
Access Control

Petr Ročkai



Access Control 2/67 December 11, 2018

Lecture Overview

1. Multi-User Systems

2. File Systems

3. Sub-user Granularity



Access Control 3/67 December 11, 2018

Part 1: Multi-User Systems



Access Control 4/67 December 11, 2018

Users

• originally a proxy for people

• currently a more general abstraction

• user is the unit of ownership

• many permissions are user-centered



Access Control 5/67 December 11, 2018

Computer Sharing

• computer is a (often costly) resource

• efϐiciency of use is a concern

− a single user rarely exploits a computer fully

• data sharing makes access control a necessity



Access Control 6/67 December 11, 2018

Ownership

• various objects in an OS can be owned

− primarily ϐiles and processes

• the owner is typically whoever created the object

− ownership can be transferred

− usually at the impetus of the original owner



Access Control 7/67 December 11, 2018

Process Ownership

• each process belongs to some user

• the process acts on behalf of the user

− the process gets the same privilege as its owner

− this both constrains and empowers the process

• processes are active participants



Access Control 8/67 December 11, 2018

File Ownership

• each ϐile also belongs to some user

• this gives rights to the user (or rather their processes)

− they can read and write the ϐile

− they can change permissions or ownership

• ϐiles are passive participants



Access Control 9/67 December 11, 2018

Access Control Models

• owners usually decide who can access their objects

− this is known as discretionary access control

• in high-security environments, this is not allowed

− known as mandatory access control

− a central authority decides the policy



Access Control 10/67 December 11, 2018

(Virtual) System Users

• users are an useful ownership abstraction

• various system services get their own “fake” users

• this allows them to own ϐiles and processes

• and also limit their access to the rest of the OS



Access Control 11/67 December 11, 2018

Principle of Least Privilege

• entities should have minimum privilege required

− applies to software components

− but also to human users of the system

• this limits the scope of mistakes

− and also of security compromises



Access Control 12/67 December 11, 2018

Privilege Separation

• different parts of a system need different privilege

• least privilege dictates splitting the system

− components are isolated from each other

− they are given only the rights they need

• components communicate using the simplest feasible IPC



Access Control 13/67 December 11, 2018

Process Separation

• recall that each process runs in its own address space

− but shared memory can be requested

• each user has a view of the ϐilesystem

− a lot more is shared by default in the ϐilesystem

− especially the namespace (directory hierarchy)



Access Control 14/67 December 11, 2018

Access Control Policy

• there are 3 pieces of information

− the subject (user)

− the verb (what is to be done)

− the object (the ϐile or other resource)

• there are many ways to encode this information



Access Control 15/67 December 11, 2018

Access Rights Subjects

• in a typical OS those are (possibly virtual) users

− sub-user units are possible (e.g. programs)

− roles and groups could also be subjects

• the subject must be named (names, identiϐiers)

− easy on a single system, hard in a network



Access Control 16/67 December 11, 2018

Access Rights Verbs

• the available “verbs” (actions) depend on object type

• a typical object would be a ϐile

− ϐiles can be read, written, executed

− directories can be searched or listed or changed

• network connections can be established &c.



Access Control 17/67 December 11, 2018

Access Rights Objects

• anything that can be manipulated by programs

− although not everything is subject to access control

• could be ϐiles, directories, sockets, shared memory,…

• object names depend on their type

− ϐile paths, i-node numbers, IP addresses,…



Access Control 18/67 December 11, 2018

Subjects in POSIX

• there are 2 types of subjects: users and groups

• each user can belong to multiple groups

• users are split into normal users and root

− root is also known as the super-user



Access Control 19/67 December 11, 2018

User Management

• the system needs a database of users

• in a network, user identities often need to be shared

• could be as simple as a text ϐile

− /etc/passwd and /etc/group on UNIX systems

• or as complex as a distributed database



Access Control 20/67 December 11, 2018

User and Group Identiϐiers

• users and groups are represented as numbers

− this improves efϐiciency of many operations

− the numbers are called uid and gid

• those numbers are valid on a single computer

− or at most, a local network



Access Control 21/67 December 11, 2018

Changing Identities

• each process belongs to a particular user

• ownership is inherited across fork()

• super-user processes can use setuid()

• exec() can sometimes change a process owner



Access Control 22/67 December 11, 2018

Login

• a super-user process manages user logins

• the user types their name and provides credentials

− upon successful authentication, login calls fork()

− the child calls setuid() to the user

− and uses exec() to start a shell for the user



Access Control 23/67 December 11, 2018

User Authentication

• the user needs to authenticate themselves

• passwords are the most commonly used method

− the system needs to know the right password

− user should be able to change their password

• biometric methods are also quite popular



Access Control 24/67 December 11, 2018

Storing Passwords

• passwords are often stored as hashes

• along with salt, to counter rainbow tables

• on UNIX: /etc/shadow (only root can read)

• also: key derivation functions (bcrypt, argon2)



Access Control 25/67 December 11, 2018

Remote Login

• authentication over network is more complicated

• passwords are easiest, but not easy

− encryption is needed to safely transmit passwords

− along with computer authentication

• 2-factor authentication is a popular improvement



Access Control 26/67 December 11, 2018

Computer Authentication

• how to ensure we send the password to the right party?

− an attacker could impersonate our remote computer

• usually via asymmetric cryptography

− a private key can be used to sign messages

− the server will sign amessage establishing its identity



Access Control 27/67 December 11, 2018

2-factor Authentication

• 2 different types of authentication

− harder to spoof both at the same time

• there are a few factors to pick from

− something the user knows (password)

− something the user has (keys)

− what the user is (biometric)



Access Control 28/67 December 11, 2018

Enforcement: Hardware

• all enforcement begins with the hardware

− the CPU provides a privileged mode for the kernel

− DMAmemory and IO instructions are protected

• the MMU allows the kernel to isolate processes

− and protect its own integrity



Access Control 29/67 December 11, 2018

Enforcement: Kernel

• kernel uses hardware facilities to implement security

− it stands between resources and processes

− access is mediated through system calls

• ϐile systems are part of the kernel

• user and group abstractions are part of the kernel



Access Control 30/67 December 11, 2018

Enforcement: System Calls

• the kernel acts as an arbitrator

• a process is trapped in its own address space

• processes use system calls to access resources

− kernel can decide what to allow

− based on its access control model and policy



Access Control 31/67 December 11, 2018

Enforcement: Service APIs

• userland processes can enforce access control

− usually system services which provide IPC API

• e.g. via the getpeereid() system call

− tells the caller which user is connected to a socket

− user-level access control is rooted in kernel facilities



Access Control 32/67 December 11, 2018

Part 2: File Systems



Access Control 33/67 December 11, 2018

File Access Rights

• ϐile systems are a case study in access control

• all modern ϐile systems maintain permissions

− the only extant exception is FAT (USB sticks)

• different systems adopt different representation



Access Control 34/67 December 11, 2018

Representation

• ϐile systems are usually object-centric

− permissions are attached to individual objects

− easily answers “who can access this ϐile”?

• there is a ϐixed set of verbs

− those may be different for ϐiles and directories

− different systems allow different verbs



Access Control 35/67 December 11, 2018

The UNIX Model

• each ϐile and directory has a single owner

• plus a single owning group

− not limited to those the owner belongs to

• ownership and permissions are attached to i-nodes



Access Control 36/67 December 11, 2018

Access vs Ownership

• POSIX ties ownership and access rights

• only 3 subjects can be named on a ϐile

− the owner (user)

− the owning group

− anyone else



Access Control 37/67 December 11, 2018

Access Verbs in POSIX File Systems

• read: read a ϐile, list a directory

• write: write a ϐile, link/unlink i-nodes to a directory

• execute: exec a program, enter the directory

• execute as owner (group): setuid/setgid



Access Control 38/67 December 11, 2018

Permission Bits

• basic UNIX permissions can be encoded in 9 bits

• 3 bits per 3 subject designations

− ϐirst comes the owner, then group, then others

− written as e.g. rwxr-x--- or 0750

• plus two numbers for the owner/group identiϐiers



Access Control 39/67 December 11, 2018

Changing File Ownership

• the owner and root can change ϐile owners

• chown and chgrp system utilities

• or via the C API

− chown(), fchown(), fchownat(), lchown()

− same set for chgrp



Access Control 40/67 December 11, 2018

Changing File Permissions

• again available to the owner and to root

• chmod is the user space utility

− either numeric argument: chmod 644 file.txt

− or symbolic: chmod +x script.sh

• and the corresponding system call (numeric-only)



Access Control 41/67 December 11, 2018

setuid and setgid

• special permissions on executable ϐiles

• they allow exec to also change the process owner

• often used for granting extra privileges

− e.g. the mount command runs as the super-user



Access Control 42/67 December 11, 2018

Sticky Directories

• ϐile creation and deletion is a directory permission

− this is problematic for shared directories

− in particular the system /tmp directory

• in a sticky directory, different rules apply

− new ϐiles can be created as usual

− only the owner can unlink a ϐile from the directory



Access Control 43/67 December 11, 2018

Access Control Lists

• ACL is a list of ACE’s (access control elements)

− each ACE is a subject + verb pair

− it can name an arbitrary user

• ACL is attached to an object (ϐile, directory)

• more ϐlexible than the traditional UNIX system



Access Control 44/67 December 11, 2018

ACLs and POSIX

• part of POSIX.1e (security extensions)

• most POSIX systems implement ACLs

− this does not supersede UNIX permission bits

− instead, they are interpreted as part of the ACL

• ϐile system support is not universal (but widespread)



Access Control 45/67 December 11, 2018

Device Files

• UNIX represents devices as special i-nodes

− this makes them subject to normal access control

• the particular device is described in the i-node

− only a super-user can create device nodes

− users could otherwise gain access to any device



Access Control 46/67 December 11, 2018

Sockets and Pipes

• named sockets and pipes are just i-nodes

− also subject to standard ϐile permissions

• especially useful with sockets

− a service sets up a named socket in the ϐile system

− ϐile permissions decide who can talk to the service



Access Control 47/67 December 11, 2018

Special Attributes

• ϐlags that allow additional restrictions on ϐile use

− e.g. immutable ϐiles (cannot be changed by anyone)

− append-only ϐiles (for logϐile integrity protection)

− compression, copy-on-write controls

• non-standard (Linux chattr, BSD chflags)



Access Control 48/67 December 11, 2018

Network File System

• NFS 3.0 simply transmits numeric uid and gid

− the numbering needs to be synchronised

− can be done via a central user database

• NFS 4.0 uses per-user authentication

− the user authenticates to the server directly

− ϐilesystem uid and gid values are mapped



Access Control 49/67 December 11, 2018

File System Quotas

• storage space is limited, shared by users

− ϐiles take up storage space

− ϐile ownership is also a liability

• quotas set up limits space use by users

− exhausted quota can lead to denial of access



Access Control 50/67 December 11, 2018

Removable Media

• access control at ϐile system level makes no sense

− other computers may choose to ignore permissions

− user names or id’s would not make sense anyway

• option 1: encryption (for denying reads)

• option 2: hardware-level controls

− usually read-only vs read-write on the entire medium



Access Control 51/67 December 11, 2018

The chroot System Call

• each process in UNIX has its own root directory

− for most, this coincides with the system root

• the root directory can be changed using chroot()

• can be useful to limit ϐile system access

− e.g. in privilege separation scenarios



Access Control 52/67 December 11, 2018

Uses of chroot

• chroot alone is not a security mechanism

− a super-user process can get out easily

− but not easy for a normal user process

• also useful for diagnostic purposes

• and as lightweight alternative to virtualisation



Access Control 53/67 December 11, 2018

Part 3: Sub-User Granularity



Access Control 54/67 December 11, 2018

Users are Not Enough

• users are not always the right abstraction

− creating users is relatively expensive

− only a super-user can create new users

• you may want to include programs as subjects

− or rather, the combination user + program



Access Control 55/67 December 11, 2018

Naming Programs

• users have user names, but how about programs?

• option 1: cryptographic signatures

− portable across computers but complex

− establishes identity based on the program itself

• option 2: i-node of the executable

− simple, local, identity based on location



Access Control 56/67 December 11, 2018

Program as a Subject

• program: passive (ϐile) vs active (processes)

− only a process can be a subject

− but program identity is attached to the ϐile

• rights of a process depend on its program

− exec()will change privileges



Access Control 57/67 December 11, 2018

Mandatory Access Control

• delegates permission control to a central authority

• often coupled with security labels

− classiϐies subjects (users, processes)

− and also objects (ϐiles, sockets, programs)

• the owner cannot change object permissions



Access Control 58/67 December 11, 2018

The Bell-LaPadula Model

1. simple security property

− you can’t read what is beyond your clearance

2. the star property

− also called no write down

− you cannot write to ‘more public’ ϐiles



Access Control 59/67 December 11, 2018

Capabilities

• not all verbs (actions) need to take objects

• e.g. shutting down the computer (there is only one)

• mounting ϐile systems (they can’t be always named)

• listening on ports with number less than 1024



Access Control 60/67 December 11, 2018

Dismantling the root User

• the traditional root user is all-powerful

− “all or nothing” is often unsatisfactory

− violates the principle of least privilege

• many special properties of root are capabilities

− root then becomes the user with all capabilities

− other users can get selective privileges



Access Control 61/67 December 11, 2018

Security and Execution

• security hinges on what is allowed to execute

• arbitrary code execution are the worst exploits

− this allows unauthorized execution of code

− same effect as impersonating the user

− almost as bad as stolen credentials



Access Control 62/67 December 11, 2018

Untrusted Input

• programs often process data from dubious sources

− think image viewers, audio & video players

− archive extraction, font rendering,…

• bugs in programs can be exploited

− the program can be tricked into executing data



Access Control 63/67 December 11, 2018

Process as a Subject

• some privileges can be tied to a particular process

− those only apply during the lifetime of the process

− often restrictions rather than privileges

− this is how privilege dropping is done

• processes are identiϐied using their numeric pid

− restrictions are inherited across fork()



Access Control 64/67 December 11, 2018

Sandboxing

• tries to limit damage from code execution exploits

• the program drops all privileges it can

− this is done before it touches any of the input

− the attacker is stuck with the reduced privileges

− this can often prevent a successful attack



Access Control 65/67 December 11, 2018

Untrusted Code

• traditionally, you would only execute trusted code

− usually based on reputation or other external factors

− this does not scale to a large number of vendors

• it is common to execute untrusted, even dubious code

− this can be okay with sufϐicient sandboxing



Access Control 66/67 December 11, 2018

API-Level Access Control

• capability system for user-level resources

− things like contact lists, calendars, bookmarks

− objects not provided directly by the kernel

• enforcement e.g. via a virtual machine

− not applicable to execution of native code

− alternative: an IPC-based API



Access Control 67/67 December 11, 2018

Android/iOS Permissions

• applications from a store are semi-trusted

• typically single-user computers/devices

• permissions are attached to apps instead of users

• partially virtual users, partially API-level


