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Programming vs Languages

• Python is unobtrusive (by design)

• if you can program, you can program in Python

• there are idiosyncracies (of course)

• but you will mostly get by
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Programming vs Jobs

• we all want to write beautiful programs

− but you didn’t sleep for 2 nights

− and this thing is going into production tomorrow

• sometimes you get a chance to clean up later

− and sometimes you don’t
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Engineering Flowchart

should it?

should it?

does it move?

no problem
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no

Python makes for decent duct tape and WD40.
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In This Course

• you will not learn to write beautiful programs

• we will try to do things with minimum effort

− perfect is the enemy of good

• ugly comes in shades

− you should always write passable code

− there is a balance to strike
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… ugly, cont’d

• there are two main schools of writing software

− do the right thing

− worse is better

• https://www.jwz.org/doc/worse-is-better.html
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The Right Thing

• simplicity: interface ϐirst, implementation second

• correctness: required

• consistency: required

• completeness: more important than simplicity
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Worse is Better

• simplicity: implementation ϐirst

• correctness: simplicity goes ϐirst

• consistency: less important than both

• completeness: least important
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Design Schools

• there are pros and cons to both

• right thing is often expensive

• worse is better often wins

• which one do you think Python belongs to?
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Disclaimer

• I am not a Python programmer

• please don’t ask sneaky language-lawyer questions

Goals

• learn to use Python in practical situations

• have a look at existing packages and what they can do

• code up some cool stuff, have fun
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Organisation

• there are 2 standard seminar groups

− attendance is compulsory (minus 2 absences)

− one virtual work-at-home group

• the lecture and seminars on 2.10. are cancelled
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Coursework

• there will be a set of exercises each week

• you should mostly do these within the seminar

• please make a public git (or hg) repository

− we are all adults here – do not copy

− i will collect the repository addresses
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Exercise Grading

• exercises are binary: pass or fail

• you will get 4 chances on each to get right

• failing is the same as missing the deadline
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Exercise Deadlines

• 7 days, worth 2 points

• 14 days, worth 1.5 point

• Monday 17.12., worth 1.25 points

• Tuesday 12.2., worth 1 point
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Passing the Course

• you can get

− 24 points for exercises

− 4 points for seminar attendance

− 4 points for a small project

• you need 20 points to pass
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Stuff We Could Try

• working with text, regular expressions

• plotting stuff with bokeh or matplotlib

• talking to SQL databases

• talking to HTTP servers

• being an HTTP server

• implementing a JSON-based REST API

• parsing YAML and/or JSON data

• … (suggestions welcome)
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Some Resources

• https://docs.python.org/3/ (obviously)

• https://msivak.fedorapeople.org/python/

• study materials in IS

• help()

• google, stack overϐlow,…
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Part 1: Text & Regular Expressions
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Repository Structure

• create a directory for each week

• name them 01-text and so on

− the -text doesn’t really matter

− scripts will be looking for 01*

• program names must be exactly as speciϐied
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Reading Input

• opening ϐiles: open('scorelib.txt', 'r')

• ϐiles can be iterated

f = open( 'scorelib.txt', 'r' )

for line in f:

print(line)
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Regular Expressions

• compiling: r = re.compile( r"Composer: (.*)" )

• matching: m = r.match( "Composer: Bach, J. S." )

• extracting captures: print(m.group(1))

− prints Bach, J. S.

• substitutions: s2 = re.sub( r"\s*$", '', s1 )

− strips all trailing whitespace in s1

Other String Operations

• better whitespace stripping: s2 = s1.strip()

• splitting: str.split(';')
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Dictionaries

• associative arrays: map (e.g.) strings to numbers

• nice syntax: dict = { 'foo': 1, 'bar': 3 }

• nice & easy to work with

• can be iterated: for k, v in dict.items()

Counters

• from collections import Counter

• like a dictionary, but the default value is 0

• ctr = Counter()

• compare ctr['baz'] += 1with dict
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Command Line

• we will often need to process command arguments

• in Python, those are available in the sysmodule

• import sys

• arguments are in sys.argv (a list)
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Exercise 1: Input

• get yourself a git/mercurial/darcs repository

• grab input data (scorelib.txt) from study materials

• read and process the text ϐile

• use regular expressions to extract data

• use dictionaries to collect stats

• beware! hand-written, somewhat irregular data
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Exercise 1: Output

• print some interesting statistics

− howmany pieces by each composer?

− howmany pieces composed in a given century?

− howmany in the key of c minor?

• bonus if you are bored: searching

− list all pieces in a given key

− list pieces featuring a given instrument (say, bassoon)
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Exercise 1: Invocation

• ./stat.py ./scorelib.txt composer

• ./stat.py ./scorelib.txt century
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Exercise 1: Example Output

• Telemann, G. P.: 68

• Bach, J. S.: 79

• Bach, J. C.: 6

• …

For centuries:

• 16th century: 3

• 17th century: 11

• 18th century: 32
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Cheat Sheet
for line in open('file', 'r') read lines

dict = {} an empty dictionary

dict[key] = value set a value in a dictionary

r = re.compile(r"(.*):") compile a regexp

m = r.match("foo: bar") match a string

if m is None: continue match failed, loop again

print(m.group(1)) extract a capture

for k, v in dict.items() iterate a dictionary

print("%d, %d" % (12, 1337)) print some numbers
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Part 2: Objects and Classes
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Objects

• the basic “unit” of OOP

• they bundle data and behaviour

• provide encapsulation

• make code re-use easier

• also known as “instances”
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Classes

• templates for objects (class Foo: pass)

• each (python) object belongs to a class

• classes themselves are also objects

• calling a class creates an instance

− my_foo = Foo()
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Poking at Classes

• {}.__class__

• {}.__class__.__class__

• (0).__class__

• [].__class__

• compare type(0), etc.

• n = numbers.Number(); n.__class__
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Types vs Objects

• class system is a type system

• “duck typing”: quacks, walks like a duck

• since python 3, types are classes

• everything is dynamic in python

− you can create new classes at runtime

− you can pass classes as function parameters



PV248 Python 34/354 Objects and Classes

Encapsulation

• objects hide implementation details

• classic types structure data

− objects also structure behaviour

• facilitates weak coupling
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Weak Coupling

• coupling is a degree of interdependence

• more coupling makes hard to change things

− it also makes reasoning harder

• good programs are weakly coupled

• cf. modularity, composability
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Polymorphism

• objects are (at least in Python) polymorphic

• different implementation, same interface

• only the interface matters for composition

• facilitates genericity and code re-use

• cf. “duck typing”
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Generic Programming

• code re-use often saves time

− not just coding but also debugging

− re-usable code often couples weakly

• but not everything that can be re-used should be

− code can be too generic

− and too hard to read
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Attributes

• data members of objects

• each instance gets its own copy

• like variables scoped to object lifetime

• they get names and values
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Methods

• functions (procedures) tied to objects

• they can access the object (self)

• implement the behaviour of the object

• their signatures (usually) provide the interface

• methods are also objects
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Class and Instance Methods

• methods are usually tied to instances

• recall that classes are also objects

• class methods work on the class (cls)

• static methods are just namespaced functions

• decorators @classmethod, @staticmethod
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Inheritance

shape

ellipse rectangle

squarecircle

• class Ellipse( Shape ): ...

• usually encodes an is-a relationship
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Multiple Inheritance

• more than one base class is possible

• many languages restrict this

• python allows general M-I

− class Bat( Mammal, Winged ): pass

• ‘true’ M-I is somewhat rare

− typical use cases: mixins and interfaces



PV248 Python 43/354 Objects and Classes

Mixins

• used to pull in implementation

− not part of the is-a relationship

− by convention, not enforced by the language

• common bits of functionality

− e.g. implement __gt__, __eq__ &c. using __lt__

− you only need to implement __lt__ in your class
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Interfaces

• realized as “abstract” classes in python

− just throw a NotImplemented exception

− document the intent in a docstring

• participates in is-a relationships

• partially displaced by duck typing

− more important in other languages (think Java)
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Composition

• attributes of objects can be other objects

− (also, everything is an object in python)

• encodes a has-a relationship

− a circle has a center and a radius

− a circle is a shape
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Constructors

• this is the __init__method

• initializes the attributes of the instance

• can call superclass constructors explicitly

− not called automatically (unlike C++, Java)

− MySuperClass.__init__( self )

− super().__init__ (if unambiguous)
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Class and Object Dictionaries

• most objects are basically dictionaries

• try e.g. foo.__dict__ (for a suitable foo)

• saying foo.xmeans foo.__dict__["x"]

− if that fails, type(foo).__dict__["x"] follows

− then superclasses of type(foo), according to MRO
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Writing Classes

class Person:

def __init__( self, name ):

self.name = name

def greet( self ):

print( "hello " + self.name )

p = Person( "you" )

p.greet()
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Modules in Python

• modules are just normal .py ϐiles

• import executes a ϐile by name

− it will look into system-deϐined locations

− the search path includes the current directory

− they typically only deϐine classes & functions

• import sys lets you use sys.argv

• from sys import argv you can write just argv
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Functions

• top-level functions/procedures are possible

• they are usually ‘scoped’ via the module system

• functions are also objects

− try print.__class__ (or type(print))

• some functions are built in (print, len,…)
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Exercise 2: Objects

• create a class hierarchy for printed scores

• deϐine (at least) the folowing classes

− Print, Edition, Composition, Voice, Person

• deϐine suitable constructors (__init__)

• you can use additional helper classes
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Prints, Editions & Compositions

• printed score belongs to an edition

• an edition has an author (an editor)

• edition of is a particular composition

• the composition has an author (composer)

• both editors and composers are people
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Voices

• compositions can have multiple voices

• each voice has a range and a name (instrument)

• one or both may be unknown

• ranges are written using a double dash (--)
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The Print class

• attributes

− edition (instance of Edition)

− print_id (integer, from Print Number:)

− partiture (boolean)

• method format()

− reconstructs and prints the original stanza

• method composition() (= edition.composition)
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The Edition class

• attributes

− composition (instance of Composition)

− authors (a list of Person instances)

− name (a string, from the Edition: ϐield, or None)
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The Composition class

• attributes

− name, incipit, key and genre (strings or None)

− year (integer if an integral year is given or None)

− voices (a list of Voice instances)

− authors (a list of Person instances)
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Voice and Person

• Voice attributes

− name, range (strings or None)

• Person attributes

− name (string)

− born, died (integers or None)
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Exercise 2: Parsing

• write a load(filename) function that reads the text

− this will be the same scorelib.txt as before

• the function returns a list of Print instances

• the list should be sorted by the print number (print_id)
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Exercise 2: Module

• the classes should live in scorelib.py

• add a simple test script, test.py

− this will take a single ϐilename

− invocation: ./test.py scorelib.txt

− run load() on that ϐilename

− call format() on each Print, add empty lines



PV248 Python 60/354 Persistent Data

Part 3: Persistent Data
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Transient Data

• lives in programmemory

• data structures, objects

• interpreter state

• often implicit manipulation

• more on this next week
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Persistent Data

• (structured) text or binary ϐiles

• relational (SQL) databases

• object and ‘ϐlat’ databases (NoSQL)

• manipulated explicitly
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Persistent Storage

• ‘local’ ϐile system

− stored on HDD, SSD,…

− stored somwhere in a local network

• ‘remote’, using an application-level protocol

− local or remote databases

− cloud storage &c.
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JSON

• structured, text-based data format

• atoms: integers, strings, booleans

• objects (dictionaries), arrays (lists)

• widely used around the web &c.

• simple (compared to XML or YAML)
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JSON: Example
{

"composer": [ "Bach, Johann Sebastian" ],

"key": "g",

"voices": {

"1": "oboe",

"2": "bassoon"

}

}
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JSON: Writing

• printing JSON seems straightforward enough

• but: double quotes in strings

• strings must be properly \-escaped during output

• also pesky commas

• keeping track of indentation for human readability

• better use an existing library: import json



PV248 Python 67/354 Persistent Data

JSON in Python

• json.dumps = short for dump to string

• python dict/list/str/… data comes in

• a string with valid JSON comes out

Workϐlow

• just convert everything to dict’s and lists

• run json.dumps or json.dump( data, file )
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Python Example

d = {}

d["composer"] = ["Bach, Johann Sebastian"]

d["key"] = "g"

d["voices"] = { 1: "oboe", 2: "bassoon" }

json.dump( d, sys.stdout, indent=4 )

Beware: keys are always strings in JSON
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Parsing JSON

• import json

• json.load is the counterpart to json.dump from above

− de-serialise data from an open ϐile

− builds lists, dictionaries, etc.

• json.loads corresponds to json.dumps
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XML

• meant as a lightweight and consistent redesign of SGML

− turned into a very complex format

• heaps of invalid XML ϐloating around

− parsing real-world XML is a nightmare

− even valid XML is pretty challenging
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XML Features

• offers extensible, rich structure

− tags, attributes, entities

− suited for structured hierarchical data

• schemas: use XML to describe XML

− allows general-purpose validators

− self-documenting to a degree
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XML vs JSON

• both work best with trees

• JSON has basically no features

− basic data structures and that’s it

• JSON data is ad-hoc and usually undocumented

− but: this often happens with XML anyway
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NoSQL / Non-relational Databases

• umbrella term for a number of approaches

− ϐlat key/value and column stores

− document and graph stores

• no or minimal schemas

• non-standard query languages
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Key-Value Stores

• usually very fast and very simple

• completely unstructured values

• keys are often database-global

− workaround: preϐixes for namespacing

− or: multiple databases
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NoSQL & Python

• redis (redis-py) module (Redis is Key-Value)

• memcached (another Key-Value store)

• PyMongo for talking to MongoDB (document-oriented)

• CouchDB (another document-oriented store)

• neo4j or cayley (module pyley) for graph structures
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SQL and RDBMS

• SQL = Structured Query Language

• RDBMS = Relational DataBase Management System

• SQL is to NoSQL what XML is to JSON

• heavily used and extremely reliable
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SQLite

• lightweight in-process SQL engine

• the entire database is in a single ϐile

• convenient python module, sqlite3

• stepping stone for a “real” database
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Other Databases

• you can talk to most SQL DBs using python

• postgresql (psycopg2,…)

• mysql / mariadb (mysql-python, mysql-connector,…)

• big & expensive: Oracle (cx_oracle), DB2 (pyDB2)

• most of those are much more reliable than SQLite
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SQL Injection

sql = "SELECT * FROM t WHERE name = '" + n + '"'

• the above code is bad, never do it

• consider the following

n = "x'; drop table students --"

n = "x'; insert into passwd (user, pass) ..."
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Avoiding SQL Injection

• use proper SQL-building APIs

− this takes care of escaping internally

• templates like insert ... values (?, ?)

− the ? get safely substituted by the module

− e.g. the executemethod of a cursor
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Aside: PEP

• PEP stands for Python Enhancement Proposal

• akin to RFC documents managed by IETF

• initially formalise future changes to Python

− later serve as documentation for the same

• https://www.python.org/dev/peps/
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PEP 249

• informational PEP, for library writers

• describes how database modules should behave

− ideally, all SQL modules have the same interface

− makes it easy to swap a database backend

• but: SQL itself is not 100% portable
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SQL Pitfalls

• sqlite does not enforce all constraints

• no portable syntax for autoincrement keys

• not all (column) types are supported everywhere

• no portable way to get the key of last insert
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More Resources & Stuff to Look Up

• SQL: https://www.w3schools.com/sql/

• https://docs.python.org/3/library/sqlite3.html

• Object-Relational Mapping

• SQLAlchemy: constructing portable SQL
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Exercise 3: Importing Data

• create an empty scorelib.dat from scorelib.sql

• start by importing composers & editors into the database

− then continue with scores &c.

• use the classes from previous exercise

− you can copy & extend them

− you can also use inheritance or composition
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Exercise 3: Database Structure

• deϐined in scorelib.sql (see study materials)

• test with: sqlite3 scorelib.dat < scorelib.sql

• you can rm scorelib.dat any time to start over

• consult comments in scorelib.sql

• do not store duplicate rows
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Exercise 3: Requirements

• the structure in scorelib.sql is compulsory

• you must use SQLite 3

• parsing proceeds using rules from exercise 2

• each row in each table must be unique

− special rules for people, see next slide
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Exercise 3: Storing People

• the name alone must be unique

• merge born and died ϐields

− NULL iff it is None in all instances

− resolve conϐlicts arbitrarily
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Exercise 3: Invocation

• the script should be called import.py

• ./import.py scorelib.txt scorelib.dat

• ϐirst argument is the input text ϐile

• second argument is the output SQLite ϐile

− assume that this ϐile does not exist

− the script must also set up the schema
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SQL Cheat Sheet

• INSERT INTO table (c1, c2) VALUES (v1, v2)

• SELECT (c1, c2) FROM table WHERE c1 = "foo"

sqlite3 Cheats

• conn = sqlite3.connect( "scorelib.dat" )

• cur = conn.cursor()

• cur.execute( "... values (?, ?)", (foo, bar) )

• conn.commit() (don’t forget to do this)
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Part 4: Memory (Data) Model
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Memory

• most program data is stored in ‘memory’

− an array of byte-addressable data storage

− address space managed by the OS

− 32 or 64 bit numbers as addresses

• typically backed by RAM
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Language vs Computer

• programs use high-level concepts

− objects, procedures, closures

− values can be passed around

• the computer has a single array of bytes

− and, well, a bunch of registers
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Memory Management

• deciding where to store data

• high-level objects are stored in ϐlat memory

− they have a given (usually ϐixed) size

− can contain references to other objects

− have limited lifespan
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Memory Management Terminology

• object: an entity with an address and size

− not the same as language-level object

• lifetime: when is the object valid

− live: references exist to the object

− dead: the object unreachable – garbage
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Memory Management by Type

• manual: malloc and free in C

• static automatic

− e.g. stack variables in C and C++

• dynamic automatic

− pioneered by LISP, widely used
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Automatic Memory Management

• static vs dynamic

− when do we make decisions about lifetime

− compile time vs run time

• safe vs unsafe

− can the program read unused memory?
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Object Lifetime

• the time between malloc and free

• another view: when is the object needed

− often impossible to tell

− can be safely over-approximated

− at the expense of memory leaks
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Static Automatic

• usually binds lifetime to lexical scope

• no passing references up the call stack

− may or may not be enforced

• no lexical closures
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Dynamic Automatic

• over-approximate lifetime dynamically

• usually easiest for the programmer

− until you need to debug a space leak

• reference counting, mark & sweep collectors
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Reference Counting

• attach a counter to each object

• whenever a reference is made, increase

• whenever a reference is lost, decrease

• the object is dead when the counter hits 0

• fails to reclaim reference cycles
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Mark and Sweep

• start from a root set (in-scope variables)

• follow references, mark every object encountered

• throw away all unmarked memory

• usually stops the program while running

• garbage is retained until the GC runs
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Memory Management in CPython

• primarily based on reference counting

• optional mark & sweep collector

− enabled by default

− conϐigure via import gc
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Refcounting Advantages

• simple to implement in a ‘managed’ language

• reclaims objects quickly

• no need to pause the program

• easily made concurrent
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Refcounting Problems

• signiϐicant memory overhead

• problems with cache locality

• bad performance for data shared between threads

• fails to reclaim cyclic structures
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Data Structures

• an abstract description of data

• leaves out low-level details

• makes writing programs easier

• makes reading programs easier, too
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Building Data Structures

• there are two types in Python

− built-in, implemented in C

− user-deϐined (includes libraries)

• both types are based on objects

− but built-ins only look that way
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Mutability

• some objects can be modiϐied

− we say they are mutable

− otherwise, they are immutable

• immutability is an abstraction

− physical memory is always mutable

• in Python, immutability is not ‘recursive’
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Built-in: int

• arbitrary precision integer

− no overϐlows and other nasty behaviour

• it is an object, i.e. held by reference

− uniform with any other kind of object

− immutable

• both of the above make it slow

− machine integers only in C-based modules
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Additional Numeric Objects

• bool: True or False

− howmuch is True + True?

− is 0 true? is empty string?

• numbers.Real: ϐloating point numbers

• numbers.Complex: a pair of above
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Built-in: bytes

• a sequence of bytes (raw data)

• exists for efϐiciency reasons

− in the abstract is just a tuple

• models data as stored in ϐiles

− or incoming through a socket

− or as stored in raw memory
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Properties of bytes

• can be indexed and iterated

− both create objects of type int

− try this sequence: id(x[1]), id(x[2])

• mutable version: bytearray

− the equivalent of C char arrays
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Built-in: str

• immutable unicode strings

− not the same as bytes

− bytes must be decoded to obtain str

− (and str encoded to obtain bytes)

• represented as utf-8 sequences in CPython

− implemented in PyCompactUnicodeObject
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Built-in: tuple

• an immutable sequence type

− the number of elements is ϐixed

− so is the type of each element

• but elements themselves may be mutable

− x = [] then y = (x, 0)

− x.append(1) y == ([1], 0)

• implemented as a C array of object references
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Built-in: list

• a mutable version of tuple

− items can be assigned x[3] = 5

− items can be append-ed

• implemented as a dynamic array

− many operations are amortised 𝑂(1)

− insert is 𝑂(𝑛)
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Built-in: dict

• implemented as a hash table

• some of the most performance-critical code

− dictionaries appear everywhere in Python

− heavily hand-tuned C code

• both keys and values are objects
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Hashes and Mutability

• dictionary keys must be hashable

− this implies recursive immutability

• what would happen if a key is mutated?

− most likely, the hash would change

− all hash tables with the key become invalid

− this would be very expensive to ϐix
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Built-in: set

• implements the math concept of a set

• also a hash table, but with keys only

− a separate C implementation

• mutable – items can be added

− but they must be hashable

− hence cannot be changed
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Built-in: frozenset

• an immutable version of set

• always hashable (since all items must be)

− can appear in set or another frozenset

− can be used as a key in dict

• the C implementation is shared with set
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Efϐicient Objects: __slots__

• ϐixes the attribute names allowed in an object

• saves memory: consider 1-attribute object

− with __dict__: 56 + 112 bytes

− with __slots__: 48 bytes

• makes code faster: no need to hash anything

− more compact in memory better cache efϐiciency
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Exercise 4: Preliminaries

• pull data from scorelib.dat using SQL

• print the results as (nicely formatted) JSON

• invocation: ./search.py Bach

− the scorelib.datwill not be your own

− you must not use the text data
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Exercise 4: Part 1

• write a script getprint.py

− the input is a print number (argument)

− the output is a list of composers (stdout)

• each composer is a dictionary

• name, born and died
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Exercise 4: Part 1 Output
$ ./getprint.py 645

[

{ "name": "Graupner, Christoph",

"born": 1683, "died": 1760 },

{ "name": "Grünewald, Gottfried" }

]
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Exercise 4: Part 1 Hints

• you will need to use SQL joins

• select ... from person join score_authors

on person.id = score_author.composer ...

where print.id = ?

• the result of cursor.execute is iterable
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Exercise 4: Part 2

• write a script search.py

• the input is a composer name substring

• the output is a list of all matching composer names

− along with all their prints in the database

• hint: ... where person.name like "%Bach%"
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Exercise 4: Part 2 Output
$ ./search.py Bach

{

"Bach, Johann Sebastian": [

{ "Print Number": 111,

"Title": "Konzert für ..." , ... },

{ "Print Number": 139, ... }, ...

],

"Bach, Johann Christian": ...,

...

}
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Part 5: Numeric Data
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Numbers in Python

• recall that numbers are objects

• a tuple of real numbers has 300% overhead

− compared to a C array of float values

− and 350% for integers

• this causes extremely poor cache use

• integers are arbitrary-precision
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Math in Python

• numeric data usually means arrays

− this is inefϐicient in python

• we need a module written in C

− but we don’t want to do that ourselves

• enter the SciPy project

− pre-made numeric and scientiϐic packages
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The SciPy Family

• numpy: data types, linear algebra

• scipy: more computational machinery

• pandas: data analysis and statistics

• matplotlib: plotting and graphing

• sympy: symbolic mathematics
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Aside: External Libraries

• until now, we only used bundled packages

• for math, we will need external libraries

• you can use pip to install those

− use pip install --user <package>
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Aside: The Python Package Index

• colloquially known as PyPI (or cheese shop)

− do not confuse with PyPy (Python in almost-Python)

• both source packages and binaries

− the latter known as wheels (PEP 427, 491)

− previously python eggs

• https://pypi.python.org
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Aside: Installing numpy

• the easiest way may be with pip

− this would be pip3 on aisa

• linux distributions usually also have packages

• another option is getting the Anaconda bundle

• detailed instructions on https://scipy.org



PV248 Python 134/354 Numeric Data

Arrays in numpy

• compact, C-implemented data types

• ϐlexible multi-dimensional arrays

• easy and efϐicient re-shaping

− typically without copying the data
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Entering Data

• most data is stored in numpy.array

• can be constructed from from a list

− a list of list for 2D arrays

• or directly loaded from / stored to a ϐile

− binary: numpy.load, numpy.save

− text: numpy.loadtxt, numpy.savetxt
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LAPACK and BLAS

• BLAS is a low-level vector/matrix package

• LAPACK is built on top of BLAS

− provides higher-level operations

− tuned for modern CPUs with multiple caches

• both are written in Fortran

− ATLAS and C-LAPACK are C implementations
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Element-wise Functions

• the basic math function arsenal

• powers, roots, exponentials, logarithms

• trigonometric (sin, cos, tan,…)

• hyperbolic (sinh, cosh, tanh,…)

• cyclometric (arcsin, arccos, arctan,…)
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Matrix Operations in numpy

• import numpy.linalg

• multiplication, inversion, rank

• eigenvalues and eigenvectors

• linear equation solver

• pseudo-inverses, linear least squares
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Additional Linear Algebra in scipy

• import scipy.linalg

• LU, QR, polar, etc. decomposition

• matrix exponentials and logarithms

• matrix equation solvers

• special operations for banded matrices
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Sparse Matrices

• sparse = most elements are 0

• available in scipy.sparse

• special data types (not numpy arrays)

− do not use numpy functions on those

• less general, but more compact and faster



PV248 Python 141/354 Numeric Data

Discrete Fourier Transform

• available in numpy.fft

• goes between time and frequency domains

• a few different variants are covered

− real-valued input (for signals, rfft)

− inverse transform (ifft, irfft)

− multiple dimensions (fft2, fftn)
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Polynomial Series

• useful in differential problems and functional analysis

• the numpy.polynomial package

• Chebyshev, Hermite, Laguerre and Legendre

• arithmetic, calculus and special-purpose operations
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Statistics in numpy

• a basic statistical toolkit

− averages, medians

− variance, standard deviation

− histograms

• random sampling and distributions
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Linear and Polynomial Regression, Interpolation

• regressions using the least squares method

− linear: numpy.linalg.lstsq

− polynomial: numpy.polyfit

• interpolation: scipy.interpolate

− e.g. piecewise cubic splines

− Lagrange interpolating polynomials
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Pandas: Data Analysis

• the Python equivalent of R

− works with tabular data (CSV, SQL, Excel)

− time series (also variable frequency)

− primarily works with ϐloating-point values

• partially implemented in C and Cython
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Pandas Series and DataFrame

• Series is a single sequence of numbers

• DataFrame represents tabular data

− powerful indexing operators

− index by column→ series

− index by condition→ ϐiltering
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Pandas Example
scores = [ ('Maxine', 12), ('John', 12),

('Sandra', 10) ]

cols = [ 'name', 'score' ]

df = pd.DataFrame( data=scores, columns=cols )

df['score'].max() # 12

df[ df['score'] >= 12 ] # Maxine and John
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Exercise 5: Warm-Up 1

• create a matrix from a list of lists

• compute and print (to stdout)

− rank and determinant

− inverse (if applicable)

• all operations are in numpy.linalg
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Exercise 5: Warm-Up 2

• a simple non-homogeneous linear equation solver

• put the coefϐicients in a list of lists

• put the constants in a list of numbers

• use linalg.solve from numpy

• make sure you understand what is going on
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Exercise 5: Intro

• ‘nice’ equations, invocation: ./eqn.py input.txt

• parse a human-readable system of equations

• variables→ single letters, coefϐicients→ integers

• only+ and− are allowed

• print the solution to stdout (using variable names)
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Exercise 5: Unique Solution

• decide a unique solution exists

• if so, print the solution

2x + 3y = 5

x - y = 0

solution: x = 1, y = 1
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Exercise 5: No Solution

• print no solution if the system is inconsistent

x + y = 4

x + y = 5

no solution
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Exercise 5: Multiple Solutions

• it may also be under-determined

• only print the dimension of the solution space

x + y - z = 0

x = 0

solution space dimension: 1
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Exercise 5: Details

• the right hand side is always a constant

− and is the only constant term

• print the solution/result to stdout

− solutions come in alphabetical order

• there are spaces around operators and =

− no space between a coefϐicient and a variable
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Exercise 5: Hints

• linalg.solve assumes unique solution

− you can use Rouché-Capelli to check

• you can obtain a rank with linalg.matrix_rank
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Part 6: Advanced Constructs
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Callable Objects

• user-deϐined functions (module-level def)

• user-deϐined methods (instance and class)

• built-in functions and methods

• class objects

• objects with a __call__method
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User-deϐined Functions

• come about from a module-level def

• metadata: __doc__, __name__, __module__

• scope: __globals__, __closure__

• arguments: __defaults__, __kwdefaults__

• type annotations: __annotations__

• the code itself: __code__
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Positional and Keyword Arguments

• user-deϐined functions have positional arguments

• and keyword arguments

− print("hello", file=sys.stderr)

− arguments are passed by name

− which style is used is up to the caller

• variadic functions: def foo(*args, **kwargs)

− args is a tuple of unmatched positional args

− kwargs is a dict of unmatched keyword args



PV248 Python 160/354 Advanced Constructs

Lambdas

• def functions must have a name

• lambdas provide anonymous functions

• the body must be an expression

• syntax: lambda x: print("hello", x)

• standard user-deϐined functions otherwise
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Instance Methods

• comes about as object.method

− print(x.foo)→<bound method Foo.foo of ...>

• combines the class, instance and function itself

• __func__ is a user-deϐined function object

• let bar = x.foo, then

− x.foo()→ bar.__func__(bar.__self__)
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Iterators

• objects with __next__ (since 3.x)

− iteration ends on raise StopIteration

• iterable objects provide __iter__

− sometimes, this is just return self

− any iterable can appear in for x in iterable
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class FooIter:

def __init__(self):

self.x = 10

def __iter__(self): return self

def __next__(self):

if self.x:

self.x -= 1

else:

raise StopIteration

return self.x



PV248 Python 164/354 Advanced Constructs

Generators (PEP 255)

• written as a normal function or method

• they use yield to generate a sequence

• represented as special callable objects

− exist at the C level in CPython

def foo(*lst):

for i in lst: yield i + 1

list(foo(1, 2)) # prints [2, 3]



PV248 Python 165/354 Advanced Constructs

yield from

• calling a generator produces a generator object

• how do we call one generator from another?

• same as for x in foo(): yield x

def bar(*lst):

yield from foo(*lst)

yield from foo(*lst)

list(bar(1, 2)) # prints [2, 3, 2, 3]
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Native Coroutines (PEP 492)

• created using async def (since Python 3.5)

• generalisation of generators

− yield from is replaced with await

− an __await__magic method is required

• a coroutine can be suspended and resumed
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Coroutine Scheduling

• coroutines need a scheduler

• one is available from asyncio.get_event_loop()

• along with many coroutine building blocks

• coroutines can actually run in parallel

− via asyncio.create_task (since 3.7)

− via asyncio.gather
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Async Generators (PEP 525)

• async def + yield

• semantics like simple generators

• but also allows await

• iterated with async for

− async for runs sequentially
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Decorators

• written as @decor before a function deϐinition

• decor is a regular function (def decor(f))

− f is bound to the decorated function

− the decorated function becomes the result of decor

• classes can be decorated too

• you can ‘create’ decorators at runtime

− @mkdecor("moo") (mkdecor returns the decorator)

− you can stack decorators
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def decor(f):

return lambda: print("bar")

def mkdecor(s):

return lambda g: lambda: print(s)

@decor

def foo(f): print("foo")

@mkdecor("moo")

def moo(f): print("foo")

# foo() prints "bar", moo() prints "moo"
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List Comprehension

• a concise way to build lists

• combines a filter and a map

[ 2 * x for x in range(10) ]

[ x for x in range(10) if x % 2 == 1 ]

[ 2 * x for x in range(10) if x % 2 == 1 ]

[ (x, y) for x in range(3) for y in range(2) ]
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Operators

• operators are (mostly) syntactic sugar

• x < y rewrites to x.__lt__(y)

• is and is not are special

− are the operands are the same object?

• also the ternary (conditional) operator
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Non-Operator Builtins

• len(x) x.__len__() (length)

• abs(x) x.__abs__() (magnitude)

• str(x) x.__str__() (printing)

• repr(x) x.__repr__() (printing for eval)

• bool(x) and if x: x.__bool__()
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Arithmetic

• a standard selection of operators

• / is ϐloating point, // is integral

• += and similar are somewhat magical

− x += y→ x = x.__iadd__(y) if deϐined

− otherwise x = x.__add__(y)
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x = 7 # an int is immutable

x += 3 # works, x = 10, id(x) changes

lst = [7, 3]

lst[0] += 3 # works too, id(lst) stays same

tup = (7, 3) # a tuple is immutable

tup += (1, 1) # still works (id changes)

tup[0] += 3 # fails
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Relational Operators

• operands can be of different types

• equality: !=, ==

− by default uses object identity

• ordering: <, <=, >, >= (TypeError by default)

• consistency is not enforced
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Relational Consistency

• __eq__must be an equivalence relation

• x.__ne_(y)must be the same as not x.__eq__(y)

• __lt__must be an ordering relation

− compatible with __eq__

− consistent with each other

• each operator is separate (mixins can help)

− or perhaps a class decorator
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Exercise 6: Fourier Transform

• continuous: 𝑓(𝜉) = ∫
ஶ

ିஶ
𝑓(𝑥) exp (−2𝜋𝑖𝑥𝜉) dx

• series:

− 𝑓(𝑥) = ∑
ஶ
ୀିஶ 𝑐 exp ቀ

ଶగ௫

 ቁ

• real series:

− 𝑓(𝑥) =
బ
ଶ + ∑

ஶ
ୀଵ ቀ𝑎 sin ቀ

ଶగ௫

 ቁ + 𝑏 cos ቀ
ଶగ௫

 ቁቁ

− 𝑐 =
ଵ

ଶ(𝑎 − 𝑖𝑏)



PV248 Python 179/354 Advanced Constructs

Exercise 6: Signal Basics

• sample rate: number of samples per second

• we process the signal in equal-sized chunks

− 𝑃 is the (time) length of the analysis window

− 𝑁 is the number of samples

• use non-overlapping analysis windows
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Exercise 6: FFT in numpy

• rfft gives you the 𝑐 of the real series

− 𝑓(𝑥) = ∑
ே/ଶ
ୀ 𝑐 exp(

ଶగ௫

 )

− 𝑁/2 because of the Nyquist frequency limit

• we are only interested in amplitudes: |𝑐|

− amplitude of a complex number: numpy.abs
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Exercise 6: Input

• a .wav ϐile, PCM, sample rate 8–48 kHz

− such that it will be accepted by wave.open

− may be stereo or mono, 16 bit samples

• average the channels for stereo input

• ignore the ϐinal (incomplete) analysis window

• you can use struct.unpack to decode the samples
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Exercise 6: Output

• a peak is a frequency component with amplitude≥ 20𝑎

− where 𝑎 is the average amplitude in the samewindow

• print thehighest- and lowest-frequencypeakencountered

− in the form low = 37, high = 18000

− print no peaks if there are no peaks

− the numbers are in Hz, precision = exactly 1Hz
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Exercise 6: Invocation & Hints

• invocation: ./peaks.py audio.wav

− the output goes to stdout

− only a single line for the entire ϐile

• think about how precision relates to 𝑁

• generate simple sine wave inputs for testing

− also a sum of sine waves at different frequencies
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Part 7: Advanced Constructs 2, Pitfalls
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Collection Operators

• in is also a membership operator (outside for)

− implemented as __contains__

• indexing and slicing operators

− del x[y]→ x.__delitem__(y)

− x[y]→ x.__getitem__(y)

− x[y] = z→ x.__setitem__(y, z)
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Conditional Operator

• also known as a ternary operator

• written x if cond else y

− in C: cond ? x : y

• forms an expression, unlike if

− can e.g. appear in a lambda

− or in function arguments, &c.
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Concurrency & Parallelism

• threading – thread-based parallelism

• multiprocessing

• concurrent – future-based programming

• subprocess

• sched, a general-purpose event scheduler

• queue, for sending objects between threads
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Threading

• low-level thread support, module threading

• Thread objects represent actual threads

− threads provide start() and join()

− the run()method executes in a new thread

• mutexes, semaphores &c.
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The Global Interpreter Lock

• memory management in CPython is not thread-safe

− Python code runs under a global lock

− pure Python code cannot use multiple cores

• C code usually runs without the lock

− this includes numpy crunching
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Multiprocessing

• like threading but uses processes

• works around the GIL

− each worker process has its own interpreter

• queued/sent objects must be pickled

− see also: the picklemodule

− this causes substantial overhead

− functions, classes &c. are pickled by name
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Futures

• like coroutine await but for subroutines

• a Future can be waited for using f.result()

• scheduled via concurrent.futures.Executor

− Executor.map is like asyncio.gather

− Executor.submit is like asyncio.create_task

• implemented using process or thread pools
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Exceptions

• an exception interrupts normal control ϐlow

• it’s called an exception because it is exceptional

− never mind StopIteration

• causes methods to be interrupted

− until a matching except block is found

− also known as stack unwinding
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Life Without Exceptions

int fd = socket( ... );

if ( fd < 0 )

... /* handle errors */

if ( bind( fd, ... ) < 0 )

... /* handle errors */

if ( listen( fd, 5 ) < 0 )

... /* handle errors */
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With Exceptions

try:

sock = socket.socket( ... )

sock.bind( ... )

sock.listen( ... )

except ...:

# handle errors
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Exceptions vs Resources

x = open( "file.txt" )

# stuff

raise SomeError

• who calls x.close()

• this would be a resource leak
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Using finally

try:

x = open( "file.txt" )

# stuff

finally:

x.close()

• works, but tedious and error-prone
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Using with

with open( "file.txt" ) as f:

# stuff

• with takes care of the finally and close

• with x as y sets y = x.__enter__()

− and calls x.__exit__(...) when leaving the block
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The @property decorator

• attribute syntax is the preferred one in Python

• writing useless setters and getters is boring

class Foo:

@property

def x(self): return 2 * self.a

@x.setter

def x(self, v): self.a = v // 2
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Mixing Languages

• for many people, Python is not a ϐirst language

• some things look similar in Python and Java (C++,…)

− sometimes they do the same thing

− sometimes they do something very different

− sometimes the difference is subtle
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Python vs Java: Decorators

• Java has a thing called annotations

• looks very much like a Python decorator

• in Python, decorators can drastically change meaning

• in Java, they are just passive metadata

− other code canuse them formeta-programming though
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Class Body Variables

class Foo:

some_attr = 42

• in Java/C++, this is how you create instance variables

• in Python, this creates class attributes

− i.e. what C++/Java would call static attributes
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Very Late Errors

if a == 2:

priiiint("a is not 2")

• no error when loading this into python

• it even works as long as a != 2

• most languages would tell you much earlier
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Very Late Errors (cont’d)

try:

foo()

except TyyyypeError:

print("my mistake")

• does not even complain when running the code

• you only notice when foo() raises an an exception
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Late Imports

if a == 2:

import foo

foo.say_hello()

• unless a == 2, mymod is not loaded

• any syntax errors don’t show up until a == 2

− it may even fail to exist
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Block Scope

for i in range(10): pass

print(i) # not a NameError

• in Python, local variables are function-scoped

• in other languages, i is conϐined to the loop



PV248 Python 206/354 Advanced Constructs 2, Piƞalls

Assignment Pitfalls

x = [ 1, 2 ]

y = x

x.append( 3 )

print(y) # prints [ 1, 2, 3 ]

• in Python, everything is a reference

• assignment does not make copies
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Python vs Java: Closures

• captured variables are final in Java

• but they are mutable in Python

− and of course captured by reference

• they are whatever you tell them to be in C++
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Explicit super()

• Java and C++ automatically call parent constructors

• Python does not

• you have to call them yourself
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Setters and Getters

obj.attr

obj.attr = 4

• in C++ or Java, this is an assignment

• in Python, it can run arbitrary code

− this often makes getters/setters redundant
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Exercise 7: Music Analysis

• invocation: ./music.py 440 audio.wav

− 440 is the frequency of the pitch a’

− audio.wav is the same as for exercise 6

• use a sliding window for .1 second precision

• print peak pitches instead of frequencies
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Exercise 7: Output

01.0-02.3 e+0 gis+0 b+0

10.0-12.0 b'+10

12.0-12.7 C+0 e-3

• consider only the 3 most prominent peaks

• print 1 line for each segment with the same peaks

− print nothing for segments with no peaks

− order the peaks by increasing frequency
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Exercise 7: Pitch Formatting

• pitch names: c, cis, d, es, e, f, ϐis, g, gis, a, bes, b

• octaves (Helmholtz): A,, / A, / A / a / a’ / a’’ and so on

• pitches use a logarithmic scale

− if a’ is 440 Hz, then a is 220 Hz and A is 110 Hz

• valid pitch examples: ϐis / Cis / bes’ / Es,
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Exercise 7: Pitch Deviation

• not all pitches are exactly ‘right’

− i.e. they won’t exactly match a named pitch

• cent is 1/100 the distance between semitones

− remember that this is a logarithmic scale

• print the closest named pitch and the deviation in cents

− if a’ = 440 Hz, then 448 Hz is a’ + 31 cents

− likewise, 115 Hz is Bes− 23 cents
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Exercise 7: Peak Clustering

• most instruments have complex spectra

− individual notes are not pure sine waves

• this can lead to peak clustering

− that is multiple peaks next to each other (1Hz apart)

− consider only the strongest peak in each cluster

− if equal, pick the one closer to the center of the cluster
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Part 8: Testing, Debugging & Proϐiling
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Why Testing

• reading programs is hard

• reasoning about programs is even harder

• testing is comparatively easy

• difference between an example and a proof
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What is Testing

• based on trial runs

• the program is executed with some inputs

• the outputs or outcomes are checked

• almost always incomplete
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Testing Levels

• unit testing

− individual classes

− individual functions

• functional

− system

− integration
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Testing Automation

• manual testing

− still widely used

− requires human

• semi-automated

− requires human assistance

• fully automated

− can run unattended
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Testing Insight

• what does the test or tester know?

• black box: nothing known about internals

• gray box: limited knowledge

• white box: ‘complete’ knowledge
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Why Unit Testing?

• allows testing small pieces of code

• the unit is likely to be used in other code

− make sure your code works before you use it

− the less code, the easier it is to debug

• especially easier to hit all the corner cases
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Unit Tests with unittest

• from unittest import TestCase

• derive your test class from TestCase

• put test code into methods named test_*

• run with python -m unittest program.py

− add -v for more verbose output
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from unittest import TestCase

class TestArith(TestCase):

def test_add(self):

self.assertEqual(1, 4 - 3)

def test_leq(self):

self.assertTrue(3 <= 2 * 3)
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Unit Tests with pytest

• a more pythonic alternative to unittest

− unittest is derived from JUnit

• easier to use and less boilerplate

• you can use native python assert

• easier to run, too

− just run pytest in your source repository
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Test Auto-Discovery in pytest

• pytest ϐinds your testcases for you

− no need to register anything

• put your tests in test_*.py or *_test.py

• name your testcases (functions) test_*
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Fixtures in pytest

• sometimes you need the same thing in many testcases

• in unittest, you have the test class

• pytest passes ϐixtures as parameters

− ϐixtures are created by a decorator

− they are matched based on their names
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import pytest

import smtplib

@pytest.fixture

def smtp_connection():

return smtplib.SMTP("smtp.gmail.com", 587)

def test_ehlo(smtp_connection):

response, msg = smtp_connection.ehlo()

assert response == 250
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Property Testing

• writing test inputs is tedious

• sometimes, we can generate them instead

• useful for general properties like

− idempotency (e.g. serialize + deserialize)

− invariants (output is sorted,…)

− code does not cause exceptions
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Using hypothesis

• property-based testing for Python

• has strategies to generate basic data types

− int, str, dict, list, set,…

• compose built-in generators to get custom types

• integrated with pytest
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import hypothesis

import hypothesis.strategies as s

@hypothesis.given(s.lists(s.integers()))

def test_sorted(x):

assert sorted(x) == x # should fail

@hypothesis.given(x=s.integers(), y=s.integers())

def test_cancel(x, y):

assert (x + y) - y == x # looks okay
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Going Quick and Dirty

• goal: minimize time spent on testing

• manual testing usually loses

− but it has almost 0 initial investment

• if you can write a test in 5 minutes, do it

• useful for testing small scripts
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Shell 101

• shell scripts are very easy to write

• they are ideal for testing IO behaviour

• easily check for exit status: set -e

• see what is going on: set -x

• use diff -u to check expected vs actual output
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Shell Test Example

set -ex

python script.py < test1.in | tee out

diff -u test1.out out

python script.py < test2.in | tee out

diff -u test2.out out
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Continuous Integration

• automated tests need to be executed

• with many tests, this gets tedious to do by hand

• CI builds and tests your project regularly

− every time you push some commits

− every night (e.g. more extensive tests)
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CI: Travis

• runs in the cloud (CI as a service)

• trivially integrates with pytest

• virtualenv out of the box for python projects

• integrated with github

• conϐigure in .travis.yml in your repo
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CI: GitLab

• GitLab has its own CI solution (similar to travis)

• also available at FI

• runs tests when you push to your gitlab

• drop a .gitlab-ci.yml in your repository

• automatic deployment into heroku &c.



PV248 Python 237/354 TesƟng, Debugging & Profiling

CI: Buildbot

• written in python/twisted

− basically a framework to build a custom CI tool

• self-hosted and somewhat complicated to set up

− more suited for complex projects

− much more ϐlexible than most CI tools

• distributed design
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CI: Jenkins

• another self-hosted solution, this time in Java

− widely used and well supported

• native support for python projects (including pytest)

− provides a dashboard with test result graphs &c.

− supports publishing sphinx-generateddocumentation
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Print-based Debugging

• no need to be ashamed, everybody does it

• less painful in interpreted languages

• you can also use decorators for tracing

• never forget to clean your program up again
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def debug(e):

f = sys._getframe(1)

v = eval(e, f.f_globals, f.f_locals)

l = f.f_code.co_filename + ':'

l += str(f.f_lineno) + ':'

print(l, e, '=', repr(v), file=sys.stderr)

x = 1

debug('x + 1')
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The Python Debugger

• run as python -m pdb program.py

• there’s a built-in help command

• next steps through the program

• break to set a breakpoint

• cont to run until end or a breakpoint
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What is Proϐiling

• measurement of resource consumption

• essential info for optimising programs

• answers questions about bottlenecks

− where is my program spending most time?

− less often: how is memory used in the program
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Why Proϐiling

• ‘blind’ optimisation is often misdirected

− it is like ϐixing bugs without triggering them

− program performance is hard to reason about

• tells you exactly which point is too slow

− allows for best speedup with least work
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Proϐiling in Python

• provided as a library, cProfile

− alternative: profile is slower, but more ϐlexible

• run as python -m cProfile program.py

• outputs a list of lines/functions and their cost

• use cProfile.run() to proϐile a single expression
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# python -m cProfile -s time fib.py

ncalls tottime percall file:line(function)

13638/2 0.032 0.016 fib.py:1(fib_rec)

2 0.000 0.000 {builtins.print}

2 0.000 0.000 fib.py:5(fib_mem)
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Exercise 8: Statistics

• fetch points.csv from study materials

− each column is one deadline of one exercise

− each line is one student, cells are points

• an average student has average points in each column

• you can use pandas and/or numpy if you like
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Exercise 8: Bulk Stats

• invocation: ./stat.py file.csv <mode>

• <mode> is one of: dates, deadlines, exercises

• in each mode, list all such entities along with

− mean, median, first and last quartile of points

− number of students that passed (points > 0)

• the output is a JSON dictionary of dictionaries

• date YYYY-MM-DD, exercise NN, deadline YYYY-MM-DD/NN
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Bulk Output (stat.py)

{ "01": { "mean": 1, "median": 1, ... },

"02": { ..., "passed": 60, ... }, ... }

or

{ "2018-09-26": { ... "last": 2.5, ... },

"2018-10-03": { ... "passed": 20, ... },

... } }
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Exercise 8: Individual Stats

• invocation: ./student.py file.csv <id>

• <id> is the student identiϐier or average

• output mean and median points per exercise

• a number of passed exercises and total points

• a linear regression for cumulative points in time

− keys: regression slope (intercept is 0)

• expected date to pass the 16 and 20 point marks

− keys: date 16 and date 20
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Per-Student Output (student.py)

{ "mean": 1.66, "median": 1.5,

"total": 10, "passed": 6,

"regression slope": 0.2,

"date 16": "2018-12-05",

"date 20": "2018-12-25" }
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Part 9: Communication, HTTP
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Running Programs (the old way)

• os.system is about the simplest

− also somewhat dangerous – shell injection

− you only get the exit code

• os.popen allows you to read output of a program

− alternatively, you can send input to the program

− you can’t do both (would likely deadlock anyway)

− runs the command througha shell, sameasos.system
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Low-level Process API

• POSIX-inherited interfaces (on POSIX systems)

• os.exec: replace the current process

• os.fork: split the current process in two

• os.forkpty: same but with a PTY
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Detour: bytes vs str

• strings (class str) represent text

− that is, a sequence of unicode points

• ϐiles and network connections handle data

− represented in Python as bytes

• the bytes constructor can convert from str

− e.g. b = bytes("hello", "utf8")
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Running Programs (the new way)

• you can use the subprocessmodule

• subprocess can handle bidirectional IO

− it also takes care of avoiding IO deadlocks

− set input to feed data to the subprocess

• internally, run uses a Popen object

− if run can’t do it, Popen probably can
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Getting subprocess Output

• only available via run since Python 3.7!

• the run function returns a CompletedProcess

• it has attributes stdout and stderr

• both are bytes (byte sequences) by default

• or str if text or encodingwere set

• available if you enabled capture_output
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Running Filters with Popen

• if you are stuck with 3.6, use Popen directly

• set stdin in the constructor to PIPE

• use the communicatemethod to send the input

• this gives you the outputs (as bytes)
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import subprocess

from subprocess import PIPE

input = bytes( "x\na\nb\ny", "utf8")

p = subprocess.Popen(["sort"], stdin=PIPE,

stdout=PIPE)

out = p.communicate(input=input)

# out[0] is the stdout, out[1] is None
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Subprocesses with asyncio

• import asyncio.subprocess

• create_subprocess_exec, like subprocess.run

− but it returns a Process instance

− Process has a communicate async method

• can run things in background (via tasks)

− also multiple processes at once
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Protocol-based asyncio subprocesses

• let loop be an implementation of the asyncio event loop

• there’s subprocess_exec and subprocess_shell

− sets up pipes by default

• integrates into the asyncio transport layer (see later)

• allows you to obtain the data piece-wise

https://docs.python.org/3/library/asyncio-protocol.html



PV248 Python 261/354 CommunicaƟon, HTTP

Sockets

• the socket API comes from early BSD Unix

• socket represents a (possible) network connection

• sockets are more complicated than normal ϐiles

− establishing connections is hard

− messages get lost much more often than ϐile data
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Socket Types

• sockets can be internet or unix domain

− internet sockets connect to other computers

− Unix sockets live in the ϐilesystem

• sockets can be stream or datagram

− stream sockets are like ϐiles (TCP)

− you can write a continuous stream of data

− datagramsockets can send individualmessages (UDP)
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Sockets in Python

• the socketmodule is available on all major OSes

• it has a nice object-oriented API

− failures are propagated as exceptions

− buffer management is automatic

• useful if you need to do low-level networking

− hard to use in non-blocking mode
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Sockets and asyncio

• asyncio provides sock_* to work with socket objects

• this makes work with non-blocking sockets a lot easier

• but your program needs to be written in async style

• only use sockets when there is no other choice

− asyncio protocols are both faster and easier to use
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Hyper-Text Transfer Protocol

• originally a simple text-based, stateless protocol

• however

− SSL/TLS, cryptography (https)

− pipelining (somewhat stateful)

− cookies (somewhat stateful in a different way)

• typically between client (browser) and a front-end server

• but also as aback-endprotocol (web server to app server)
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Request Anatomy

• request type (see below)

• header (text-based, like e-mail)

• content

Request Types

• GET – asks the server to send a resource

• HEAD – like GET but only send back headers

• POST – send data to the server
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Python and HTTP

• both client and server functionality

− import http.client

− import http.server

• TLS/SSL wrappers are also available

− import ssl

• synchronous by default
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Serving Requests

• derive from BaseHTTPRequestHandler

• implement a do_GETmethod

• this gets called whenever the client does a GET

• also available: do_HEAD, do_POST, etc.

• pass the class (not an instance) to HTTPServer
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Serving Requests (cont’d)

• HTTPServer creates a new instance of your Handler

• the BaseHTTPRequestHandlermachinery runs

• it calls your do_GET etc. method

• request data is available in instance variables

− self.path, self.headers
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Talking to the Client

• HTTP responses start with a response code

− self.send_response( 200, 'OK' )

• the headers follow (set at least Content-Type)

− self.send_header( 'Connection', 'close' )

• headers and the content need to be separated

− self.end_headers()

• ϐinally, send the content by writing to self.wfile
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Sending Content

• self.wfile is an open ϐile

• it has a write()method which you can use

• sockets only accept byte sequences, not str

• use the bytes( string, encoding ) constructor

− match the encoding to your Content-Type
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HTTP and asyncio

• thebaseasyncio currentlydoesn’t directly supportHTTP

• but: you can get aiohttp from PyPI

• contains a very nice web server

− from aiohttp import web

− minimum boilerplate, fully asyncio-ready
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SSL and TLS

• you want to use the sslmodule for handling HTTPS

− this is especially true server-side

− aiohttp and http.server are compatible

• you need to deal with certiϐicates (loading, checking)

• this is a rather important but complex topic
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Certiϐicate Basics

• certiϐicate is a cryptographically signed statement

− it ties a server to a certain public key

− the client ensures the server knows the private key

• the server loads the certiϐicate and its private key

• the client must validate the certiϐicate

− this is typically a lot harder to get right
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SSL in Python

• start with import ssl

• almost everything happens in the SSLContext class

• get an instance from ssl.create_default_context()

− you can use wrap_socket to run an SSL handshake

− you can pass the context to aiohttp

• if httpd is a http.server.HTTPServer:

httpd.socket = ssl.wrap_socket( httpd.socket,

... )
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HTTP Clients

• there’s a very basic http.client

• for a more complete library, use urllib.request

• aiohttp has client functionality

• all of the above can be used with ssl

• another 3rd party module: Python Requests
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Exercise 9: Forwarding HTTP

• invocation: ./http-forward.py 9001 example.com

− listen on the speciϐied port (9001 above) for HTTP

− use example.com as the upstream for GET

• for GET requests:

− forward the request as-is to the upstream

− send back JSON to your client (see next slide)

• for POST requests

− accept JSON data, construct request, proceed as GET

− supply suitable default headers unless overridden
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Exercise 9: GET Requests

• the reply to the client must be valid JSON dictionary

• send the upstream response code as code

− or "timeout" (by default after 1 second)

• send all the received headers to the client

• if the response is valid JSON, include it under json

− include it as a string in content otherwise
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Exercise 9: POST Requests

• read a JSON dictionary from the request content; keys:

− type – string, either GET (default) or POST

− url – string, the address to fetch

− headers – dictionary, the headers to send

− content – the content to send if type is POST

− timeout – number of seconds to wait for completion

• if the JSON is invalid, set code to "invalid json"

− also if a crucial key is missing (url, content for POST)
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# POST request content

{ "type": "GET", "url": "http://example.com",

"headers": { "Accept-Encoding": "...", ... },

"timeout": 3 }

# reply from http-forward.py

{ "code": 200

"headers": { "Content-Length": ... },

"json": ... }
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Exercise 9: Bonus

• handle SSL/TLS when connecting to your upstream

− speciϐied by https as a protocol in url

• include a boolean certificate valid in response JSON

− rely on the default system trusted CA certs

− also certificate forwith a list of hostnames

• get 0.5 extrapoint (regardless ofwhichdeadline youpass)
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Part 10: Closures, Coroutines &c.



PV248 Python 283/354 Closures, CorouƟnes &c.

Exercise 10: CGI

• invocation: ./serve.py 9001 dir

• listen on the speciϐied port (9001 in this case)

• serve the content of dir over HTTP

• treat ϐiles named .cgi specially (see next slide)

• serve anything else as static content
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Exercise 10: Running CGI Scripts

• if a .cgi ϐile is requested, run it

• adhere to the CGI protocol

− request info goes into environment variables

− the stdout of the script goes to the client

− refer to RFC 3875 and/or Wikipedia

• do not forget to deal with POST requests
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Exercise 10: Various

• no need to auto-index directories

• you must handle concurrent connections

− even while a CGI script is running

• you must handle arbitrarily large data

− this applies to static ϐiles

− but also to CGI script outputs
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Execution Stack

• made up of activation frames

• holds local variables

• and return addresses

• in dynamic languages, often lives in the heap
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Variable Capture

• variables are captured lexically

• deϐinitions are a dynamic / run-time construct

− a nested deϐinition is executed

− creates a clousre object

• always by reference in Python

− but can be by-value in other languages
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Using Closures

• closures can be returned, stored and called

− they can be called multiple times, too

− they can capture arbitrary variables

• closures naturally retain state

• this is what makes them powerful
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Objects from Closures

• so closures are essentially code + state

• wait, isn’t that what an object is?

• indeed, you can implement objects using closures
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The Role of GC

• memory management becomes a lot more complicated

• forget C-style ‘automatic’ stack variables

• this is why the stack is actually in the heap

• this can go as far as form reference cycles
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Coroutines

• coroutines are a generalisation of subroutines

• they can be suspended and re-entered

• coroutines can be closures at the same time

• the code of a coroutine is like a function

• a suspended coroutine is like an activation frame



PV248 Python 292/354 Closures, CorouƟnes &c.

Yield

• suspends execution and ‘returns’ a value

• may also obtain a new value (cf. send)

• when re-entered, continue where we left off

for i in range(5): yield i
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Send

• with yield, we have one-way communication

• but in many cases, we would like two-way

• a suspended coroutine is an object in Python

− with a sendmethod which takes a value

− send re-enters the coroutine
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Yield From and Await

• yield from is mostly a generator concept

• await basically does the same thing

− call out to another coroutine

− when it suspends, so does the entire stack
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Suspending Native Coroutines

• this is not actually possible

− not with async-native syntax anyway

• you need a yield

− for that, you need a generator

− use the types.coroutine decorator
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Event Loop

• not required in theory

• useful also without coroutines

• there is a synergistic effect

− event loops make coroutines easier

− coroutines make event loops easier
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Part 11: asyncio, Projects
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IO at the OS Level

• often defaults to blocking

− read returns when data is available

− this is usually OK for ϐile

• but what about network code?

− could work for a client
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Threads and IO

• there may be work to do while waiting

− waiting for IO can be wasteful

• only the calling (OS) thread is blocked

− another thread may do the work

− but multiple green threads may be blocked
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Non-Blocking IO

• the program calls read

− read returns immediately

− even if there was no data

• but how do we know when to read?

− we could poll

− for example call read every 30ms
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Polling

• trade-off between latency and throughput

− sometimes, polling is okay

− but is often too inefϐicient

• alternative: IO dispatch

− useful when multiple IOs are pending

− wait only if all are blocked
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select

• takes a list of ϐile descriptors

• block until one of them is ready

− next readwill return data immediately

• can optionally specify a timeout

• only useful for OS-level resources
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Alternatives to select

• select is a rather old interface

• there is a number of more modern variants

• poll and epoll system calls

− despite the name, they do not poll

− epoll is more scalable

• kqueue and kevent on BSD systems
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Synchronous vs Asynchronous

• the select family is synchronous

− you call the function

− it may wait some time

− you proceed when it returns

• OS threads are fully asynchronous
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The Thorny Issue of Disks

• a ϐile is always ‘ready’ for reading

• this may still take time to complete

• there is no good solution on UNIX

• POSIX AIO exists but is sparsely supported

• OS threads are an option



PV248 Python 306/354 asyncio, Projects

IO on Windows

• select is possible (but slow)

• Windows provides real asynchronous IO

− quite different from UNIX

− the IO operation is directly issued

− but the function returns immediately

• comes with a notiϐication queue
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The asyncio Event Loop

• uses the select family of syscalls

• why is it called async IO?

− select is synchronous in principle

− this is an implementation detail

− the IOs are asynchronous to each other
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How Does It Work

• you must use asyncio functions for IO

• an async read does not issue an OS read

• it yields back into the event loop

• the fd is put on the select list

• the coroutine is resumed when the fd is ready
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Timers

• asyncio allows you to set timers

• the event loop keeps a list of those

• and uses that to set the select timeout

− just uses the nearest timer expiry

• when a timer expires, its owner is resumed
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Blocking IO vs asyncio

• all user code runs on the main thread

• you must not call any blocking IO functions

• doing so will stall the entire application

− in a server, clients will time out

− even if not, latency will suffer
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DNS

• POSIX: getaddrinfo and getnameinfo

− also the older API gethostbyname

• those are all blocking functions

− and they can take a while

− but name resolution is essential

• asyncio internally uses OS threads for DNS
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Signals

• signals on UNIX are very asynchronous

• interact with OS threads in a messy way

• asyncio hides all this using C code
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Exercise 11: Tic Tac Toe

• write a game server for (3x3) tic tac toe

• invocation: ./ttt.py port

− listen on the given port (number)

− serve HTTP (only GET requests)

− all responses are JSON dictionaries
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Exercise 11: Start

• GET /start?name=string

• returns a numeric id

− multiple games may run in parallel

• the game starts with an empty board

• player 1 plays ϐirst
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Exercise 11: Status

• GET /status?game=id

• if the game is over:

− set winner to 0 (draw), 1 or 2

• otherwise set:

− board is a list of lists of numbers

− 0 = empty, 1 and 2 indicate the player

− next 1 or 2 (who plays next)
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Exercise 11: Playing

• GET /play?game=id&player=1&x=1&y=2

• must validate the request

• set status to either "ok" or "bad"

− if status is "bad", set message

− message is free-form text for the user



PV248 Python 317/354 asyncio, Projects

Exercise 12: Tic Tac Toe Client

• include ttt.py from exercise 11

− add a /list request

− returns a JSON list of games

− each is a dict with name and id

• invocation: client.py host port
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Exercise 12: User Interface

• start by offering a list of games

− only offer games with empty boards

• the user enters the numeric id to join

− joining makes you player 2

• typing new starts a new game

− you start as player 1
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Exercise 12: Polling

• ask for status ~once per second

• while waiting, print (once)

− waiting for the other player

• draw an up-to-date board

− use _, x and o, no spaces
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Exercise 12: Gameplay

• prompt with your turn (o): (or x)

− read 𝑥 and 𝑦 (whitespace separated)

− if invalid, print invalid input

− then ask again (until satisϐied)

• on game over, print you lose or you win
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Exercise 12: Bonus

• make an interactive graphical interface

− make the interaction mouse-based

− use pygame or pyglet

• must be ready for the last seminar

− you can get 1 extra point
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Projects

• you can earn 4 points

− that’s 2 exercises worth

− the effort should match that

• submit by the end of the exam period

• this is a fallback option

− exercises and reviews are preferred
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Project Grading

• there is only 1 automated option (see DF)

− can be evaluated repeatedly

• everything else is evaluated manually

− should work 100% on ϐirst try

− you get at most one retry

− expect latency of about a week
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Project Reviews

• projects can be reviewed before submission

− excluding the machine-corrected variant

− you can seek multiple reviews

− getting at least one is strongly recommended

• otherwise same rules as for exercises

− review point limits are shared
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Project Topics

• do not try to sell something you already have

• seek approval before you start working

− put a project.txt in your repository

− I will make a note in the IS notebook

• it is okay to come up with your own

− but I may request changes
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Project Idea: Breakout

• write a breakout clone (game)

− or another game of similar complexity

− do not settle for absolute bare-bones

− add simple sound effects or animation

• you can use pygame or pyglet
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Project Idea: Scorelib Redux

• write an editor for the score database

− should be practically usable

− work with the SQL representation

• you can use pyqt5

• alternatively flask or django

− might need some javascript

− you can also use aiohttp and AJAX
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Project Idea: A Real Tuner

• should work in real time

• process microphone input

− alternatively work with a recording

− in which case, provide a slider

• visualize the outputs

− try pygame or pyglet



PV248 Python 329/354 Modules and Packages

Part 12: Modules and Packages



PV248 Python 330/354 Modules and Packages

Code Modularity

• common tasks are bundled as functions

• functions can be bundled into classes

− often contains shared state (via attributes)

• classes are bundled into modules

− simpler than classes: usually no data

• modules can be bundled into packages
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Why Modularity

1. managing size and complexity

2. management of names

3. code re-use and sharing
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Code Size

• there are natural limits on function size

− long functions are hard to understand

− likewise on class sizes

• this also holds for modules

− big modules are hard to use

− but even harder to maintain
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Naming Things

• human brain is highly context-sensitive

− same name can refer to many things

− consider a method called open

• there is no optimal length for a name

− wider scopes require longer names

− long names in narrow scopes are wasteful
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Namespaces

• a hierarchical approach to names

− use a short name from within the scope

− use a longer name from outside

• with a built-in mechanism for shortcuts

• realized by classes, modules, packages
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Python Modules

• creating a single module is simple

• a collection of re-usable code

− mainly classes (class)

− and functions (def, async def)

• there is no special syntax

− a ϐile, basically the same as a script
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Python Packages

• a package is a bundle of modules

• realized as a ϐile system directory

− it must have an __init__.py

− but it could be empty

• this is what gives us import foo.bar
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Package Mechanics

• the __init__.py has two roles

− prevent conϐlicts with non-package directories

− provide deϐinitions

• import foowill load foo/__init__.py
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More on Import

• import loads and evaluates the module

• it creates an object to represent it

• creates a variable in the current scope

• assigns the object to the variable

• import is somewhat like def
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Bytecode

• CPython is actually a bytecode interpreter

• there is a frontend which parses code

− and emits an intermediate representation

− which can be stored as bytecode

• bytecode is stored in .pyc ϐiles

• and for modules, it is cached under __pycache__
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Modules Written in C

• those are implemented as shared libraries

− .so on UNIX (typically ELF shared object)

− .pyd on Windows (really a PE DLL ϐile)

• the lookup is the same as for .pymodules

• functions show up as built-in functions
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The View from C

• CPython objects are of type PyObject *

• C APIs exist to create and use objects

• recall that modules are just objects

• a special function PyInit_modname()

− say PyInit_spam() in spam.so

− import calls this to create the object
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Built-in Modules

• some modules are completely built into CPython

• internally, they are much like C modules

• may be for efϐiciency or for low-level system access

• the sysmodule is always built-in

− sys.path is needed to load any other modules
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Modules are Garbage-Collected

• sys.modules holds references to all loaded modules

• it’s possible to remove modules from there

• importing again will then reload the module

• the old version can be garbage-collected

• some C modules are excluded from this mechanism
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Distributing Packages: Reminder

• python packages are distributed via PyPI

• source trees are different from installed modules

• extra metadata in the source tree

− info about authors, links to resources

− most importantly package dependencies
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Source Trees

• python is not a compiled language

− the source code is what is installed

• some packages also contain C code

− think number crunching in numpy

− this must be actually compiled

• there’s also unit tests of course



PV248 Python 346/354 Modules and Packages

setup.py

• a script that installs your package

• it knows where to put it and how

• also knows how to build C code

• usually written using setuptools
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Versioning

• so you have made a package…

− it is probably not complete

− and it may have some bugs in it

• you add features, ϐix bugs…

− other people already use it

− you need to make a new version
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Version Numbers

• often major.minor or major.minor.patch

− for example: python 3.6.5

• a change in major indicates incompatibility

− like when print x no longer works in python 3

• minor is for non-breaking feature additions

• patch is for bug ϐixes
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Dependencies

• packages are meant for re-use

• so you want to use some package

− your users will need it too

− maybe you need a dozen

• sure enough, packages need other packages

− this is ripe for automation
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Dependency Chasing

• setup.py could just download dependencies

− setuptools automate this for you

− and use PyPI to ϐind the packages

• it also only downloads what is missing

• pipwill ϐind you the ‘toplevel’ package
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Versioned Dependencies

• so you use function bar from package foo

− but it only appeared in version 2.4

• so you need package foo newer than 2.4

• but foowas then removed in version 3

− no time right now to deal with that

• welcome to dependency hell
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Chasing Dependencies Redux

• versioning makes dependencies NP-hard

• dependencies may be impossible to satisfy

• mistakes happen with version numbers too

− those usually affect other packages

• this is a problem in every complex software system
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Versioning Strategies

• optimistic dependencies

− maybe next foomajor won’t break my code

− if it does, my package breaks and i must ϐix it

• defensive dependencies

− next major of foowill probably break my code

− i use baz 1.1 and foo 2.4 and depend on foo < 3

− around comes baz 1.2 but it needs foo 3.1
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Questions & (maybe) Answers


