Biometrics 2 Face recognition

PV181 Laboratory of security and applied cryptography Seminar 13, 12. 12. 2018

Vlasta Šťavová, vlasta.stavova@mail.muni.cz Martin Ukrop, mukrop@mail.muni.cz

Centre for Research on Cryptography and Security

Lecture structure

Seminar 1

- 1. Introduction
- 2. Fingerprints
- 3. Seminar activity
 - Fake fingerprints
- 4. Homework
 - Report on selected biometric system

Seminar 2

- 1. Face recognition
- 2. Seminar activity
 - Face biometric
 SWOT analysis
- 3. Homework
 - Age estimation

Real-life example

@ 2009 Geek Culture

joyoftech.com

CROCS

Face recognition – Input

- Single picture
- Video sequence
- 3D image
- Facial thermograms

Face recognition: The manual way

Face recognition: The automatic way

- Statistical
 - Eigenface, PCA, LDA, ...
- Neural networks
 - Microsoft: Face API
 - Facebook: DeepFace
 - VK: FindFace ("best results" in MegaFace comp.)
 - Google: FaceNet

Open source frameworks

Project	Modern	Active	Deployable
CSU [17]	Yes	No	No
OpenCV [4]	No	Yes	Yes
OpenBR	Yes	Yes	Yes

Table 1: Existing open source face recognition software. A project is considered *modern* if it incorporates peerreviewed methods published in the last five years, *active* if it has source code changes made within the last six months, and *deployable* if it exposes a public API.

J. Klontz, B. Klare, S. Klum, A. Jain, M. Burge. "Open Source Biometric Recognition", Proceedings of the IEEE Conference on Biometrics: Theory, Applications and Systems (BTAS), 2013.

FindFace – example

Subway photo (left), social network photo (right)

Challenges in face recognition

- Illumination
- Pose
- Environment
 - Noisy background
- Aging
- Feature occlusion
 - Hats, glasses, hair, ...
- Image quality
 - colour, resolution, ...

OpenBR: Face recognition overview

Photo © 2016 openbiometrics.org

Step 1 – Face detection

- Knowledge-based methods.
 - Ruled-based methods that encode our knowledge of human faces.
- Template matching methods.
 - These algorithms compare input images with stored patterns of faces or features.
- Appearance-based methods.
 - A template matching method whose pattern database is learnt from a set of training images.

OpenBR face recognition – visualization

- Haar-cascade Detection
- Machine learning based approach where a cascade function is trained from a lot of positive and negative images.
- See video:
 OpenCV Face
 Detection: Visualized
 <u>https://vimeo.com/12774628</u>

CV Dazzle: Anti face-detection

CV Dazzle: Anti face-detection

Photo © 2010-2016 Adam Harvey, CV Dazzle

Step 2 – Normalization and Representation

- Picture preprocessing
- OpenBR approach (Eigenface):
 - Detects eyes in detected faces
 - Normalize the face with respect to rotation and scale using the eye locations
 - Converts the image to floating point format
 - Embeds the image in a PCA subspace trained on face images

Step 3 – Extraction

- Extracting relevant information from image
- Face color? Position of eyes, mouth, nose?
 Between eyes ratio? Width-length ratio?
- Information must be valuable to the later step of identifying the subject
- "Reducing dimension"

Microsoft: Face API

Step 4 – Matching

- Template matching
 - Patterns are represented by samples, models, pixels, curves, textures. The recognition function is usually a correlation or distance measure.
- Statistical approach
 - Patterns are represented as features. The recognition function is a discriminant function.
- Neural networks
 - The representation may vary. There is a network function in some point.

Step 5 – Output

- Confidence:
 - Euclidian distance as match measure
 - Interval 0 (=bad match) to 1 (=perfect match)
 - Cca >0.6 to detect similarity
- Similarity value for comparing two templates
 - The higher value the more likely the same
 - Computed as -log(distance+1) where distance is the sum of the Euclidean distances between two face images
 - Smaller distances (Euclidean) indicate higher similarity

Automatic passport control

Biometric passports

- "Smart card", contain NFC chip
- Two security levels:
 - BAC: Reading your photo+personal information (Try Android app Passport reader)
 - EAC: Reading your biometrics
 - Fingerprint, Face and Iris support.

Face impersonation

Photo © 2016 Carnegie Mellon University, Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition

Face impersonation

- Fooling deep-neural-networks-based face recognition systems (e.g. Face++)
 - Over 90% success rate
 - The principle is more general
- "physically realizable and inconspicuous"

Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition." Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016.

Detecting sexual orientation from faces

Composite heterosexual faces

Composite gay faces

Average facial landmarks

Photo © 2017 Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology

Detecting sexual orientation from faces

- Classifying sexual orientation (straight vs. gay) on men/women photos
 - Human success: 61% / 54%
 - Neural networks: 81% / 71%
 - Neural networks (5 images): 91% / 83%
- May be a privacy issue!

Wang, Y., & Kosinski, M. (in press). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology.

Testing sets (databases)

• Many databases:

http://www.face-rec.org/databases/

- Covering:
 - Aging
 - Ilumination
 - Pose
 - Expression

CRତCS

Fun with biometrics

- InterSoB task
 - https://how-old.net/
 - Try to appear
 as old as possible
- Attractivenes
 measurement
 - https://www.howhot.io/

Photo © 2016 Dominika Krejčí, InterSoB

Detour: SWOT analysis

- A.k.a. "SWOT matrix"
- From 1960s
- Strategic planning technique related to business competition or project planning
- Widely applicable

SWOT example: Passwords

Strengths

- Well understood
- Legacy
- Intuitive usage
- Possibility of high entropy

Opportunities

- FIDO 2.0 system
- Integration of SMS/OPT and Push-to-Approve

Weaknesses

- Often low entropy
- Infinite ways to implement
- Policy differences
- Sticky note syndrome
- Threats related to storage

Threats

- Bad attack understanding
- Long tail of replacement
- Usability issues
- The dark web

Example inspired by the RSAC 2018 talk *Passwords and fingerprints and faces – Oh my! Comparing old and new authentication* by Jackson Shaw

Seminar task

- Do a SWOT analysis for a given use case on face recognition biometrics, work in groups of three
- Use cases:
 - a. Face authentication on border crossing (passports)
 - b. "Pay by a smile"for Internet card payments
 - c. 3D face authentication for accessing bank vaults
 - d. Thermal face scans securing nuclear power plant

Homework

Exploring automatic age estimation

Homework: Overview

- Investigate what influences age estimation
 - In https://how-old.net/ (neural-networks based)
 - Adjust our pictures again
- Submit to IS MUNI a single ZIP file with
 - Report (PDF),
 - see next slide
 - Used adjusted images
- Deadline:
 20. 12. 2018 23:59

Homework: Report

- Write a summarizing report
 - Your hypotheses and how you tested them
 - Test at least 5 distinct features
- Concentrate on:
 - Having a formulated hypotheses for each feature (e.g. smoother skin decreases estimated age)
 - Having several images supporting/falsifying your idea
- Avoid:
 - Many changes in the face at once
 - Radical changes (deleting half the face)
 - Overgeneralization

Homework: Methodology basics

Step 1: State the hypotheses.

E.g., Wrinkles around the tails of eyes increase the estimated age.

Step 2: Set the criteria for a decision.

Set baseline (no wrinkles) and repeat measurement for different wrinkles around tails of eyes.

Step 3: Compute the test statistic.

In our simplistic case, take a look on measurements.

Step 4: Make a decision.

The hypothesis should not be regarded as true based on these data.

Homework: Good methodology

Measurements:

Martin 1 - 27 Martin 2 - 27 Martin 3 - 27 Martin 4 - 27 Martin 5 - 27

Homework: Good methodology

Homework: Bad methodology (but at least funny)

Homework: Methodology basics

- Have a look at old homework submissions with good methodology in the Study Materials.
- Special thanks to Vláďa Sedláček, Kristýna Loukotová and Rao Arvind for providing them.