GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication

GPU Architecture and Programming Model

Jiří Filipovič

fall 2018

Jiří Filipovič GPU Architecture and Programming Model

臣

æ

GPU hardware ●○○○	Parallelism 00000000	Memory Hierarchy	Synchronization	Matrix Multiplication
Difference	es among (CUDA GPUs		

New generations bring higher performance and new computing capabilities.

• compute capability describes richness of GPU instruction set and amount of resources available (registers, number of concurrently running threads, etc.)

• raw performance grows with the number of cores on a GPU Cards in the same generation differ in performance substantially

- to produce more affordable cards
- due to changes introduces later in the manufacturing process
- to minimize power consumption of mobile GPUs

GPU hardware ○●○○	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
GPUs Ava	ailable Tod	ау		

Currently available GPUs

- compute capability 1.0 7.5
 - we will learn the differences later
- 1-30 multiprocessors (19 GFlops 16 TFLOPs)
- frequency of 800 MHz-1.836 GHz
- width and speed of data bus (64–4096 bit, 6.4–900 GB/s)

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
0000				
Conoratio	ns of CUD			

Generations and their computing capability

- Tesla (G80, G90, G200): c.c. 1.0, 1.1, 1.2, 1.3
 - do not confuse with Tesla computing cards
- Fermi (GF100, GF110): c.c. 2.0, 2.1
- Kepler (GK100, GK110): c.c. 3.0, 3.2, 3.5, 3.7
- Maxwell (GM107, GM200): c.c. 5.0, 5.2, 5.3
- Pascal (GP102, GP100): c.c. 6.0, 6.1, 6.2
- Volta (GV100): c.c. 7.0
- Turing (GV100): c.c. 7.5

GPU hardware ○○○●	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Available	products			

GeForce graphics cards

- mainstream solution for gaming
- cheap, widely used, broad range of performance
- disadvantage limited memory, limited double precision performance
- Professional Quadro graphics cards
 - larger memory
 - several times more expensive

Tesla

- a solution specially designed for CUDA computing
- offers some HW features not present in GeForce (large memory, double/half precision, NVLink, ECC memory etc.) speeding up some applications
- expensive

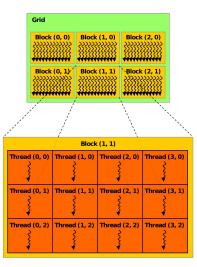
→ ∃ →

GPU hardware	Parallelism ●○○○○○○○	Memory Hierarchy	Synchronization	Matrix Multiplication
GPU Para	llelism			

Parallel algorithms need to be designed w.r.t. the parallelism available in the $\ensuremath{\mathsf{HW}}$

- GPU: array of SIMT multiprocessors working using shared memory
- Decomposition for GPU
 - coarse-grained decomposition of the problem into the parts that don't need intensive communication
 - fine-grained decomposition similar to vectorization (but SIMT is more flexible)

GPU hardware	Parallelism ○●○○○○○○	Memory Hierarchy	Synchronization	Matrix Multiplication
Task Hiera	rchy			



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

GPU hardware	Parallelism ○○●○○○○○	Memory Hierarchy	Synchronization	Matrix Multiplication
SIMT				

A multiprocessor of G80 has one unit executing an instruction

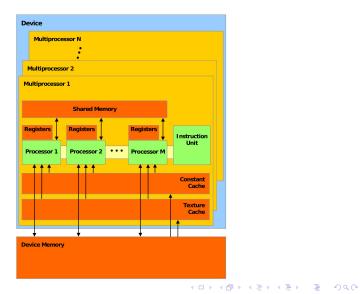
- all 8 SPs have to execute the same instruction
- new instruction is executed every 4 cycles
- 32 threads (so called *warp*) need to execute the same instruction, warp size is fixed for all existing CUDA hardware

How about code branching?

- if different parts of a warp perform different instructions, they are serialized
- decreases performance-should be avoided

The multiprocessor is thus (nearly) MIMD (Multiple-Instruction Multiple-Thread) from programmer's perspective and SIMT (Single-Instruction Multiple-Thread) from performance perspective.

GPU hardware	Parallelism ○○○●○○○○	Memory Hierarchy	Synchronization	Matrix Multiplication



GPU hardware	Parallelism ○○○○●○○○	Memory Hierarchy	Synchronization	Matrix Multiplication
SIMT reco	onvergence	2		

At GPU architectures prior to Volta, at the end of divergent code, a point of reconvergence is set by the compiler

- creates barrier for threads within the warp
- guarantees threads synchronization after divergent code
- we have to take the reconvergence points in mind they can create deadlocks, which are not arise in true MIMD
- Volta's threads are scheduled independently, thus it can be programmed as a true MIMD processor

GPU hardware	Parallelism ○○○○○●○○	Memory Hierarchy	Synchronization	Matrix Multiplication
SIMT reco	nvergence			

We try to serialize some region of code by following construct:

```
__shared__ int s = 0;
while (s != threadIdx.x);
{ } // serialized region
s++;
```

Thanks to reconvergence point, there is a deadlock (reconvergence point is placed before the incrementation of s). Fix:

```
__shared__ int s = 0;
while (s < blockDim.x)
if (threadIdx.x == s) {
    {    } // serialized region
    s++;
}
```

向下 イヨト イヨト

GPU hardware	Parallelism ○○○○○○●○	Memory Hierarchy	Synchronization	Matrix Multiplication
Thread P	roperties			

GPU threads are very lightweight compared to CPU threads.

- their run time can be very short (even tens of instructions)
- there should be many of them
- they should not use large amount of resources

Threads are aggregated into blocks

- all threads of the block always run on the same multiprocessor (multiple blocks can run at one multiprocessor)
- having sufficient number of blocks is substantial to achieve good scalability

Number of threads and thread blocks per multiprocesor is limited.

向下 イヨト イヨト

N /		alita a		
0000	0000000	000000000	00	0000000000
GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication

Memory Latency Masking

Memory has latency

- global memory has high latency (hundreds of cycles)
- registers and shared memory have read-after-write latency

Memory latency hiding is different from CPU

- no instructions are executed out of order (but ILP can be exploited by forcing finalization of load instruction just before loaded data are needed)
- no or limited cache

When a warp waits for data from memory, another warp may be executed

- allows memory latency hiding
- requires execution of more threads than the number of GPU cores
- thread execution scheduling and switching is implemented directly in HW without overhead

GPU hardware	Parallelism	Memory Hierarchy ●○○○○○○○○	Synchronization	Matrix Multiplication
Thread-Lo	cal Memo	bry		

Registers

- the fastest memory, directly usable in instructions
- local variables in a kernel and variables for intermediate results are placed automatically into the registers
 - if there is sufficient number of registers
 - if the compiler can determine static array indexing
- thread scoped

GPU hardware	Parallelism	Memory Hierarchy ●○○○○○○○○	Synchronization	Matrix Multiplication
Thread-Lo	cal Memo	ory		

Registers

- the fastest memory, directly usable in instructions
- local variables in a kernel and variables for intermediate results are placed automatically into the registers
 - if there is sufficient number of registers
 - if the compiler can determine static array indexing
- thread scoped

Local memory

- data that doesn't fit into the registers go into the local memory
- \bullet local memory is stored in DRAM \implies slow, high latency
- thread scoped

向下 イヨト イヨト

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Shared M	emory			

Shared memory

- as fast as registers for c. c. 1.x, for newer GPUs little bit slower
 - if memory bank conflicts are avoided
 - instructions can use only one operand in shared memory (otherwise explicit load/store is needed)
- declared using __shared__ in C for CUDA
- a variable in shared memory can have dynamic size (determined at startup), if declared as extern withou size specification
- block scoped

GPU hardware	Parallelism	Memory Hierarchy ○○●○○○○○○	Synchronization	Matrix Multiplication
Shared Me	emory			

Static shared memory declaration

```
__shared__ float myArray[128];
```

Dynamic allocation

```
extern __shared__ char myArray[];
float *array1 = (float*)myArray;
int *array2 = (int*)&array1[128];
short *array3 = (short*)&array2[256];
```

It creates an array array1 of float type with size 128, array2 of int type sized 256, and array3 of floating size. Total size has to be specified at kernel startup.

```
myKernel<<<grid, block, n>>>();
```

向下 イヨト イヨト

GPU hardware	Parallelism	Memory Hierarchy ○○○●○○○○○	Synchronization	Matrix Multiplication
Global Me	mory			

Global memory

- an order of magnitude lower bandwidth compared to shared memory
- latency in order of hundreds of GPU cycles
- addressing needs to be coalesced to get optimum performance
- application-scoped
- cached in some architectures, e.g. L1 cache (128 bytes/row) and L2 cache (32 bytes/row) in Fermi architecture

May be dynamically allocated using cudaMalloc or statically allocated using __device__ declaration.

向下 イヨト イヨト

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Constant	Memory			

Constant memory

- read-only
- cached
- cache hit is as fast as registry (under certain constraints), cache miss is as fast as global memory
- limited size (64 kB for GPUs currently available)
- application-scoped

Declared using __constant__ keyword; the following function is used for copying data to constant memory:

```
cudaError_t cudaMemcpyToSymbol(const char *symbol,
    const void *src, size_t count, size_t offset,
    enum cudaMemcpyKind kind)
```

Data are copied from system memory (cudaMemcpyHostToDevice) or global memory (cudaMemcpyDeviceToDevice) from src into symbol. The copied block has count bytes. Copied with offset into the symbol memory.

イロト イポト イヨト イヨト

GPU hardware	Parallelism	Memory Hierarchy ○○○○○●○○○	Synchronization	Matrix Multiplication
Texture N	lemory			

Texture memory

- cached, 2D locality
- read-only for cache coherency reasons
- high latency
- several addressing modes
 - normalization into [0,1] range
 - truncation or overflowing of coordinates
- possible data filtering
 - linear interpolation or nearest value
- this functionality is "for free" (implemented in HW)

More details are available in CUDA Programming Guide.

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Data Cach	e			

Read-only data cache

- c.c. 3.5 or higher
- the same hardware as texture cache, but straightforward usage
- compiler automatically uses data cache, when it recognize that data are read-only
 - we can help with const and __restrict__
 - usage can be forced by $__ldg()$

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
		000000000		
System-L	ocal Memo)rv		

System RAM

- connected to GPU via PCIe
- CPU (host) and GPU (device) memory transfers are complicated by virtual addressing
- it is possible to allocate so called page-locked memory areas
 - overall system performance may be reduced
 - limited size
 - data are transferred faster over PCIe
 - allows for parallel kernel run and data copying
 - allows for mapping of host address space onto the device
 - allows for write-combining access (data are not cached by CPU)

cudaMallocHost() is used instead of malloc() to allocate the memory; the memory is freed using cudaFreeHost()

- cudaHostAllocPortable flag ensures page-locked memory for all CPU threads
- cudaHostAllocWriteCombined flag turns off caching for CPU allocated memory
- cudaHostAllocMapped flag sets host memory mapping in the device address space

イロト イポト イヨト イヨト

Within block

- native barrier synchronization
 - all threads have to enter it (beware of conditions!)
 - one instruction only, very fast if it doesn't degrade parallelism
 - C for CUDA call __syncthreads()
 - Fermi extensions: count, and, or
- shared memory communication
 - threads can exchange data
 - barrier ensures that data are ready
- synchronization latency hiding similar as for memory
 - multiple blocks on multiprocessor

・ 同 ト ・ ヨ ト ・ ヨ ト

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
			0	
Block Sur	ochronizati	on		

Among blocks

- global memory is visible for all blocks
- poor support for synchronization
 - no global barrier for GPUs prior Pascal architecture and CUDA 8.0
 - atomic operations on global memory for newer GPUs
 - global barrier can be implemented using multiple kernel calls

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication	
Matrix Multiplication					

We want to multiply matrices A a B and store the result into C. For sake of simplicity, we only assume matrices sized $n \times n$.

$$C_{i,j} = \sum_{k=1}^{n} A_{i,k} \cdot B_{k,j}$$

C language: for (int i = 0; i < n; i++) for (int j = 0; j < n; j++){ C[i*n + j] = 0.0; for (int k = 0; k < n; k++) C[i*n + j] += A[i*n + k] * B[k*n + j]; }

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication ○●○○○○○○○○
Parallelizat	zion			

```
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++){
    C[i*n + j] = 0.0;
    for (int k = 0; k < n; k++)
        C[i*n + j] += A[i*n + k] * B[k*n + j];
}</pre>
```

Multiple ways of parallelization

- choose one loop
- choose two loops
- parallelize all the loops

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Parallelizat	ion			

• doesn't scale well, it is necessary to use big matrices (we need tens thousands of threads for good GPU utilization)

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Parallelizat	ion			

• doesn't scale well, it is necessary to use big matrices (we need tens thousands of threads for good GPU utilization)

Parallelization of two loops

• scales well, number of threads grows quadratically w.r.t. n

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Parallelizat	ion			

- doesn't scale well, it is necessary to use big matrices (we need tens thousands of threads for good GPU utilization)
- Parallelization of two loops
- scales well, number of threads grows quadratically w.r.t. *n* Parallelization using inner loop
 - complicated, synchronization needed when writing into C!

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Parallelizat	ion			

 doesn't scale well, it is necessary to use big matrices (we need tens thousands of threads for good GPU utilization)

Parallelization of two loops

• scales well, number of threads grows quadratically w.r.t. *n* Parallelization using inner loop

• complicated, synchronization needed when writing into *C*! Best way is thus to parallelize loops over *i* and *j*.

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
First Kerne	el			

We can form the block and grid as 2D array.

```
--global__ void mmul(float *A, float *B, float *C, int n){
    int x = blockIdx.x*blockDim.x + threadIdx.x;
    int y = blockIdx.y*blockDim.y + threadIdx.y;
    float tmp = 0;
    for (int k = 0; k < n; k++)
        tmp += A[y*n+k] * B[k*n+x];
    C[y*n + x] = tmp;
}</pre>
```

Note similarity to math description – parallel version is more intuitive than the serial one!

・ 同 ト ・ ヨ ト ・ ヨ ト

GPU hardware	Parallelism 00000000	Memory Hierarchy	Synchronization	Matrix Multiplication
Performan	ce			

What will be the performance of our implementation?

- 4 回 2 - 4 □ 2 - 4 □

æ

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Performan	се			

What will be the performance of our implementation? Let's look at GeForce GTX 280 $\,$

- available 622 GFLOPS for matrix multiplication
- $\bullet\,$ memory bandwidth is 142 GB/s

- ∢ ≣ >

æ

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Performan	ce			

What will be the performance of our implementation? Let's look at GeForce GTX 280

- available 622 GFLOPS for matrix multiplication
- memory bandwidth is 142 GB/s

Flop-to-word ratio of our implementation

- in one step over k, we read 2 floats (one number from A and B) and perform two arithmetic operations
- one arithmetic operation corresponds to transfer of one float
- global memory offers throughput of 35.5 billion floats per second if one warp transfers one float from one matrix and 16 floats from the other matrix, we can achieve 66.8 GFLOPS
- 66.8 GFLOPS is very far from 622 GFLOPS

向下 イヨト イヨト

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
How to In	nprove It?			

We hit the limit of global memory. GPUs have faster types of memory, can we use them?

回 と く ヨ と く ヨ と

æ

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
How to Ir	nprove It?			

We hit the limit of global memory. GPUs have faster types of memory, can we use them?

For computation of one C element, we have to read one row from

A and one column from B, that are in the global memory.

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
How to Ir	nprove It?			

We hit the limit of global memory. GPUs have faster types of memory, can we use them?

For computation of one C element, we have to read one row from A and one column from B, that are in the global memory.

Is it really necessary to do that separately for each element of C?

- we read the same A row for all the elements in the same row of C
- we read the same *B* column for all the elements in the same column of *C*
- we can read some data only once from the global memory into the shared memory and then read them repeatedly from the shared memory

向下 イヨト イヨト

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication ○○○○○●○○○○
Tiled Algo	orithm			

If we access the matrix in tiles, we can amortize transfers from the global memory:

- we will compute $a \times a$ tile of C matrix
- we read tiles of the same size of matrices A and B into the shared memory iteratively
- ullet the tiles will be multiplied and added to C
- arithmetic operations to data transfers is a times better

Natural mapping on GPU parallelism

- each tile of C will be computed by a thread block
- shared memory locality ensured
- no inter-block synchronization needed

• • = •

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Tiled Algo	rithm			

How big blocks?

- limited by the size of shared memory
- limited by the number of threads that can run on GPU
- if one thread is to compute one element of C, a reasonable block size is 16×16
 - multiple of warp size
 - one block will have reasonable 256 threads
 - one block needs 2 KB of shared memory
 - the memory will not limit the performance substantially $(16 \cdot 25.5 = 568 \text{ GFLOPS})$, which is quite close to 622 GFLOPS)

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication ○○○○○○○●○○
Algorithm				

Algorithm schema

- each thread block will have As and Bs in the shared memory
- tiles of A and B matrices will be multiplied iteratively, the results will get accumulated in Csub variable
 - threads in a block read tiles into As and Bs cooperatively
 - each thread mutliplies rows in As and columns in Bs for its element of Csub matrix
- each thread stores one element of the matrix into the matrix *C* in global memory
- Beware of synchronization
 - the blocks need to be read completely before the multiplication starts
 - before we read new blocks, operation on previous data needs to be completed

向下 イヨト イヨト

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication
Second K	ernel			

```
__global__ void mmul(float *A, float *B, float *C, int n){
 int bx = blockIdx.x:
 int bv = blockIdx.v:
 int tx = threadIdx.x;
 int ty = threadIdx.y;
  __shared__ float As BLOCK_SIZE | BLOCK_SIZE ];
  __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
 float Csub = 0.0f:
 for (int b = 0; b < n/BLOCK_SIZE; b++){
   As[ty][tx] = A[(ty + by*BLOCK_SIZE)*n + b*BLOCK_SIZE+tx];
   Bs[ty][tx] = B[(ty + b*BLOCK_SIZE)*n + bx*BLOCK_SIZE+tx];
    __syncthreads();
   for (int k = 0; k < BLOCK_SIZE; k++)
     Csub += As[ty][k] * Bs[k][tx];
   __syncthreads();
  }
 C[(ty + by*BLOCK)*n + bx*BLOCK_SIZE+tx] = Csub;
}
```

GPU hardware	Parallelism	Memory Hierarchy	Synchronization	Matrix Multiplication		
Performan	Performance					

- theoretical limitation of first kernel is 66.8 GFLOPS, measured performance is 36.6 GFLOPS
- theoretical limitation of first kernel is 568 GFLOPS, measured performance is 198 GFLOPS
- how to get closer to the maximum performance of the card?
- we need to understand HW and its limitation better and optimize the algorithms accordingly
- topics for the next lectures