
PV247

Vilém Jeniš



Asynchronous 
operations

Vilém Jeniš



JAVASCRIPT:
I'm a:

- single threaded 

- concurrent language 

I have

- a call stack

- an event loop

- a callback queue

- and some other APIs and stuff.



JAVASCRIPT:
I'm a:

- single threaded

- concurrent language 

I have

- a call stack

- an event loop

- a callback queue

- and some other APIs and stuff.



JAVASCRIPT:
I'm a:

- single threaded

- concurrent language 

I have

- a call stack

- an event loop

- a callback queue

- and some other APIs and stuff.



JAVASCRIPT:
I'm a:

- single threaded 

- concurrent language 

I have

- a call stack

- an event loop

- a callback queue

- and some other APIs and stuff.



























Here‘s another one…















JAVASCRIPT:
I'm a:

- single threaded 

- concurrent language 

I have

- a call stack

- an event loop

- a callback queue

- and some other APIs and stuff.



























Event loop
Previous slides borrowed from: https://www.youtube.com/watch?v=8aGhZQkoFbQ

More here: http://latentflip.com/loupe/

Question time! (Remind me if I forget…)

https://www.youtube.com/watch?v=8aGhZQkoFbQ
http://latentflip.com/loupe/


Callback hell





What is a Promise?
A promise is an object that may produce a single value 

some time in the future: either a resolved value, or a reason 

that it’s not resolved (e.g., a network error occurred). A 

promise may be in one of 3 possible states: fulfilled, 

rejected, or pending. Promise users can attach callbacks to 

handle the fulfilled value or the reason for rejection.

Promises are eager, meaning that a promise will start doing 

whatever task you give it as soon as the promise 

constructor is invoked.









Promises as a Railway



What if nothing can go wrong?



How to stop an error I‘ve dealt with?

Source: https://fsharpforfunandprofit.com/rop/ <- Seriously… Look at the presentation at least once!

https://fsharpforfunandprofit.com/rop/


It‘s all the same.


