
Project Assignment



Messaging application
• Click through the prototype

• Go to https://www.fluidui.com/editor/live/preview/cF82N211bDdjMER4Y0F3UERBWFdsT1RMOWxxdVAwSFUzTQ==

• When prompt appears fill any name and email

• If you do not see Sign up page, click Restart preview (on the left middle part of the page)

• Prototype is mean to show intentions and features (not design) and is not complete

• You can also find some inspiration in messaging tools like Slack or MS Teams or Skype or 

HipChat or Bitrix24 or Roctek.Chat or Jostle or Moxtra or Azendoo and others

https://www.fluidui.com/editor/live/preview/cF82N211bDdjMER4Y0F3UERBWFdsT1RMOWxxdVAwSFUzTQ==


Feature set
Channel management 
• Create new

• Delete exiting

• Change name

• Invite user(s)

• Ordering

Attachments / images
• Options:

• Inline in rich text

• Attach to message

• Attach to channel

• Images should have preview thumbnails

Messaging in channels
• Send message

• Delete message

• Profile picture next to message

• Message up/down voting

• Rich text editing experience

• Font size, font color, triple emphasis, links, …

• Annotate existing user

Profile management
• Upload avatar

• Change displayed name

• Use email strictly for sign in and invitations



Other requirement
• Keep your project‘s structure similar to the reference implementation

• Write tests for
• Reducers

• Thunk actions

• Utility functions

• Write code based on SOLID, YAGNI, DRY, KISS principles

• Follow best practices (these can usually be found in the documentation of respective packages)

• Provide your users with indication on asynchronous operation progress
• a loading spinner of some sort, …

• Try to find a way to deliver new messages to your users even when they do not interact with your 

application
• You are provided with REST API, so new messages are delivered from the server only on your 

application‘s explicit request (→ no WebSocket involved) → messaging is not expected to be instant



Where to start
• Create UI using react & redux

• Use whatever IDE you want, but we recommend WebStorm (free for students)

• Connect your UI to the server
• See https://pv247messaging.azurewebsites.net/help/

• Create an appId using POST on /api/app

• To create a login/register login:
• PUT request on /api/{appId}/{new-email}

• Add Authentization attribute to the request header (use bearer authentication: { ‘authentication‘: ‘{bearer} {token}‘ })

• place any data your application needs to store into customData field

• Feel free to browse REST API source code as well: https://github.com/KenticoAcademy/PV247-
API

• Do not store/use/send any personal or sensitive information over the API

https://www.jetbrains.com/student/
https://pv247messaging.azurewebsites.net/help/
https://github.com/KenticoAcademy/PV247-API


Problems or Questions or API bugs
• Browse through reference code or API source code

• https://github.com/KenticoAcademy/PV247-API

• Use Discussion groups – courses application in IS

• Read through the existing threads first, please

• Attach a link to the problematic code in your repository (if applicable)

https://github.com/KenticoAcademy/PV247-API


Submissions

Milestones
• 21. 10. 2018 Interactive wire-frame 

• 11. 11. 2018 Implemented features to work locally with redux store

• 2. 12. 2018 Client integrates with backend, async actions are implemented

• 16. 12. 2018 Tests, implemented Rich text capabilities

Deadline

16. 12. 2018 23:59

• Insert a link to your public GitHub repository into Project homework vault (“odevzdávárna”)
• Link your UČO/names with used GitHub accounts. Only two GitHub accounts are supposed to commit to the 

repository.


