
Writing Efϐicient Code in C(++)

Petr Ročkai



WriƟng Efficient Code in C(++) 2/92

Organisation

• theory: 20-30 minutes every week

• coding: all the remaining time

• passing the subject: collect 7 points

• most points come from assignments

• showing up 10 times gets you 1 point



WriƟng Efficient Code in C(++) 3/92

Assignments

• one assignment every 2 weeks, 5 in total

• missing the deadline or failing is the same

Deadlines

1. 14 days (Wed by midnight), fetches 2 points

2. end of semester (17.12.), fetches 1.5 points

3. end of the exam period (12.2.), fetches 1 point



WriƟng Efficient Code in C(++) 4/92

Assignments (cont’d)

• you can use git, mercurial or darcs

• put everything that you want me to see on master

• write a simple Makefile (no cmake, autotools,…)

• each homework gets a target (make hw1 through hw5)

• use the same repo for in-seminar work (make ex1…)



WriƟng Efficient Code in C(++) 5/92

Competitions

• we will hold 3 competitions in the seminar

• you’ll have 40minutes to do your best on a small problem

• the winner gets 1 point, second place gets .5 point

• all other working programs get .2 points

• we’ll dissect the winning program together



WriƟng Efficient Code in C(++) 6/92

Preliminary Plan
19.9. today computational complexity

26.9. microbenchmarking & statistics

3.10. cancelled

10.10. the memory hierarchy hw01 due

17.10. using callgrind

24.10. tuning for the compiler/optimiser hw02 due

31.10. competition 1

7.11. understanding the CPU hw03 due

14.11. exploiting parallelism

21.11. using perf + competition 2 hw04 due

28.12. Q&A, homework recap

5.12. semester recap + competition 3 hw05 due



WriƟng Efficient Code in C(++) 7/92

Efϐicient Code

• computational complexity

• the memory hierarchy

• tuning for the compiler & optimiser

• understanding the CPU

• exploiting parallelism



WriƟng Efficient Code in C(++) 8/92

Understanding Performance

• writing and evaluating benchmarks

• proϐiling with callgrind

• proϐiling with perf

• the law of diminishing returns

• premature optimisation is the root of all evil

• (but when is the right time?)



WriƟng Efficient Code in C(++) 9/92

Tools

• on a POSIX operating system (preferably not in a VM)

• perf (Linux-only, sorry)

• callgrind (part of the valgrind suite)

• kcachegrind (for visualisation of callgrind logs)

• maybe gnuplot for plotting performance data



WriƟng Efficient Code in C(++) 10/92

Compilers

• please stick to C++14 and C11 (or C99)

• the reference compiler will be clang 5.0.1

• you can use other compilers locally

• but your code has to build with clang 5



WriƟng Efficient Code in C(++) 11/92 ComputaƟonal Complexity

Part 1: Computational Complexity



WriƟng Efficient Code in C(++) 12/92 ComputaƟonal Complexity

Complexity and Efϐiciency

• this class is not about asymptotic behaviour

• you need to understand complexity to write good code

• performance and security implications

• what is your expected input size?

• complexity vs constants vs memory use



WriƟng Efficient Code in C(++) 13/92 ComputaƟonal Complexity

Quiz

• what’s the worst-case complexity of:

− a bubble sort? (standard) quick sort?

− inserting an element into a RB tree?

− inserting an element into a hash table?

− inserting an element into a sorted vector?

− inserting an element into a dynamic array?

• what are the amortised complexities?

• how about expected (average)?



WriƟng Efficient Code in C(++) 14/92 ComputaƟonal Complexity

Hash Tables

• often the most efϐicient data structure available

• poor theoretical worst-case complexity

− what if the hash function is really bad?

• needs a fast hash function for efϐiciency

− rules out secure (cryptographic) hashes



WriƟng Efficient Code in C(++) 15/92 ComputaƟonal Complexity

Worst-Case Complexity Matters

• CVE-2011-4815, 4838, 4885, 2012-0880,…

• apps can become unusable with too many items

• use a better algorithm if you can (or must)

• but: simplicity of code is worth a lot, too

• also takememory complexity and constants into account



WriƟng Efficient Code in C(++) 16/92 ComputaƟonal Complexity

Constants Matter

• 𝑛 ops if each takes 1 second

• 𝑛 log 𝑛 ops if each takes .1 second

• 𝑛ଶ ops if each takes .01 second

Picking the Right Approach

• where are the crossover points?

• what is my typical input size?

• is it worth picking an approach dynamically?

• what happens in pathological cases?



WriƟng Efficient Code in C(++) 17/92 ComputaƟonal Complexity

Exercise 1

• set up your repository and a Makefile

• implement a bounded priority buffer

− holds at most 𝑛 items

− holds at most one copy of a given item

− forgets the smallest item if full

− fetch/remove the largest item

− API: insert, top and remove

• two versions: sorted array and a sorted list



WriƟng Efficient Code in C(++) 18/92 ComputaƟonal Complexity

Exercise 1 (cont’d)

• write a few unit tests

• write a benchmark that inserts (~10) random values

• the benchmark can use clock(3) or time(1)

• compare the approaches for 𝑛 = 5, 10, 10000

• what are the theoretical complexities?

• what are your expectations on performance?

• can you think of a better overall solution?



WriƟng Efficient Code in C(++) 19/92 Microbenchmarking & StaƟsƟcs

Part 2: Microbenchmarking & Statistics



WriƟng Efficient Code in C(++) 20/92 Microbenchmarking & StaƟsƟcs

Motivation

• there’s a gap between high-level code and execution

• the gap has widened over time

− higher-level languages & more abstraction

− more powerful optimisation procedures

− more complex machinery inside the CPU

− complicated cache effects

• it is very hard to predict actual performance



WriƟng Efficient Code in C(++) 21/92 Microbenchmarking & StaƟsƟcs

Challenges

• performance is very deterministic in theory

• this is not the case in practice

− time-sharing operating systems

− cache content and/or swapping

− power management, CPU frequency scaling

− program nondeterminism; virtual machines

• both micro (unit) and system benchmarks are affected



WriƟng Efficient Code in C(++) 22/92 Microbenchmarking & StaƟsƟcs

Unit vs System Benchmarking

• a benchmark only gives you one number

• it is hard to ϐind causes of poor performance

• unit benchmarks are like unit tests

− easier to tie causes to effects

− faster to run (minutes or hours vs hours or days)

− easier to make parametric



WriƟng Efficient Code in C(++) 23/92 Microbenchmarking & StaƟsƟcs

Isolation vs Statistics

• there are many sources of measurement errors

• some are systematic, others are random (noise)

• noise is best fought with statistics

• but statistics can’t ϐix systematic errors

• benchmark data is not normally distributed



WriƟng Efficient Code in C(++) 24/92 Microbenchmarking & StaƟsƟcs

Repeated Measurements

• you will need to do repeat measurements

• more repeats give you better precision

− the noise will average out

− execution time vs precision tradeoff

• the repeat runs form your input sample

− this is what you feed into bootstrap



WriƟng Efficient Code in C(++) 25/92 Microbenchmarking & StaƟsƟcs

Bootstrap

• usual statistical tools are distribution-dependent

• benchmark data is distributed rather oddly

• idea: take many random re-samplings of the data

• take the 5th and 95th percentiles as a conϐidence interval

• this is a very robust (if stochastic) approach



WriƟng Efficient Code in C(++) 26/92 Microbenchmarking & StaƟsƟcs

Implementing Bootstrap

• inputs: a sample, an estimator and iteration count

• outputs: a new sample

• in each iteration, create a random resample

− add a random item from the original sample

− we do not care about repeats

− size of the resample should be the same as the original



WriƟng Efficient Code in C(++) 27/92 Microbenchmarking & StaƟsƟcs

Estimators

• most useful estimators are the mean (average)

• and various percentiles (e.g. median)

• you can also estimate standard deviation

− but keep in mind the original data is not normal



WriƟng Efficient Code in C(++) 28/92 Microbenchmarking & StaƟsƟcs

Output Distribution

• the output of bootstrap is another distribution

• you can expect this one to be normal

• it is the distribution of the estimator result

• you can compute the mean and 𝜎 of the bootstrap



WriƟng Efficient Code in C(++) 29/92 Microbenchmarking & StaƟsƟcs

Conϐidence Intervals

• assume your estimator is the mean (average)

• you get a normal distribution of averages

− each of them is more or less likely correct

− you can pick the average one as your estimate

− and take a 2𝜎 interval for the CI



WriƟng Efficient Code in C(++) 30/92 Microbenchmarking & StaƟsƟcs

Conϐidence Interval on Performance

• the above gives you a CI on average speed

• you may want a conϐidence interval on actual speed

• you can use a 5th or 95th percentile as estimator



WriƟng Efficient Code in C(++) 31/92 Microbenchmarking & StaƟsƟcs

Precise Clocks

• available in POSIX via clock_gettime

− the resulting time is in nanoseconds

• your best bet is CLOCK_MONOTONIC (maybe _RAW)

• you can ask clock_getres for clock resolution



WriƟng Efficient Code in C(++) 32/92 Microbenchmarking & StaƟsƟcs

Homework 1: Benchmarking

• implement a simple benchmarking tool

• allow for repeat measurements

− make the time limit and precision conϐigurable

• you will use this tool for the rest of the semester

• the API is up to you



WriƟng Efficient Code in C(++) 33/92 Microbenchmarking & StaƟsƟcs

Reducing Systematic Errors

• you can use fork() to get fresh processes

− the testcase might leak memory

− other effects may cause systematic slowdowns

• consider the effect of cache content

− hot vs cold cache benchmarking



WriƟng Efficient Code in C(++) 34/92 Microbenchmarking & StaƟsƟcs

Output

• for each unit benchmark, print a single line of output

• it should contain an average & a CI on the average

− also a 90% CI on actual runtime

• also alloweachmeasurement tobeprintedout separately

• exact format will be decided in the seminar



WriƟng Efficient Code in C(++) 35/92 The Memory Hierarchy

Part 3: The Memory Hierarchy



WriƟng Efficient Code in C(++) 36/92 The Memory Hierarchy

• many levels of ever bigger, ever slower memories

• CPU registers: very few, very fast (no latency)

• L1 cache: small (100s of KiB), plenty fast (~4 cycles)

• L2 cache: still small, medium fast (~12 cycles)

• L3 cache: ~2-32 MiB, slow-ish (~36 cycles)

• L4 cache: (only some CPUs) ~100 MiB (~90 cycles)

• DRAM: many gigabytes, pretty slow (~200 cycles)

• NVMe: ~10k cycles

• SSD: ~20k cycles

• spinning rust: ~30M cycles

• RTT to US: ~450M cycles



WriƟng Efficient Code in C(++) 37/92 The Memory Hierarchy

Paging vs Caches

• page tables live in slow RAM

• address translations are very frequent

• and extremely timing-sensitive

• TLB→ small, very fast address translation cache

• process switch→ TLB ϐlush

• but: Tagged TLB, software-managed TLB

• typical size: 12 - 4k entries

• miss penalties up to 100 cycles



WriƟng Efficient Code in C(++) 38/92 The Memory Hierarchy

Additional Effects

• some caches are shared, some are core-private

• out of order execution to avoid waits

• automatic or manual (compiler-assisted) prefetch

• speculative memory access

• ties in with branch prediction



WriƟng Efficient Code in C(++) 39/92 The Memory Hierarchy

Some Tips

• use compact data structures (vector > list)

• think about locality of reference

• think about the size of your working set

• code size, not just speed, also matters



WriƟng Efficient Code in C(++) 40/92 The Memory Hierarchy

See Also

• cpumemory.pdf in study materials

− somewhat advanced and somewhat long

− also very useful (the title is not wrong)

− don’t forget to add 10 years

− oproϐile is now perf

• http://www.7-cpu.com CPU latency data



WriƟng Efficient Code in C(++) 41/92 The Memory Hierarchy

Exercise 2

• write benchmarks that measure cache effects

Some Ideas

• walk a random section of a long std::list

• measure time per item in relation to list size

• same but with a std::vector

• same but access randomly chosen elements (vector only)



WriƟng Efficient Code in C(++) 42/92 The Memory Hierarchy

Some Issues

• uniform_int_distribution has odd timing behaviour

• but we don’t really care about uniformity

• you may need to ϐight the optimiser a bit

• especially make sure to avoid undeϐined behaviour

• indexing vs iteration have wildly different behaviour

• shufϐling your code slightly can affect the results a lot



WriƟng Efficient Code in C(++) 43/92 The Memory Hierarchy

Homework 2: Matrix Multiplication

• implement a real-valued matrix data structure

• implement 2 matrix multiplication algorithms

− natural order

− cache-efϐicient order

• compare the implementations using benchmarks



WriƟng Efficient Code in C(++) 44/92 Profiling I, callgrind

Part 4: Proϐiling I, callgrind



WriƟng Efficient Code in C(++) 45/92 Profiling I, callgrind

Why proϐiling?

• it’s not always obvious what is the bottleneck

• benchmarks don’t work so well with complex systems

• performance is not quite composable

• the equivalent of printf debugging isn’t too nice



WriƟng Efficient Code in C(++) 46/92 Profiling I, callgrind

Workϐlow

1. use a proϐiler to identify expensive code

− the more time program spent doing X,

− the more sense it makes to optimise X

2. improve the affected section of code

− re-run the proϐiler, compare the two proϐiles

− if satisϐied with the improvement, goto 1

− else goto 2



WriƟng Efficient Code in C(++) 47/92 Profiling I, callgrind

What to Optimise

• imagine the program spends 50 % time doing X

− optimise X to run in half the time

− the overall runtime is reduced by 25 %

− good return on investment

• law of diminishing returns

− now only 33 % of time is spent on X

− cutting X in half again only gives 17 % of total

− and so on, until it makes no sense to optimise X



WriƟng Efficient Code in C(++) 48/92 Profiling I, callgrind

Flat vs Structured Proϐiles

• ϐlat proϐiles are easier to obtain

• but also harder to use

− just a list of functions and cost

− the context & structure is missing

• call stack data is a lot harder to obtain

− endows the proϐile with very rich structure

− reϐlects the actual control ϐlow



WriƟng Efficient Code in C(++) 49/92 Profiling I, callgrind

cachegrind

• part of the valgrind tool suite

• dynamic translation and instrumentation

• based on simulating CPU timings

− instruction fetch and decode

− somewhat abstract cost model

• can optionally simulate caches

• originally only ϐlat proϐiles



WriƟng Efficient Code in C(++) 50/92 Profiling I, callgrind

callgrind

• records entire call stacks

• can reconstruct call graphs

• very useful for analysis of complex programs

kcachegrind

• graphical browser for callgrind data

• demo



WriƟng Efficient Code in C(++) 51/92 Profiling I, callgrind

Exercise 3

• there’s a simple BFS implementation in study materials

• you can also use/compare your ownBFS implementation

• don’t forget to use -O2 -g or such when compiling

• generate a proϐile with cachegrind

• load it up into kcachegrind

• generate another, using callgrind this time & compare



WriƟng Efficient Code in C(++) 52/92 Profiling I, callgrind

Exercise 3 (cont’d)

• add cache simulation options &c.

• explore the knobs in kcachegrind

• experiment with the size of the generated graph

• optimise the BFS implementation based on proϐile data



WriƟng Efficient Code in C(++) 53/92 Tuning for the Compiler

Part 5: Tuning for the Compiler



WriƟng Efficient Code in C(++) 54/92 Tuning for the Compiler

Goals

• write high-level code

• with good performance

What We Need to Know

• which costs are easily eliminated by the compiler?

• howtomakebest useof theoptimiser (withminimal cost)?



WriƟng Efficient Code in C(++) 55/92 Tuning for the Compiler

How Compilers Work

• read and process the source text

• generate low-level intermediate representation

• run IR-level optimisation passes

• generate native code for a given target



WriƟng Efficient Code in C(++) 56/92 Tuning for the Compiler

Intermediate Representation

• for C++ compilers typically a (partial) SSA

• reϐlects CPU design / instruction sets

• symbolic addresses (like assembly)

• explicit control and data ϐlow



WriƟng Efficient Code in C(++) 57/92 Tuning for the Compiler

IR-Level Optimiser

• common sub-expression elimination

• loop-invariant code motion

• loop strength reduction

• loop unswitching

• sparse conditional constant propagation

• (regular) constant propagation

• dead code elimination



WriƟng Efficient Code in C(++) 58/92 Tuning for the Compiler

Common Sub-expression Elimination

• identify redundant (& side-effect free) computation

• compute the result only once & re-use the value

• not as powerful as equational reasoning



WriƟng Efficient Code in C(++) 59/92 Tuning for the Compiler

Loop-Invariant Code Motion

• identify code that is independent of the loop variable

• and also free of side effects

• hoist the code out of the loop

• basically a loop-enabled variant of CSE



WriƟng Efficient Code in C(++) 60/92 Tuning for the Compiler

The Cost of Calls

• prevents CSE (due to possible side effects)

• prevents all kinds of constant propagation

Inlining

• removes the cost of calls

• improves all intra-procedural analyses

• inϐlates code size

• only possible if the IR-level deϐinition is available

See also: link-time optimisation



WriƟng Efficient Code in C(++) 61/92 Tuning for the Compiler

The Cost of Abstraction: Encapsulation

• API or ABI level?

• API: cost quickly eliminated by the inliner

• ABI: not even LTO can ϐix this

• ABI-compatible setter is a call instead of a single store



WriƟng Efficient Code in C(++) 62/92 Tuning for the Compiler

The Cost of Abstraction: Late Dispatch

• used for virtualmethods in C++

• indirect calls (through a vtable)

• also applies to C-based approaches (gobject)

• prevents (naive) inlining

• compilers (try to) devirtualise calls



WriƟng Efficient Code in C(++) 63/92 Tuning for the Compiler

Exercise 4: Variant 1

• start with bfs.cpp from study materials

• make a version where edges() is in a separate C++ ϐile

• you will need to use std::function

• try a compromise using a visitor pattern

• compare all three approaches using benchmarks



WriƟng Efficient Code in C(++) 64/92 Tuning for the Compiler

Exercise 4: Variant 2

• compare the cost of a direct and indirect call

• write a foreach function that takes a function pointer

− use separate compilation to prevent inlining

• compare to a loop with a direct call

− the function to be called should be simple-ish



WriƟng Efficient Code in C(++) 65/92 Tuning for the Compiler

Homework 3: Sets of Integers

• implement a set of uint16_t using a bitvector

− with insert, erase, union and intersection

• the same using a nibble-trie

− a trie with out-degree 16 (4 bits)

− should have a maximum depth of 4

− implement insert and union

• compare the two implementations



WriƟng Efficient Code in C(++) 66/92 Understanding the CPU

Part 6: Understanding the CPU



WriƟng Efficient Code in C(++) 67/92 Understanding the CPU

The Simplest CPU

• in-order, one instruction per cycle

• sources of inefϐiciency

− most circuitry is idle most of the time

− not very good use of silicon

• but it is reasonably simple



WriƟng Efficient Code in C(++) 68/92 Understanding the CPU

Design Motivation

• silicon (die) area is expensive

• switching speed is limited

• heat dissipation is limited

• transistors cannot be arbitrarily shrunk

• “wires” are not free either



WriƟng Efficient Code in C(++) 69/92 Understanding the CPU

The Classic RISC Pipeline

• fetch – get instruction frommemory

• decode – ϐigure out what to do

• execute – do the thing

• memory – read/write to memory

• write back – store results in the register ϐile



WriƟng Efficient Code in C(++) 70/92 Understanding the CPU

Instruction Fetch

• pull the instruction from cache, into the CPU

• the address of the instruction is stored in PC

• traditionally does branch “prediction”

− in simple RISC CPUs always predicts not taken

− this is typically not a very good prediction

− loops usually favour taken heavily



WriƟng Efficient Code in C(++) 71/92 Understanding the CPU

Instruction Decode

• not much actual decoding in RISC ISAs

• but it does register reads

• and also branch resolution

− might need a big comparator circuit

− depending on ISA (what conditional branches exist)

− updates the PC



WriƟng Efficient Code in C(++) 72/92 Understanding the CPU

Execute

• this is basically the ALU

− ALU = arithmetic and logic unit

• computes bitwise and shift/rotate operations

• integer addition and subtraction

• integer multiplication and division (multi-cycle)



WriƟng Efficient Code in C(++) 73/92 Understanding the CPU

Memory

• dedicated memory instructions in RISC

− load and store

− pass through execute without effect

• can take a few cycles

• moves values between memory and registers

Write Back

• write data back into registers

• so that later instructions can use the results



WriƟng Efficient Code in C(++) 74/92 Understanding the CPU

Pipeline Problems

• data hazards (result required before written)

• control hazards (branch misprediction)

• different approaches possible

− pipeline stalls (bubbles)

− delayed branching

• structural hazards

− multiple instructions try to use a single block

− only relevant on more complex architectures



WriƟng Efficient Code in C(++) 75/92 Understanding the CPU

Superscalar Architectures

• more parallelism than a scalar pipeline

• can retire more than one instruction per cycle

• extracted from sequential instruction stream

• dynamically established data dependencies

• some units are replicated (e.g. 2 ALUs)



WriƟng Efficient Code in C(++) 76/92 Understanding the CPU

Out-of-order execution

• tries to ϐill in pipeline stalls/bubbles

• same principle as super-scalar execution

− extracts dependencies during execution

− execute if all data ready

− even if not next in the program



WriƟng Efficient Code in C(++) 77/92 Understanding the CPU

Speculative Execution

• sometimes it’s not yet clear what comes next

• let’s decode, compute etc. something anyway

• ϐills in more bubbles in the pipeline

• but not always with actual useful work

• depends on the performance of branch prediction



WriƟng Efficient Code in C(++) 78/92 Understanding the CPU

Take-Away

• the CPU is very good at utilising circuitry

• it is somewhat hard to write “locally” inefϐicient code

• you should probably concentrate on non-local effects

− non-local with respect to instruction stream

− like locality of reference

− and organisation of data in memory in general

− also higher-level algorithm structure



WriƟng Efficient Code in C(++) 79/92 Understanding the CPU

Exercise 6

• implement a brainfuck interpreter

• try to make it as fast as possible

• see wikipedia for some example programs



WriƟng Efficient Code in C(++) 80/92 Understanding the CPU

Homework 4

• implement sub-string search algorithms

• a naive one (with full restarts)

• one based on a failure table (KMP)

• one that uses a DFA

• write benchmarks, ϐind cross-over points



WriƟng Efficient Code in C(++) 81/92 ExploiƟng Parallelism

Part 7: Exploiting Parallelism



WriƟng Efficient Code in C(++) 82/92 ExploiƟng Parallelism

Hardware vs Software

• hardware is naturally parallel

• software is naturally sequential

• something has to give

− depends on the throughput you need

− eventually, your software needs to go parallel



WriƟng Efficient Code in C(++) 83/92 ExploiƟng Parallelism

Algorithms

• some algorithms are inherently sequential

− typically for P-complete problems

− for instance DFS post-order

• which algorithm do you really need though?

− topological sort is much easier than post-order

• some tasks are trivially concurrent

− think map-reduce



WriƟng Efficient Code in C(++) 84/92 ExploiƟng Parallelism

Task Granularity

• how big are the tasks you can run in parallel?

− big tasks = little task-switching overhead

− small tasks = easier to balance out

• howmuch data do they need to share?

− shared memory vs message passing



WriƟng Efficient Code in C(++) 85/92 ExploiƟng Parallelism

Distributed Memory

• comparatively big sub-tasks

• not much data structure sharing (small results)

• scales extremely well (millions of cores)

Shared Memory

• small, tightly intertwined tasks

• sharing a lot of data

• scales quite poorly (hundreds of cores)



WriƟng Efficient Code in C(++) 86/92 ExploiƟng Parallelism

Caches vs Parallelism

• different CPUs are connected to different caches

• caches are normally transparent to the program

• what if multiple CPUs hold the same value in cache

− they could see different versions at the same time

− need cache coherence protocols



WriƟng Efficient Code in C(++) 87/92 ExploiƟng Parallelism

Cache Coherence

• many different protocols exist

• a common one is MESI (4 cache line states)

− modiϐied, exclusive, shared, invalid

− snoops on the bus to keep up to date

• cheap until two cores hit the same cache line

− required for communication

− also happens accidentally



WriƟng Efficient Code in C(++) 88/92 ExploiƟng Parallelism

Locality of Reference

• comes with a twist in shared memory

• compact data is still good, but

− different cores may use different pieces of data

− if they are too close, this becomes costly

− also known as false sharing



WriƟng Efficient Code in C(++) 89/92 ExploiƟng Parallelism

Distribution of Work

• want to communicate as little as possible

• also want to distribute work evenly

• randomised, spread-out data often works well

− think hash tables

• structures with a single active point are bad

− think stacks, queues, counters &c.



WriƟng Efficient Code in C(++) 90/92 ExploiƟng Parallelism

Shared-Memory Parallelism in C++

• std::thread – create threads

• std::future – delayed (concurrent) values

• std::atomic – atomic (thread-safe) values

• std::mutex and std::lock_guard



WriƟng Efficient Code in C(++) 91/92 ExploiƟng Parallelism

Exercise 7

• implement shared-memory map-reduce

• make the number of threads a runtime parameter

• check how this scales (wall time vs number of cores)

• use this for summing up a (big) array of numbers

• canyou improveon this byhand-rolling the summing loop?



WriƟng Efficient Code in C(++) 92/92 ExploiƟng Parallelism

Homework 5

• implement parallel matrix multiplication

• compare to your sequential versions

− try with 2 and 4 threads in your benchmarks

• you can use std::thread or OpenMP


