
Lecture 2

REQUIREMENTS SPECIFICATION

PB007 Software Engineering I
Faculty of Informatics, Masaryk University

Fall 2018

1© Barbora Bühnová

Requirements engineering (RE)

 Requirements are descriptions of system services and

constraints under which the system operates and is

developed.

▪ It may range from a high-level abstract statement of a service

to a detailed mathematical functional specification.

 Requirements engineering is the process of

establishing requirements.

We know the UML Use Case diagram and related process by now.

Why is that not enough?

Do we really need to be that serious about it? And what about agile?

2Chapter 4 Requirements engineering

Motivation

3

Outline

 Requirements and their types

 Requirements engineering process

 Non-functional requirements

 UML Activity diagram

4Chapter 4 Requirements engineering

Requirements and their Types

Lecture 2/Part 1

5Chapter 4 Requirements engineering

Functional and non-functional requirements

 Functional requirements

▪ Statements of services the system provides, how the system
should react to particular inputs and how the system should
behave in particular situations.

▪ E.g. A user shall be able to search the appointments lists for all
clinics.

 Non-functional requirements

▪ Properties and constraints on the services offered by the
system such as timing, reliability and security constraints,
constraints on the development process, platform, standards, etc.

▪ E.g. The system shall be available on Mon–Fri, 8 am – 5 pm,
with downtime not exceeding five seconds in any one day.

Can you think of more examples of the two types?

6Chapter 4 Requirements engineering

Requirements quality criteria

 Complete

▪ Are all functions required by the customer included?

 Consistent

▪ Are there any requirements conflicts or contradictions?

 Precise

▪ Is there one and only interpretation in the system context?

 Verifiable

▪ Can the requirements be checked?

 Realistic

▪ Can the req. be implemented with the available resources,
such as budget, time and technology?

7Chapter 4 Requirements engineering

Requirements Engineering Process

Lecture 2/Part 2

8Chapter 4 Requirements engineering

The requirements engineering process

9Chapter 4 Requirements engineering

M
a

n
a

g
e

m
e

n
t

&
 e

v
o

lu
ti

o
n

Req. verification

& validation

Requirements

discovery

Req. classification

& prioritization

Requirements

specification
Does the process

need to be iterative?

Interacting with stakeholders and studying

existing processes and needs to

discover their requirements.

Grouping related requirements
and organising them
into clusters.

Documenting requirements and

producing an input to the next iteration.

Identifying and resolving

requirements quality

problems.

Prioritising
requirements and resolve
stakeholder conflicts.

Isn’t this a little too

complicated?

Requirements discovery

 Software engineers work with system stakeholders:

▪ end-users, managers, maintenance engineers, domain experts,

trade unions, etc.

 To find out about:

▪ the application domain,

▪ the services to provide,

▪ the required system performance,

▪ hardware constraints,

▪ other systems, etc.

 As far as possible, it should set of WHAT the system

should do rather than HOW it will do (implement) it.

Chapter 4 Requirements engineering 10

M
a

n
a

g
e

m
e

n
t

&
 e

v
o

lu
ti

o
n

Req. verification

& validation

Requirements

discovery

Req. classification

& prioritization

Requirements

specification

Requirements discovery techniques

 Questionnaires

 Interviews

▪ Small number of software engineers and stakeholders

▪ Open interviews where various issues are explored

▪ Closed interviews based on pre-determined list of questions

 Workshops

▪ Free brainstorming of all involved stakeholders

 Ethnography

▪ Observe and analyse existing processes, i.e. how people

actually work, under what social and organizational factors.

Is there a recommended order if the techniques are combined?
Chapter 4 Requirements engineering 11

Requirements classification & prioritization

 MoSCoW criteria

▪ Must have – mandatory, fundamental

▪ Should have – important, may be omitted

▪ Could have – truly optional

▪ Want to have – can wait for later releases

 Rational Unified Process (RUP) attributes

▪ Status – Proposed/Approved/Rejected/Incorporated

▪ Benefit – Critical/Important/Useful

▪ Effort – number of person days/functional points/etc.

▪ Risk – High/Medium/Low

▪ Stability – High/Medium/Low

▪ Target Release – future product version

M
a

n
a

g
e

m
e

n
t

&
 e

v
o

lu
ti

o
n

Req. verification

& validation

Requirements

discovery

Req. classification

& prioritization

Requirements

specification

Requirements classification & prioritization

 Agile

Requirements specification

 Natural language

▪ E.g. project assignment

 Structured language

▪ E.g. textual spec. of UML use cases

 Graphical notation

▪ E.g. UML Use Case or Activity diagram

 Mathematical specification

▪ E.g. finite state machines

Is there any use for the mathematical specification?

M
a

n
a

g
e

m
e

n
t

&
 e

v
o

lu
ti

o
n

Req. verification

& validation

Requirements

discovery

Req. classification

& prioritization

Requirements

specification

Chapter 4 Requirements engineering

Requirements verification & validation

 Requirements verification

▪ Concerned with checking requirements

completeness, consistency,

preciseness, verifiability and realism.

 Requirements validation

▪ Concerned with checking that the requirements

define the system that the customer really wants/needs.

 Techniques

▪ Requirements reviews Who should be involved?

▪ Prototyping, A/B testing Why A/B testing?

Remember that fixing a requirements error after delivery may cost up to

100 times the cost of fixing an implementation error.

15Chapter 4 Requirements engineering

M
a

n
a

g
e

m
e

n
t

&
 e

v
o

lu
ti

o
n

Req. verification

& validation

Requirements

discovery

Req. classification

& prioritization

Requirements

specification

Requirements management and evolution

 Requirements management

▪ Process of managing changing

requirements during the requirements

engineering process and system

development.

▪ Each requirements change should be

analysed before deciding whether to accept it.

 New requirements emerge due to

▪ Business, organizational and technical changes.

 Traceability

▪ Maintenance of links between dependent requirements is

important to assess the impact of requirements changes.

16Chapter 4 Requirements engineering

M
a

n
a

g
e

m
e

n
t

&
 e

v
o

lu
ti

o
n

Req. verification

& validation

Requirements

discovery

Req. classification

& prioritization

Requirements

specification

Non-functional Requirements

Lecture 2/Part 3

17Chapter 4 Requirements engineering

Functional and non-functional requirements

 Functional requirements

▪ Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

 Non-functional requirements Why are they so important?

▪ Properties and constraints on the services offered by the
system such as timing, reliability and security constraints,
constraints on the development process, platform, standards, etc.

 Non-functional requirements help us to define

▪ Quality of the software product

▪ Conformance to its context (organization and legislation)

18Chapter 4 Requirements engineering

Non-functional requirements classification

19Chapter 4 Requirements engineering

Non-functional requirements classification

 Product requirements

▪ Requirements which specify that the delivered product must

behave with a certain quality e.g. execution speed, reliability, etc.

 Organisational requirements

▪ Requirements which are a consequence of organisational

policies and procedures e.g. process standards used,

implementation requirements, etc.

 External requirements

▪ Requirements which arise from factors which are external to the

system and its development process e.g. various legislative

requirements.

20Chapter 4 Requirements engineering

Product requirements and SW Quality

21

EXTERNAL QUALITY

INTERNAL QUALITY

Visible / Symptoms

Invisible / Root

usability

functional adequacy

cost

performance

reliability

program structure

complexity

coding practices

testability

reusability
maintainability

flexibility

understandability

security

Product requirements

 Dependability

▪ Availability

▪ Reliability

▪ Safety

▪ Security

 Efficiency

▪ Performance

▪ Space/resource utilization

 Usability

 Modifiability

 Testability
22

 Resilience

 Robustness

 Portability

 Adaptability

 Complexity

 Modularity

 Reusability

 Understandability

 Learnability

Chapter 24 Quality Management

Principal dependability attributes

23Chapter 11 Security and Dependability

Availability

 The probability that a system, at a point in time, will be
operational and able to deliver the requested services

 Concerned with

▪ How long the system should be operating without a failure.

▪ How long a system is allowed to be out of operation.

 Can be expressed quantitatively

▪ Using mean time to failure (MTTF) and repair (MTTR) as
MTTF / (MTTF + MTTR).

▪ I.e. availability of 0.999 means that the system is up and running
for 99.9% of the time. Can you explain of what time?

▪ Can MTTF and MTTR be derived from the defined availability?

24Chapter 11 Security and Dependability

Reliability

 The probability of failure-free system operation over a
specified time in a given environment for a given
purpose

 Concerned with

▪ How system fault/error/failure is detected.

▪ How frequently system fault/error/failure may occur.

▪ What happens when a fault/error/failure occurs.

 Can be expressed quantitatively

▪ Using the probability of failure on demand (POFOD) within a
single service or usage scenario execution, as 1 - POFOD.

▪ Could MTTF and MTTR be also used here?

25Chapter 11 Security and Dependability

Reliability terminology

Term Description

Human error or

mistake

Human behavior that results in the introduction of faults into a system.

E.g., in the wilderness weather system, a programmer might decide that the way

to compute the time for the next transmission is to add 1 hour to the current time.

This works except when the transmission time is between 23.00 and midnight .

System fault A characteristic of a software system that can lead to a system error.

E.g., the inclusion of the code to add 1 hour to the time of the last transmission,

without a check if the time is greater than or equal to 23.00.

System error An erroneous system state that can lead to system behavior that is unexpected

by system users.

E.g., the value of transmission time is set incorrectly (to 24.XX rather than 00.XX)

when the faulty code is executed.

System failure An event that occurs at some point in time when the system does not deliver a

service as expected by its users.

E.g., no weather data is transmitted because the time is invalid.

26Chapter 11 Security and Dependability

Safety

 Safety is a property of a system that reflects the system’s

ability to operate, normally or abnormally, without danger

of causing human injury or death and without damage

to the system’s environment.

 It is important to consider software safety as most

devices whose failure is critical now incorporate

software-based control systems.

 Safety requirements are often exclusive requirements

i.e. they exclude undesirable situations rather than

specify required system services. These generate

functional safety requirements.

27Chapter 11 Security and Dependability

Safety terminology

Term Definition

Accident (or mishap) An unplanned event or sequence of events which results in human death or injury,

damage to property, or to the environment.

E.g. an overdose of insulin.

Hazard A condition with the potential for causing or contributing to an accident.

E.g. a failure of the sensor that measures blood glucose.

Damage A measure of the loss resulting from a mishap. Damage can range from many people

being killed as a result of an accident to minor injury or property damage.

E.g., damage resulting from an overdose of insulin could be serious injury or

the death of the user of the insulin pump.

Hazard severity An assessment of the worst possible damage that could result from a particular hazard.

E.g. when an individual death is a possibility, a reasonable assessment of hazard

severity is ‘very high’.

Hazard probability The probability of the events occurring which create a hazard. Probability values tend to

be arbitrary but range from ‘probable’ (say 1/100 chance) to ‘implausible’.

E.g. the probability of a sensor failure in the insulin pump that results in an overdose

is probably low.

Risk This is a measure of the probability that the system will cause an accident. The risk is

assessed by considering the hazard probability, the hazard severity, and the probability

that the hazard will lead to an accident.

E.g. the risk of an insulin overdose is probably medium to low.

28Chapter 11 Security and Dependability

Security

 A system property that reflects the system’s ability to
protect itself from accidental or deliberate external
attack.

 Defends the system against:

▪ Threats to the confidentiality of the system and its data

• Can disclose information to people or programs that do not have

authorization to access that information.

▪ Threats to the integrity of the system and its data

• Can damage or corrupt the software or its data.

▪ Threats to the availability of the system and its data

• Can restrict access to the system and data for authorized users.

Security is an essential pre-requisite for availability, reliability and safety.

29Chapter 11 Security and Dependability

Security terminology

Term Definition

Asset Something of value which has to be protected (e.g. patients records in a health-

care system). The asset may be the system itself or data used by that system.

Exposure Possible loss or harm to a computing system (e.g. financial loss from patients’

legal action or loss of reputation). This can be loss or damage to data, or can be

a loss of time and effort if recovery is necessary after a security breach.

Vulnerability A weakness in a computer-based system that may be exploited to cause loss or

harm (e.g. weak password).

Attack An exploitation of a system’s vulnerability. Generally, this is from outside the

system and is a deliberate attempt to cause some damage.

Threats Circumstances that have potential to cause loss or harm. You can think of these

as a system vulnerability that is subjected to an attack (e.g. guessing the weak

password).

Control A protective measure that reduces a system’s vulnerability. E.g. encryption is an

example of a control that reduces a vulnerability of a weak access control

system, or a password checking system in our example.

30Chapter 11 Security and Dependability

Dependability attribute dependencies

 Questions

▪ Can a reliable system be unavailable? And vice versa?

▪ Can you give an example of an unreliable & safe system?

▪ Can you give an example of an reliable & unsafe system?

 Some facts about dependencies

▪ Safe system operation depends on the system being available

and operating reliably, but not only on it.

▪ A system may be unreliable because its data has been corrupted

by an external attack.

▪ Service attacks on a system are intended to make it unavailable.

▪ If a system is infected with a virus, you cannot be confident in its

reliability or safety.

31Chapter 11 Security and Dependability

Performance

 Performance is about timing – response time to events

(interrupts, messages, requests from users, or the

passage of time).

▪ For a web-based financial system, the response might be the

number of transactions that can be processed in a minute,

▪ or the expected duration of a single transaction (given as a

random variable).

 Highly sensitive to concurrency effects (number of

users, shared resources), hardware, operating system

implementation (e.g. scheduler strategy), etc.

 Often accompanied by characterization of throughput

and resource utilization.
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman
32

Usability

 Usability is concerned with how easy it is for the user to

accomplish a desired task and the kind of user support

the system provides.

 It can be broken down into the following areas:

▪ Learning system features.

▪ Using a system efficiently.

▪ Minimizing the impact of errors.

▪ Adapting the system to user needs.

▪ Increasing confidence and satisfaction.

 Always follow Human-Interface Guidelines (HIG) if

available (Windows HIG, Mac OS HIG, and others)

© Software Architecture in Practice
by L. Bass, P. Clements and R. Kazman

33

Modifiability

 Modifiability is about the cost of change.

 What can change (the artifact)?

▪ The functions that the system computes, the platform the

system exists on (the hardware, operating system, middleware,

etc.), the environment within which the system operates, etc.

 When is the change made and who makes it (the

environment)?

▪ During implementation (by modifying the source code), compile

(using compile-time switches), build (by choice of libraries),

configuration setup (by a range of techniques, including

parameter setting) or execution (by parameter setting).

▪ By a developer, an end user, or a system administrator.

© Software Architecture in Practice
by L. Bass, P. Clements and R. Kazman

34

Organisational requirements

 Development requirements

▪ Programming language, development environment, process

standards, time to market, rollout schedule, costs, etc.

 Operational requirements

▪ Execution platform and other restrictions,

system usage, projected lifetime, etc.

 Environmental requirements

▪ Integration with legacy

systems, targeted

market, etc.

35Chapter 4 Requirements engineering

External requirements

 Regulatory requirements

 Ethic requirements

 Legislative requirements

▪ Accounting legislative

▪ Safety/Security legislative

36Chapter 4 Requirements engineering

Non-functional req. implementation

 Non-functional requirements may affect the overall

architecture of a system rather than the individual

components.

▪ For example, to ensure that performance requirements are met,

you may have to organize the system to minimize

communications between components.

 A single non-functional requirement, such as a security

requirement, may generate a number of related

functional requirements that define system services

that are required.

▪ It may also generate requirements that restrict existing

requirements.

37Chapter 4 Requirements engineering

Key points

 Requirements = services + constraints

 Requirements engineering is an iterative activity.

▪ Requirements discovery, prioritization, specification, verification

& validation, management & evolution.

 Non-functional quality attributes help us to define the

quality of the software product.

▪ Visible – e.g. availability, reliability, safety, security, performance.

▪ Invisible – e.g. modifiability, testability.

 Consider non-functional requirements right from the

beginning of your software project

38Chapter 4 Requirements engineering

UML Activity Diagram

Lecture 3/Part 2

39© Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 40

What are activity diagrams?

 Activity diagrams are "OO flowcharts"

 They allow us to model a process
as a collection of nodes and edges
between those nodes

 Use activity diagrams to model
the behavior of:

▪ use cases

▪ collaborations (of classes,
components, people, departments)

▪ operations and methods

▪ business processes

Authorization

Event

Authorization

RequestEvent

Enter PIN

Not authorizedAuthorized

[isAuthorized] [!isAuthorized]

Validate card

send

signal

accept

event

action

node

control flow

initial node

final node

activity

© Clear View Training 2010 v2.6 41

Activities

 Activities are networks of nodes connected by edges

 There are three categories of node:

▪ Action nodes – represent atomic units of work within the activity

▪ Control nodes - control the flow through the activity

▪ Object nodes - represent the flow of objects around the activity

 Edges represent flow through the activity

 There are two categories of edge:

▪ Control flows - represent the flow of control through the activity

▪ Object flows - represent the flow of objects through the activity

 What is the difference between an action and activity?

How can I recognize one from another in the diagram?

© Clear View Training 2010 v2.6 42

Activity diagram syntax

 Activities usually start in an
initial node and terminate in
a final node

 Activities can have
preconditions and
postconditions

 When an action node
finishes, it emits a token that
may traverse an edge to
trigger the next action

 This is sometimes known as
a transition

Address letter

Post letter

Write letter
action node

Send letter

control flow

activity

initial node

final node

precondition: know topic for letter

postcondition: letter sent to address

edge

«localPrecondition»

address is known

«localPostcondition»

letter is addressed

© Clear View Training 2010 v2.6 43

Activity diagram semantics

 The token game

▪ Token – an object, some data or a
focus of control

▪ Imagine tokens flowing around the
activity diagram

 Tokens traverse from a source
node to a target node via an
edge

▪ The source node, edge and target
node may all have constraints
controlling the movement of tokens

▪ All constraints must be satisfied
before the token can make the
traversal

Address letter

Post letter

Write letter

Send letter

imaginary flow of control token

«localPrecondition»

address is known

«localPostcondition»

letter is addressed

© Clear View Training 2010 v2.6 44

Action nodes

 Action nodes offer a token
on all of their output edges
when:

▪ There is a token
simultaneously on each
input edge

▪ The input tokens satisfy all
preconditions specified by
the node

 Action nodes:

▪ Perform an implicit fork on
their output edges when they
have finished executing

Action node

Action node

Action node

input token

output token

action node does

not execute

action node does

not execute

action node

executes

© Clear View Training 2010 v2.6 45

Decision and merge nodes

 A decision node is a control node
that has one input edge and two or
more alternate output edges

▪ Each edge out of the decision is
protected by a guard condition

▪ guard conditions must be mutually
exclusive

▪ The edge can be taken if and only if
the guard condition evaluates to true

▪ The keyword else specifies the path
that is taken if none of the guard
conditions are true

 A merge node allows through any of
several alternate flows

▪ It has two or more input edges and
exactly one output edge

Bin mailOpen mail

Get mail

[is junk]else

Process mail

keyword

guard

condition

decision

node

merge node

© Clear View Training 2010 v2.6 46

Fork and join nodes – concurrency

 Forks nodes model concurrent
flows of work

▪ Tokens on the single input edge are
replicated at the multiple output
edges

 Join nodes synchronize two or
more concurrent flows

▪ Joins have two or more incoming
edges and exactly one outgoing
edge

▪ A token is offered on the outgoing
edge when there are tokens on all
the incoming edges i.e. when the
concurrent flows of work have all
finished

Design new

product

Market

product

Manufacture

product

Sell

product

Product process

fork node

join node

© Clear View Training 2010 v2.6 47

Control nodes

Activity final node – terminates an activity

Flow final node – terminates a specific flow within an activity. The other

flows are unaffected

Initial node – indicates where the flow starts when an activity is invoked

Merge node – allows through any of its input edges

Fork node – splits the flow into multiple concurrent flows

Join node – synchronizes multiple concurrent flows

May optionally have a join specification to modify its semantics

F
in

a
l n

o
d

e
s

«decisionInput»

decision condition

Decision node– guard conditions on the output edges select one of them for

traversal

May optionally have inputs defined by a «decisionInput»

{join spec}

control node syntax control node semantics

Types of action node

end of month occurred

time

expression

event type

OrderEvent

wait 30 mins

Accept event action - waits for events detected by its owning object and

offers the event on its output edge.

Is enabled when it gets a token on its input edge.

If there is no input edge it starts when its containing activity starts and is

always enabled.

Accept time event action - waits for a set amount of time.

Generates time events according to it's time expression.

action node syntax action node semantics

Close Order

Call action - invokes an activity, a behavior or an operation.

The most common type of action node.

See next slide for details.

signal type

OrderEvent

Send signal action - sends a signal asynchronously.

The sender does not wait for confirmation of signal receipt.

It may accept input parameters to create the signal

© Clear View Training 2010 v2.6 48

© Clear View Training 2010 v2.6 49

Call action node syntax

Raise Order
call an activity

(note the rake icon)

Close Order call a behavior

call an

operation

getBalance():double

(Account::)

operation name

class name

(optional)

Get Balance

(Account::getBalance():double)

node name

operation name

(optional)

if self.balance <= 0:

self.status = INCREDIT

else

self.status = OVERDRAWN

programming

language

(e.g. Python)

 The most common type of

node

 Call action nodes may

invoke:

▪ an activity

▪ a behavior

▪ an operation

 They may contain code

fragments in a specific

programming language

▪ The keyword 'self' refers

to the context of the

activity that owns the

action

© Clear View Training 2010 v2.6 50

Sending signals and accepting events

 Signals represent information passed
asynchronously between objects

▪ This information is modelled as attributes
of a signal

▪ A signal is a classifier stereotyped
«signal»

 The accept event action asynchronously
accepts event triggers which may be
signals or other objects

Authorization

Event

Authorization

RequestEvent

Enter PIN

Not authorizedAuthorized

CardDetails

[isAuthorized] [!isAuthorized]

Validate card

send

signal

accept

event

PIN

CardDetails

«signal»

AuthorizationRequestEvent

pin : PIN

cardDetails : CardDetails

«signal»

AuthorizationEvent

isAuthorized : Boolean

«signal»

SecurityEvent

© Clear View Training 2010 v2.6 51

Object nodes

 Object nodes indicate that instances of a
particular classifier may be available

▪ If no classifier is specified, then the object
node can hold any type of instance

 Multiple tokens can reside in an object node
at the same time

▪ The upper bound defines the maximum
number of tokens (infinity is the default)

 Tokens are presented to the single output
edge according to an ordering:

▪ FIFO – first in, first out (the default)

▪ LIFO – last in, first out

▪ Modeler defined – a selection criterion is
specified for the object node

OrderEvent

Order
object

node

object

flow

object

node for

signal

classifier name

or node name

© Clear View Training 2010 v2.6 52

Object node syntax

 Object nodes have a

flexible syntax. You

may show:

▪ upper bounds

▪ ordering

▪ sets of objects

▪ selection criteria

▪ object in state

Order

Set of Order

Order

[open]

Order«selection»

monthRaised = "Dec"

order objects may be available

sets of Order objects may be available

select Order objects in the open state

Order objects raised in December may be

available

Order

{upperBound = 12}

zero to 12 Order objects may be available

Order

{ordering = LIFO}

last Order object in is the first out

(FIFO is the default)

© Clear View Training 2010 v2.6 53

Activity parameters and partitioning

 Object nodes can provide input and output parameters to activities

▪ Input parameters have one or more output object flows into the activity

▪ Output parameters have one or more input object flows out of the activity

 Draw the object node overlapping the activity boundary

Design bespoke

product

Manufacture

product

Accept

payment

Deliver

product

Marketing Manufacturing Delivery

Order

[paid]

CustomerRequest

Set of

BusinessConstraint

Order

[delivered]

Bespoke product process

Order

input parameter

output

parameter

object flow
object in state

ProductSpecification

© Clear View Training 2010 v2.6 54

Activity partitions

Location

Marketing Development

Create course

business case
Develop course

Scheduling

Book trainers

Book roomsMarket course

Course production
dimension name

activity partition

Schedule

course

Zurich London

◼ Each activity partition represents
a high-level grouping of a set of
related actions

◼ Partitions can be hierarchical

◼ Partitions can be vertical,
horizontal or both

◼ Partitions can refer to many
different things e.g. business
organisations, classes,
components and so on

◼ If partitions can’t be shown
clearly using parallel lines, put
their name in brackets directly
above the name of the activities

(London::Marketing)

Market product

(p1, p2)

SomeAction

multiple partitionsnested partitions

© Clear View Training 2010 v2.6 55

«create»

addCourse(“UML”)

[add] [remove]

Interaction overview diagrams

 Model the high

level flow of

control between

interactions

 Show interactions

and interaction

occurrences

 Have activity

diagram syntax

sd ref

GetCourseOption

sd ref

RemoveCourse

sd ref

FindCourse

:Registrar

:RegistrationManager

uml:Course

sd AddCourse

sd ref

Logon

[find]

sd ManageCourses lifelines :Registrar, :RegistrationUI, :Course

[exit]

else

inline interaction

interaction use

© Clear View Training 2010 v2.6 56

Key points

 Activity diagrams can model flows of activities using:

▪ Activities and connectors

▪ Activity partitions

▪ Action nodes

• Call action node

• Send signal/accept event action node

• Accept time event action node

▪ Control nodes

• Decision and merge

• Fork and join

▪ Object nodes

• Input and output parameters

• Pins

 Interaction overview diagrams as their advanced feature

