
PV247

Martin Knapik



Content of Lecture
• React component types

• What are different ways how to declare components and when to use which?

• React Lifecycle
• What does life of React component look like, and how can we use it in our projects?

• Ref
• How to integrate React with 3rd party libraries or invoke imperative calls on DOM elements?

• Immutability
• Why is immutability important in React and how to include it seamlessly in our projects?

• Higher Order Components
• How to reuse existing logic in project?

• Demo
• Todo List



Functional Component - example

React Component types



Functional Component
• Also called Stateless

• Function getting props on input and returning React element

• Pros:

• Short declaration

• Pure (no side effects) by design

• Cons:

• Doesn’t have state

• Performance
• Always rerenders even if props didn’t change

• Doesn’t have access to lifecycle methods

React Component types



Functional Component – arrow function



Component Class - example

React Component types



Component Class
• Component is declared as Class extending React.Component

• React element is returned from render() method

• Methods need to be bound to context of class

• Pros:

• Does have state

• Has access to lifecycle methods

• Cons:

• Performance
• Always rerenders even if props didn’t change

• Declaration is longer than functional components

React Component types



Pure Component Class - example

React Component types



Pure Component Class
• Component is declared as Class extending React.PureComponent

• Same as Component Class

• Does shallow comparison on props/state change to evaluate whether to rerender

• Pros:

• All the pros of Component Class

• Performance

• Rerenders only if props/state changes

• Components have to be pure (no side effects)

• Use whenever possible

React Component types



Ref
• Ref is reference to the DOM element / React component

• Created using method createRef and then assigning return value to element

• Escape hatch when we need imperative calls on Components and DOM Elements

• Calls to Component methods
• Usually can be rewritten declaratively

• Integration with 3rd party libraries not written in React

• Invoking calls on DOM elements (input.focus(), audio.play(), etc.)

Ref



Ref

Ref



React Component Lifecycle
• React Component has Lifecycle

• It is created, and then inserted into DOM

• Its props or state is changed and it is reevaluated and rerendered

• It is removed from DOM

React Component Lifecycle



Lifecycle Methods
• React Components expose Lifecycle Methods

• Each is called at certain specific phase of Components life

• We can override these methods and inject our code into them to be executed at specified 
moment in life of method

• We can do something that shouldn’t be possible in declarative programming

React Component Lifecycle



Lifecycle Methods
• 10 total

• Most commonly used

• render

• constructor

• componentDidMount

• componentWillUnmount

• shouldComponentUpdate

React Component Lifecycle



render
• Only required lifecycle method in Component Class

• Props + State => React Element

React Component Lifecycle



constructor
• Used for initializing state and binding methods – otherwise not needed

• Used to create refs 

• It needs to call super(props)

React Component Lifecycle



componentDidMount
• Called immediately when React Element is mounted into DOM

• Used for initialization

• Initialization that requires DOM (e.g. focus() for inputs)

• Data request (e.g. API call)

• Subscriptions

React Component Lifecycle



componentWillUnmount
• Called before React element is removed from DOM

• Used for cleanup

• Invalidating timers

• Cancelling requests

• Unsubscribing

React Component Lifecycle



shouldComponentUpdate
• Called before every but first render

• Used for performance optimalization

• PureComponent is overriding it automatically for shallow comparison

• We can give custom logic here for better optimalization

• Returns Boolean

• If false then render is not called

React Component Lifecycle



Lifecycle Methods
• Overview + use cases 

• https://reactjs.org/docs/react-component.html

• As of React 16 some of lifecycle methods were made unsafe and replaced by alternative

• In React 17 they will be removed

React Component Lifecycle

https://reactjs.org/docs/react-component.html


Immutability
• Every change to object has to return new object

• Mutability

• Allows to change objects properties without changing its reference

• Possible issues related to React

• We can change object without changing reference to it 

• Might cause issue when detecting props/state change

• Props can be changed by child components

• Breaks 1-way data binding – component receives props, invokes callbacks

Immutability



Immutability
• Spread operator/Object cloning

• Performance issues with large structures

Immutability



Immutability
• Immutable.js

• Facebook library

• Implements basic structure types

• Array -> List

• Object -> Map

• Provides additional structures

• Set

• Record

• Provides more methods to work with structure

• (Almost) Every operation returns new object
• Has mutable mode, shouldn’t be used

• Documentation + API reference 

• http://facebook.github.io/immutable-js/docs/#/

Immutability

http://facebook.github.io/immutable-js/docs/#/


Higher Order Components
• Analogy to Higher Order Functions

• Higher Order Function

• Function which takes function as argument or returns function

• Higher Order Component

• Function which takes component as argument and returns component

Higher Order Components



Higher Order Components

Higher Order Components



Higher Order Components
• Useful for reusing component logic

• Regular Components are reusing “markup”

• Wrap existing component for additional funcionality

• Drag and drop

• Access to local storage

• Autosave

• Many existing 3rd party community libraries are written as HoC

• react-redux

• react-dnd

Higher Order Components



Q&A


