&

Redux vol. 2

Zuzana Dankovcikova

https://redux.js.org/

WITHOUT REDUX WITH REDUX

f" \
't STORE !
'_____-ﬂ‘,

\

_) COMPONENT INITIATING CHANGE

Building blocks i

Action
+ describes Ul changes

Store Act
* receives action via dispatcher ctions
« calls root reducer

N

Reducer
 (prevState, action) => newState

View
 gets notified about state change
* re-renders with new data

m redux-02-reducers

Reducer composition

STATE #1 ———=> STATE #1 == STATE #3
CTION ACTION

:
/\

/ \

Today

* Middleware & devtools

* Normalization, memoization, selectors...
* Async action, communicating with API

* Exercises

Middleware

One of the greatest things about Redux is its modularity

createStore (rootReducer, initialState, applyMiddleware(...middleware))

+ Logging
« Complex actions (Thunk, promise) e
reducer
+ devTools 4 o
. reducer
o
reducer ~ Areducer

https://redux.js.org/advanced/middleware#seven-examples reducer

I \reducer

Og_- —_— o N

(dispatch)

— — — — —

Redux-devtools

« All your actions and state visualized

* You can replay history, export & inject state
 Install chrome extension

» See kentico cloud or kiwi.com

"id": "@209cd8b-d72a-48f9-b76f-c8416807773e",
"value”: "Repeat"”

Data normalization

Immutable.List<Item>

VS.

Immutable.Map<id, Item> & Immutable.List<idJ

Data should be stored in a normalized form (same as in relation DB)
v" Easier manipulation - reducers (entity vs collection)
v" No duplication (for complex nested objects)

Normalizing todo list

We replace the itemsList with data structure:

And refactor containers structure:
* TodolList

* Todoltem

* NewTodo

React ‘key’

Use unique identifier for
each item rendered in list

https://reactjs.org/docs/li
sts-and-keys.html

The identifier for one
specific item should not
change.

Delete action:
Index vs |d matters.

. . .map ((1tem

<TodoItemContainer
key={Math.random() }
item={item}

. . .map ((1tem
<TodoItemContainer
key={1index}
item={item}
/>
) }

{ .) .map ((item
<TodoItemContainer
key={item.1id}
item={item}

/>
) }

Selectors

New functionality:
« Toggling todos (isComplete flag)
* VisibilityFilter component (state stored in redux)

Motivation:

* We never want to store duplicate or derived data in redux store
* How do we display only items that match the Visibility filter?

* We calculate the data for render on demand

—> Selectors

getVisibleTodoIds = (state: IState): Immutable.List<Uuid> => {..}

Generally, should be placed next to reducers.

Memoization

Selecting list of visible todos TodoList component on each state change.

getVisibleTodoIds = (state) => state.todoApp. .filter(..) .toList ()

But we are creating new instance of list every time mapStateToProps is called
- ANY change in state,

—> The component is ALWAYS rerendered

- MEMOIZE

getVisibleTodoIdsMomoized = memoizee ((state) => {..})

Why isn’t it working?
- We state changes all the time, we memorize on a wrong argument.

getVisibleTodoIdsMomoized = memoizee ((visibilityFilter, alllds, byId) => {..})

Memoization (generally)

Computation-heavy tasks, dynamic programming...
React? -> preventing unnecessary re-renders of PureComponents when props are computed

- Necessary

. Already Calculated

Fig: Fibonacci Number Recursive Implemention

Reselect

getVisibleTodoIds = createSelector (

state => state.
state => state.
state => state.

]

(visibilityFilter, alllIds, byId) => {
(visibilityFilter) {
TodoFilter. :

allIds

TodoFilter. :
allIds.filter ((id: Uuid) => byId.get (id) .) .toList ()

TodoFilter. :
allIds.filter ((id: Uuid) => !byId.get (id) .) .toList ()

Error (S{visibilityFilter}

m redux-13-fake-repo

Communicating with API

Where to handle side-effects in Redux app?
(async code (APl communication), data generation like new Date() or Math.random())

- Components?

- Reducers?

- Action creators?

- "thunk” action creators

Thunk actions (redux-thunk)

“In computer programming, a thunk is a subroutine used to inject an additional calculation
into another subroutine. Thunks are primarily used to delay a calculation until it is needed, or
to insert operations at the beginning or end of the other subroutine.”

-- Wikipedia

https://redux.js.org/advanced/middleware#seven-examples

Function that can dispatch other actions: For async actions generally 3 separate actions
loadTodos =
(dispatch) => {
dispatch (loadingStarted())

todos = getTodos ()
dispatch (loadingSuccess (todos))

m redux-16-loader

Showing loader

We want to display loading while items are being fetched via API:
1. isLoading reducer
2. Pass isLoading flag to TodoApp.tsx component
3. In TodoApp.tsx
= if isLoading then displayLoader

Updating Todo via API

+ Action types
« Thunk action + simple actions for start/success/fail

updateltem = (id: Uuid, text:
(dispatch, getState) => {
dispatch (updateTodoStarted())

0ldTodo = getState () .todoApp. .byId.get (id)
todo = updateTodoApi ({ ...o0ldTodo, text })

dispatch (updateTodoSuccess (todo))
}

» Update reducers to react to new actions
 Give container new action to be dispatched

Unit testing

Action creators:
* Very easy to test, however, most of the times unnecessary

Thunk action creators:
* If you inject your dependencies - easy to test

Reducers:
* Pure functions = super-easy to test

MapStateToProps/Selectors (reselect library)
« Should be a pure function mapping data from store to another data structure - easy to test

Interesting libraries, concepts

Redux is widely used in the community and there are tons of other packages that work with it.

Integration with React: react-redux
React router: react-router-redux

Forms: redux-form

Computing derived data: reselect
Memoizing: memoizee

Normalizing data from server: normalizr
Middleware: redux-logger, redux-thunk

And lots more...

Alternatives

Flux

* "It is cool that you are inventing better Flux by not doing Flux at all." — reduxjs.org
* More stores, dispatcher entity, action handlers

RePatch
* Redux with less boilerplate

MobX
» Functional reactive programming

Others
* There are new libraries every day

React ContextAPI
* https://daveceddia.com/context-api-vs-redux/

Sources

http://redux.js.org

https://css-tricks.com/learning-react-redux/
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://medium.com/@ohansemmanuel/how-to-eliminate-react-performance-issues-
a16a250c0f27

Questions?

zuzanad@kentico.com
410237 @mail.muni.cz

Project-related
questions?

Task

git clone https://github.com/KenticoAcademy/PV247-2018.git
cd PV247-2018

git checkout -b solution-2 redux-task-2
cd 05-redux

npm install

npm start

Task

1.

o

Implement createltem() via API (similar to updateltem)
a) Action types
b) Thunk action creator
¢) Handling in reducer
d) Connecting NewTodo
Implement toggleltem() via API (reuse basic actions from updateTodo)
a) Implement new thunk actions dispatching same stuff as updateltem does
b) Remove old action type
c) Connect Todoltem correctly
[Bonus] Show loader while performing async action

a) Reacting to all *_START and *_SUCCESS actions with some reducer
b) Simple solution can reuse isLoading reducer
[Bonus] Implement deleteCompleteditems() via API

[Bonus] Make TodosCountBadge display count of not completed items

