilename

• used via function pointers obtained by name

− dlsym or GetProcAddress



Module Integrity, Temporary Files 14/53 December 3, 2018

Search Path Attacks

• the system needs to ϐind shared libraries to load

• it is usually possible to extend or override this path

− LD_LIBRARY_PATH on UNIX, PATH on Windows

− current directory is also searched on Windows

• only a problem in special circumstances

− the library is missing in system locations

− loading based on the SearchPath API on Windows



Module Integrity, Temporary Files 15/53 December 3, 2018

Library Injection

• arrange for your library to be loaded

− either via preloading

− or use the same name as a system library

− and place it where it’s found

• hard to do unless the library is missing on the system

• may be easier with plugins



Module Integrity, Temporary Files 16/53 December 3, 2018

Interposing Calls

• assume your library has been loaded

• the code in the library runs with privileges of the process

• your implementation of the API can do anything

− log and exϐiltrate arguments and return values

− modify either of those things

− completely hijack the application

• you can also dlopen the correct library

− and forward calls to the original



Module Integrity, Temporary Files 17/53 December 3, 2018

Implications

• always make sure you are loading the correct library

• libraries have to be trusted by the application

• malicious library can do anything the process can do

− e.g. by using global constructors or DllMain

− those get to run before the main app even starts

• it can also turn the app into a trojan and steal secrets



Module Integrity, Temporary Files 18/53 December 3, 2018

Use Secure Paths

• the default paths are quite secure

• do not try to outsmart the system

− e.g. by looking up the library yourself

− especially bad is using SearchPath on Windows

− do not use LoadLibrary to check Windows version

• you can explicitly remove the working directory

− only an issue onWindowsuse SetDllDirectory("")



Module Integrity, Temporary Files 19/53 December 3, 2018

Side-by-Side with Checksums (Windows)

• the application ships its own copies of DLLs

• designed to avoid “DLL hell”

• lists DLL checksums avoids injection

• problem: partially defeats code sharing

• problem: vulnerability management again



Module Integrity, Temporary Files 20/53 December 3, 2018

Part 2: Signatures and Trust



Module Integrity, Temporary Files 21/53 December 3, 2018

Signatures: Why?

• executable code is very powerful

• often downloaded from the internet

− a man in the middle is a possibility

− they could tamper with the application code

− instant arbitrary code execution / compromise

• it is very important to establish authenticity



Module Integrity, Temporary Files 22/53 December 3, 2018

Signatures: Hash Functions

• standard cryptographic hash functions (SHA-1 &c.)

• easy to compute for the package you have

• possibly hard to obtain the expected value

− maybe fetch using HTTPS

− but web servers are easy to compromise

− better if you can get it frommultiple sources

• usually needs manual veriϐication

− users are often lazy and generally unreliable

− almost as bad as no signature at all



Module Integrity, Temporary Files 23/53 December 3, 2018

Signatures: Keyed Hashes

• Message Authentication Code (HMAC &c.)

• needs a shared secret

• not suitable for standard distribution models

• could be used in per-customer distribution

• also possibly for subsequent updates



Module Integrity, Temporary Files 24/53 December 3, 2018

Signatures: Asymmetric Crypto

• this is the standard approach

• problem: PKI / trust management

• reduces one problem to another problem

− software distribution to key distribution

− but keys are smaller

− and once obtained, can be used for many packages

• initial keys can be distributed as hardcopies

− e.g. on read-only installation media

− or pre-installed on the computer with the OS



Module Integrity, Temporary Files 25/53 December 3, 2018

Code Signing: Commercial Examples

• Secure Boot

• Java certiϐicates (includes Android)

• Microsoft Authenticode

• Adobe Air certiϐicates

• Microsoft Ofϐice and VBA certs

• Apple Developer Program



Module Integrity, Temporary Files 26/53 December 3, 2018

Example: MS Authenticode

• based on RSA 2048 and SHA-1

• covers Active-X, plugins, executables

• software vendors need to obtain an X.509 certiϐicate

− also known as Code Signing Digital ID

− many different CAs issue those

• the signature is embedded in the application

• when downloaded, the system checks the signature

− any mismatches are reported but may be overridden

− kernel code (drivers) are refused



Module Integrity, Temporary Files 27/53 December 3, 2018

Microsoft WHQL

• Windows Hardware Quality Labs

• stricter requirements than generic Authenticode

• testing logs must be submitted to MS

• however: no code review is done by MS

− WHQL does not imply the drivers are secure

− it does imply a certain level of quality

• allows distribution through Windows Update



Module Integrity, Temporary Files 28/53 December 3, 2018

Code Signing: Open Source

• OpenBSD binary distribution & packages

• FreeBSD and NetBSD likewise

• binary Linux distributions

− Fedora, Debian, Ubuntu, RHEL, CentOS

− almost every package manager

• source code is also often signed



Module Integrity, Temporary Files 29/53 December 3, 2018

Trust

• signed≠ secure≠ trustworthy

• you need to trust the vendor

− possibly backed by a legal contract

− but usually not for off-the-shelf software

• even honest vendors make mistakes

− vulnerabilities are widespread

• reviewing source code is the only reliable option



Module Integrity, Temporary Files 30/53 December 3, 2018

Open Source

• collaborative trust

− many people look at different bits

− if you ϐind something bad, you speak up

− assume it is OK if everyone is silent

− seems to be working well in practice

• how to ensure everyone is looking at the same source?

− source in git or similar

− signed source distribution tarballs

• rate of change: can the readers keep up?



Module Integrity, Temporary Files 31/53 December 3, 2018

Reproducible Builds

• how to check the binary came from given source?

• rebuilding may change the checksum of the result

• essential for collaborative trust for binary distributions

• https://reproducible-builds.org

• alternative: build everything yourself



Module Integrity, Temporary Files 32/53 December 3, 2018

Security

• assume we trust the vendor

• when are signatures veriϐied?

− do we need to decompress the package ϐirst?

− maybe even unpack the content

• trust OK only after the signature is veriϐied

− the header may be malicious if signature is bad



Module Integrity, Temporary Files 33/53 December 3, 2018

Part 3: Temporary Files



Module Integrity, Temporary Files 34/53 December 3, 2018

Why Temporary Files?

• data too large to ϐit in memory

• transferring data to other programs

• named pipes and UNIX domain sockets

• usually not persistent



Module Integrity, Temporary Files 35/53 December 3, 2018

Creation in C / C++

• FILE *tmpfile()

− created in the default system location

− deleted on close / program exit

− unique ϐile name (or no ϐile name at all)

− opened for reading and writing

• tmpnam() and tempnam()

− do not use those functions

− only for compatibility with very old programs



Module Integrity, Temporary Files 36/53 December 3, 2018

Creation in C / C++: Windows

• tmpnam_s() from secure C library

− not actually secure

− never use this function with fopen

• tmpfile_s()

− like tmpfile but different calling convention

− neither is very useful on Windows (needs admin)



Module Integrity, Temporary Files 37/53 December 3, 2018

Creation in C / C++: Windows

• use CREATE_NEW in CreateFile()

• also specify FILE_FLAG_DELETE_ON_CLOSE

• possibly also FILE_ATTRIBUTE_TEMPORARY

• you can get the ϐilename by using tmpnam_s

• try with a new name if CreateFile fails



Module Integrity, Temporary Files 38/53 December 3, 2018

Creation in C / C++: POSIX

• always use mkdtemp and mkstemp

• both are secure against race attacks

• mkostemp on newer systems

− allows O_SYNC and O_CLOEXEC to be speciϐied

• unlink() the ϐile to get erase-on-exit



Module Integrity, Temporary Files 39/53 December 3, 2018

Creation in Java

• File tmp = File.createTempFile

• do not leave garbage around: tmp.deleteOnExit()

• about as secure as mkstemp() in C

• needs at least Java 7



Module Integrity, Temporary Files 40/53 December 3, 2018

Temporary File Checklist (1)

• do not use them if not necessary

• never store secrets in temporary ϐiles

• do not use standard C functions

− tmpnam, mktemp, tempname are bad

− tmpfile is sometimes OK on UNIX



Module Integrity, Temporary Files 41/53 December 3, 2018

Temporary File Checklist (2)

• use platform APIs to prevent races

− mkstemp, mkdtemp

− openwith O_CREAT and O_EXCL

− CreateFilewith appropriate ϐlags

• ensure proper permissions

− set a restrictive ACL when calling CreateFile

− already taken care of with mkstemp



Module Integrity, Temporary Files 42/53 December 3, 2018

Part 4: DRM and Code Obfuscation



Module Integrity, Temporary Files 43/53 December 3, 2018

What is DRM?

• Digital Rights Management

• essentially just copy protection

• as old as commercial software

• usually not very successful



Module Integrity, Temporary Files 44/53 December 3, 2018

Naive DRM

• embed a secret key in the ofϐicial viewer

• encrypt all content with the secret key

• distribute the encrypted content

• only the ofϐicial viewer can play it

• but the key is easy to recover



Module Integrity, Temporary Files 45/53 December 3, 2018

DRM is Hard

• the attacker has complete control over execution

• can use debuggers, analysers, fuzzers, etc.

• embedded keys are easy to spot (high entropy)

• obfuscation can help, but only a little

• once the key is compromised, so is all the content



Module Integrity, Temporary Files 46/53 December 3, 2018

White-Box Cryptography

• all of the black-box assumptions

− mainly chosen plaintext attacks

• the attacker can also look at execution

− even perturb data while the algorithm runs

− can see the entire memory

− including any key material

• hard but (maybe) not impossible



Module Integrity, Temporary Files 47/53 December 3, 2018

History of White-Box AES

• 2002: White-Box Crypto and an AES Implementation

− initial proposal by Chow et al.

− based on encrypted networks, broken in 2004

• 2006: White Box Cryptography: A New Attempt

− Bringer et al., added perturbations

− broken in 2010

• 2009: A Secure Implementation of White-Box AES

− different approach by Xiao et al., broken in 2012

• 2011: Protecting White-Box AES with Dual Ciphers

− broken in 2013 by CRoCS



Module Integrity, Temporary Files 48/53 December 3, 2018

Summary

• unless you do DRM, do not put secrets in binaries

• ofϐload sensitive computations

− smart cards, hardware security modules

• white-box cryptography is hard

− we don’t even know if it’s actually possible

− long history of failed attempts



Module Integrity, Temporary Files 49/53 December 3, 2018

Part 5: Homomorphic Cryptosystems



Module Integrity, Temporary Files 50/53 December 3, 2018

Why Homomorphic Crypto?

• inverse problem to DRM

• private data in the public cloud

− reminder: cloud = someone else’s computer

− “someone else” has full control over execution

• how to do useful things without decrypting?



Module Integrity, Temporary Files 51/53 December 3, 2018

Homomorphism?

• 𝑓(𝑒(𝑥), 𝑒(𝑦)) = 𝑒(𝑓(𝑥, 𝑦))

− 𝑒 is the encryption function

− 𝑓 is some useful operation

• example: 𝑓 is multiplication, 𝑒 is RSA

− 𝑥 ⋅ 𝑦mod𝑚 = (𝑥 ⋅ 𝑦)mod𝑚

− does not work for addition

• RSA is only partially homomorphic



Module Integrity, Temporary Files 52/53 December 3, 2018

Fully Homomorphic Encryption

• allows arbitrary computation

• needs unlimited addition and multiplication

− the rest can be built from those

• ϐirst plausible system: Gentry’s Cryptosystem

− proposed in 2009

− extremely slow: 30 minutes per 1 bit operation



Module Integrity, Temporary Files 53/53 December 3, 2018

Second Generation Systems

• based on the Learning with errors problem

− need to reconstruct a linear function

− from a ϐinite number of noisy samples

• AES-128 circuit as a benchmark

− about 36 hours per block initially

− down to 4 minutes by 2014

• amenable to SIMD-like evaluation

− brings down AES-128 to 2s per block

− by processing 120 blocks at once


