
PV248 Python

Petr Ročkai

PV248 Python 2/354 Intro

Programming vs Languages

• Python is unobtrusive (by design)

• if you can program, you can program in Python

• there are idiosyncracies (of course)

• but you will mostly get by

PV248 Python 3/354 Intro

Programming vs Jobs

• we all want to write beautiful programs

− but you didn’t sleep for 2 nights

− and this thing is going into production tomorrow

• sometimes you get a chance to clean up later

− and sometimes you don’t

PV248 Python 4/354 Intro

Engineering Flowchart

should it?

should it?

does it move?

no problem

no problem

WD40

duct tape
yes

no

yes

no

yes

no

Python makes for decent duct tape and WD40.

PV248 Python 5/354 Intro

In This Course

• you will not learn to write beautiful programs

• we will try to do things with minimum effort

− perfect is the enemy of good

• ugly comes in shades

− you should always write passable code

− there is a balance to strike

PV248 Python 6/354 Intro

… ugly, cont’d

• there are two main schools of writing software

− do the right thing

− worse is better

• https://www.jwz.org/doc/worse-is-better.html

PV248 Python 7/354 Intro

The Right Thing

• simplicity: interface ϐirst, implementation second

• correctness: required

• consistency: required

• completeness: more important than simplicity

PV248 Python 8/354 Intro

Worse is Better

• simplicity: implementation ϐirst

• correctness: simplicity goes ϐirst

• consistency: less important than both

• completeness: least important

PV248 Python 9/354 Intro

Design Schools

• there are pros and cons to both

• right thing is often expensive

• worse is better often wins

• which one do you think Python belongs to?

PV248 Python 10/354 Intro

Disclaimer

• I am not a Python programmer

• please don’t ask sneaky language-lawyer questions

Goals

• learn to use Python in practical situations

• have a look at existing packages and what they can do

• code up some cool stuff, have fun

PV248 Python 11/354 Intro

Organisation

• there are 2 standard seminar groups

− attendance is compulsory (minus 2 absences)

− one virtual work-at-home group

• the lecture and seminars on 2.10. are cancelled

PV248 Python 12/354 Intro

Coursework

• there will be a set of exercises each week

• you should mostly do these within the seminar

• please make a public git (or hg) repository

− we are all adults here – do not copy

− i will collect the repository addresses

PV248 Python 13/354 Intro

Exercise Grading

• exercises are binary: pass or fail

• you will get 4 chances on each to get right

• failing is the same as missing the deadline

PV248 Python 14/354 Intro

Exercise Deadlines

• 7 days, worth 2 points

• 14 days, worth 1.5 point

• Monday 17.12., worth 1.25 points

• Tuesday 12.2., worth 1 point

PV248 Python 15/354 Intro

Passing the Course

• you can get

− 24 points for exercises

− 4 points for seminar attendance

− 4 points for a small project

• you need 20 points to pass

PV248 Python 16/354 Intro

Stuff We Could Try

• working with text, regular expressions

• plotting stuff with bokeh or matplotlib

• talking to SQL databases

• talking to HTTP servers

• being an HTTP server

• implementing a JSON-based REST API

• parsing YAML and/or JSON data

• … (suggestions welcome)

PV248 Python 17/354 Intro

Some Resources

• https://docs.python.org/3/ (obviously)

• https://msivak.fedorapeople.org/python/

• study materials in IS

• help()

• google, stack overϐlow,…

PV248 Python 18/354 Text & Regular Expressions

Part 1: Text & Regular Expressions

PV248 Python 19/354 Text & Regular Expressions

Repository Structure

• create a directory for each week

• name them 01-text and so on

− the -text doesn’t really matter

− scripts will be looking for 01*

• program names must be exactly as speciϐied

PV248 Python 20/354 Text & Regular Expressions

Reading Input

• opening ϐiles: open('scorelib.txt', 'r')

• ϐiles can be iterated

f = open('scorelib.txt', 'r')

for line in f:

print(line)

PV248 Python 21/354 Text & Regular Expressions

Regular Expressions

• compiling: r = re.compile(r"Composer: (.*)")

• matching: m = r.match("Composer: Bach, J. S.")

• extracting captures: print(m.group(1))

− prints Bach, J. S.

• substitutions: s2 = re.sub(r"\s*$", '', s1)

− strips all trailing whitespace in s1

Other String Operations

• better whitespace stripping: s2 = s1.strip()

• splitting: str.split(';')

PV248 Python 22/354 Text & Regular Expressions

Dictionaries

• associative arrays: map (e.g.) strings to numbers

• nice syntax: dict = { 'foo': 1, 'bar': 3 }

• nice & easy to work with

• can be iterated: for k, v in dict.items()

Counters

• from collections import Counter

• like a dictionary, but the default value is 0

• ctr = Counter()

• compare ctr['baz'] += 1with dict

PV248 Python 23/354 Text & Regular Expressions

Command Line

• we will often need to process command arguments

• in Python, those are available in the sysmodule

• import sys

• arguments are in sys.argv (a list)

PV248 Python 24/354 Text & Regular Expressions

Exercise 1: Input

• get yourself a git/mercurial/darcs repository

• grab input data (scorelib.txt) from study materials

• read and process the text ϐile

• use regular expressions to extract data

• use dictionaries to collect stats

• beware! hand-written, somewhat irregular data

PV248 Python 25/354 Text & Regular Expressions

Exercise 1: Output

• print some interesting statistics

− howmany pieces by each composer?

− howmany pieces composed in a given century?

− howmany in the key of c minor?

• bonus if you are bored: searching

− list all pieces in a given key

− list pieces featuring a given instrument (say, bassoon)

PV248 Python 26/354 Text & Regular Expressions

Exercise 1: Invocation

• ./stat.py ./scorelib.txt composer

• ./stat.py ./scorelib.txt century

PV248 Python 27/354 Text & Regular Expressions

Exercise 1: Example Output

• Telemann, G. P.: 68

• Bach, J. S.: 79

• Bach, J. C.: 6

• …

For centuries:

• 16th century: 3

• 17th century: 11

• 18th century: 32

PV248 Python 28/354 Text & Regular Expressions

Cheat Sheet
for line in open('file', 'r') read lines

dict = {} an empty dictionary

dict[key] = value set a value in a dictionary

r = re.compile(r"(.*):") compile a regexp

m = r.match("foo: bar") match a string

if m is None: continue match failed, loop again

print(m.group(1)) extract a capture

for k, v in dict.items() iterate a dictionary

print("%d, %d" % (12, 1337)) print some numbers

PV248 Python 29/354 Objects and Classes

Part 2: Objects and Classes

PV248 Python 30/354 Objects and Classes

Objects

• the basic “unit” of OOP

• they bundle data and behaviour

• provide encapsulation

• make code re-use easier

• also known as “instances”

PV248 Python 31/354 Objects and Classes

Classes

• templates for objects (class Foo: pass)

• each (python) object belongs to a class

• classes themselves are also objects

• calling a class creates an instance

− my_foo = Foo()

PV248 Python 32/354 Objects and Classes

Poking at Classes

• {}.__class__

• {}.__class__.__class__

• (0).__class__

• [].__class__

• compare type(0), etc.

• n = numbers.Number(); n.__class__

PV248 Python 33/354 Objects and Classes

Types vs Objects

• class system is a type system

• “duck typing”: quacks, walks like a duck

• since python 3, types are classes

• everything is dynamic in python

− you can create new classes at runtime

− you can pass classes as function parameters

PV248 Python 34/354 Objects and Classes

Encapsulation

• objects hide implementation details

• classic types structure data

− objects also structure behaviour

• facilitates weak coupling

PV248 Python 35/354 Objects and Classes

Weak Coupling

• coupling is a degree of interdependence

• more coupling makes hard to change things

− it also makes reasoning harder

• good programs are weakly coupled

• cf. modularity, composability

PV248 Python 36/354 Objects and Classes

Polymorphism

• objects are (at least in Python) polymorphic

• different implementation, same interface

• only the interface matters for composition

• facilitates genericity and code re-use

• cf. “duck typing”

PV248 Python 37/354 Objects and Classes

Generic Programming

• code re-use often saves time

− not just coding but also debugging

− re-usable code often couples weakly

• but not everything that can be re-used should be

− code can be too generic

− and too hard to read

PV248 Python 38/354 Objects and Classes

Attributes

• data members of objects

• each instance gets its own copy

• like variables scoped to object lifetime

• they get names and values

PV248 Python 39/354 Objects and Classes

Methods

• functions (procedures) tied to objects

• they can access the object (self)

• implement the behaviour of the object

• their signatures (usually) provide the interface

• methods are also objects

PV248 Python 40/354 Objects and Classes

Class and Instance Methods

• methods are usually tied to instances

• recall that classes are also objects

• class methods work on the class (cls)

• static methods are just namespaced functions

• decorators @classmethod, @staticmethod

PV248 Python 41/354 Objects and Classes

Inheritance

shape

ellipse rectangle

squarecircle

• class Ellipse(Shape): ...

• usually encodes an is-a relationship

PV248 Python 42/354 Objects and Classes

Multiple Inheritance

• more than one base class is possible

• many languages restrict this

• python allows general M-I

− class Bat(Mammal, Winged): pass

• ‘true’ M-I is somewhat rare

− typical use cases: mixins and interfaces

PV248 Python 43/354 Objects and Classes

Mixins

• used to pull in implementation

− not part of the is-a relationship

− by convention, not enforced by the language

• common bits of functionality

− e.g. implement __gt__, __eq__ &c. using __lt__

− you only need to implement __lt__ in your class

PV248 Python 44/354 Objects and Classes

Interfaces

• realized as “abstract” classes in python

− just throw a NotImplemented exception

− document the intent in a docstring

• participates in is-a relationships

• partially displaced by duck typing

− more important in other languages (think Java)

PV248 Python 45/354 Objects and Classes

Composition

• attributes of objects can be other objects

− (also, everything is an object in python)

• encodes a has-a relationship

− a circle has a center and a radius

− a circle is a shape

PV248 Python 46/354 Objects and Classes

Constructors

• this is the __init__method

• initializes the attributes of the instance

• can call superclass constructors explicitly

− not called automatically (unlike C++, Java)

− MySuperClass.__init__(self)

− super().__init__ (if unambiguous)

PV248 Python 47/354 Objects and Classes

Class and Object Dictionaries

• most objects are basically dictionaries

• try e.g. foo.__dict__ (for a suitable foo)

• saying foo.xmeans foo.__dict__["x"]

− if that fails, type(foo).__dict__["x"] follows

− then superclasses of type(foo), according to MRO

PV248 Python 48/354 Objects and Classes

Writing Classes

class Person:

def __init__(self, name):

self.name = name

def greet(self):

print("hello " + self.name)

p = Person("you")

p.greet()

PV248 Python 49/354 Objects and Classes

Modules in Python

• modules are just normal .py ϐiles

• import executes a ϐile by name

− it will look into system-deϐined locations

− the search path includes the current directory

− they typically only deϐine classes & functions

• import sys lets you use sys.argv

• from sys import argv you can write just argv

PV248 Python 50/354 Objects and Classes

Functions

• top-level functions/procedures are possible

• they are usually ‘scoped’ via the module system

• functions are also objects

− try print.__class__ (or type(print))

• some functions are built in (print, len,…)

PV248 Python 51/354 Objects and Classes

Exercise 2: Objects

• create a class hierarchy for printed scores

• deϐine (at least) the folowing classes

− Print, Edition, Composition, Voice, Person

• deϐine suitable constructors (__init__)

• you can use additional helper classes

PV248 Python 52/354 Objects and Classes

Prints, Editions & Compositions

• printed score belongs to an edition

• an edition has an author (an editor)

• edition of is a particular composition

• the composition has an author (composer)

• both editors and composers are people

PV248 Python 53/354 Objects and Classes

Voices

• compositions can have multiple voices

• each voice has a range and a name (instrument)

• one or both may be unknown

• ranges are written using a double dash (--)

PV248 Python 54/354 Objects and Classes

The Print class

• attributes

− edition (instance of Edition)

− print_id (integer, from Print Number:)

− partiture (boolean)

• method format()

− reconstructs and prints the original stanza

• method composition() (= edition.composition)

PV248 Python 55/354 Objects and Classes

The Edition class

• attributes

− composition (instance of Composition)

− authors (a list of Person instances)

− name (a string, from the Edition: ϐield, or None)

PV248 Python 56/354 Objects and Classes

The Composition class

• attributes

− name, incipit, key and genre (strings or None)

− year (integer if an integral year is given or None)

− voices (a list of Voice instances)

− authors (a list of Person instances)

PV248 Python 57/354 Objects and Classes

Voice and Person

• Voice attributes

− name, range (strings or None)

• Person attributes

− name (string)

− born, died (integers or None)

PV248 Python 58/354 Objects and Classes

Exercise 2: Parsing

• write a load(filename) function that reads the text

− this will be the same scorelib.txt as before

• the function returns a list of Print instances

• the list should be sorted by the print number (print_id)

PV248 Python 59/354 Objects and Classes

Exercise 2: Module

• the classes should live in scorelib.py

• add a simple test script, test.py

− this will take a single ϐilename

− invocation: ./test.py scorelib.txt

− run load() on that ϐilename

− call format() on each Print, add empty lines

PV248 Python 60/354 Persistent Data

Part 3: Persistent Data

PV248 Python 61/354 Persistent Data

Transient Data

• lives in programmemory

• data structures, objects

• interpreter state

• often implicit manipulation

• more on this next week

PV248 Python 62/354 Persistent Data

Persistent Data

• (structured) text or binary ϐiles

• relational (SQL) databases

• object and ‘ϐlat’ databases (NoSQL)

• manipulated explicitly

PV248 Python 63/354 Persistent Data

Persistent Storage

• ‘local’ ϐile system

− stored on HDD, SSD,…

− stored somwhere in a local network

• ‘remote’, using an application-level protocol

− local or remote databases

− cloud storage &c.

PV248 Python 64/354 Persistent Data

JSON

• structured, text-based data format

• atoms: integers, strings, booleans

• objects (dictionaries), arrays (lists)

• widely used around the web &c.

• simple (compared to XML or YAML)

PV248 Python 65/354 Persistent Data

JSON: Example
{

"composer": ["Bach, Johann Sebastian"],

"key": "g",

"voices": {

"1": "oboe",

"2": "bassoon"

}

}

PV248 Python 66/354 Persistent Data

JSON: Writing

• printing JSON seems straightforward enough

• but: double quotes in strings

• strings must be properly \-escaped during output

• also pesky commas

• keeping track of indentation for human readability

• better use an existing library: import json

PV248 Python 67/354 Persistent Data

JSON in Python

• json.dumps = short for dump to string

• python dict/list/str/… data comes in

• a string with valid JSON comes out

Workϐlow

• just convert everything to dict’s and lists

• run json.dumps or json.dump(data, file)

PV248 Python 68/354 Persistent Data

Python Example

d = {}

d["composer"] = ["Bach, Johann Sebastian"]

d["key"] = "g"

d["voices"] = { 1: "oboe", 2: "bassoon" }

json.dump(d, sys.stdout, indent=4)

Beware: keys are always strings in JSON

PV248 Python 69/354 Persistent Data

Parsing JSON

• import json

• json.load is the counterpart to json.dump from above

− de-serialise data from an open ϐile

− builds lists, dictionaries, etc.

• json.loads corresponds to json.dumps

PV248 Python 70/354 Persistent Data

XML

• meant as a lightweight and consistent redesign of SGML

− turned into a very complex format

• heaps of invalid XML ϐloating around

− parsing real-world XML is a nightmare

− even valid XML is pretty challenging

PV248 Python 71/354 Persistent Data

XML Features

• offers extensible, rich structure

− tags, attributes, entities

− suited for structured hierarchical data

• schemas: use XML to describe XML

− allows general-purpose validators

− self-documenting to a degree

PV248 Python 72/354 Persistent Data

XML vs JSON

• both work best with trees

• JSON has basically no features

− basic data structures and that’s it

• JSON data is ad-hoc and usually undocumented

− but: this often happens with XML anyway

PV248 Python 73/354 Persistent Data

NoSQL / Non-relational Databases

• umbrella term for a number of approaches

− ϐlat key/value and column stores

− document and graph stores

• no or minimal schemas

• non-standard query languages

PV248 Python 74/354 Persistent Data

Key-Value Stores

• usually very fast and very simple

• completely unstructured values

• keys are often database-global

− workaround: preϐixes for namespacing

− or: multiple databases

PV248 Python 75/354 Persistent Data

NoSQL & Python

• redis (redis-py) module (Redis is Key-Value)

• memcached (another Key-Value store)

• PyMongo for talking to MongoDB (document-oriented)

• CouchDB (another document-oriented store)

• neo4j or cayley (module pyley) for graph structures

PV248 Python 76/354 Persistent Data

SQL and RDBMS

• SQL = Structured Query Language

• RDBMS = Relational DataBase Management System

• SQL is to NoSQL what XML is to JSON

• heavily used and extremely reliable

PV248 Python 77/354 Persistent Data

SQLite

• lightweight in-process SQL engine

• the entire database is in a single ϐile

• convenient python module, sqlite3

• stepping stone for a “real” database

PV248 Python 78/354 Persistent Data

Other Databases

• you can talk to most SQL DBs using python

• postgresql (psycopg2,…)

• mysql / mariadb (mysql-python, mysql-connector,…)

• big & expensive: Oracle (cx_oracle), DB2 (pyDB2)

• most of those are much more reliable than SQLite

PV248 Python 79/354 Persistent Data

SQL Injection

sql = "SELECT * FROM t WHERE name = '" + n + '"'

• the above code is bad, never do it

• consider the following

n = "x'; drop table students --"

n = "x'; insert into passwd (user, pass) ..."

PV248 Python 80/354 Persistent Data

Avoiding SQL Injection

• use proper SQL-building APIs

− this takes care of escaping internally

• templates like insert ... values (?, ?)

− the ? get safely substituted by the module

− e.g. the executemethod of a cursor

PV248 Python 81/354 Persistent Data

Aside: PEP

• PEP stands for Python Enhancement Proposal

• akin to RFC documents managed by IETF

• initially formalise future changes to Python

− later serve as documentation for the same

• https://www.python.org/dev/peps/

PV248 Python 82/354 Persistent Data

PEP 249

• informational PEP, for library writers

• describes how database modules should behave

− ideally, all SQL modules have the same interface

− makes it easy to swap a database backend

• but: SQL itself is not 100% portable

PV248 Python 83/354 Persistent Data

SQL Pitfalls

• sqlite does not enforce all constraints

• no portable syntax for autoincrement keys

• not all (column) types are supported everywhere

• no portable way to get the key of last insert

PV248 Python 84/354 Persistent Data

More Resources & Stuff to Look Up

• SQL: https://www.w3schools.com/sql/

• https://docs.python.org/3/library/sqlite3.html

• Object-Relational Mapping

• SQLAlchemy: constructing portable SQL

PV248 Python 85/354 Persistent Data

Exercise 3: Importing Data

• create an empty scorelib.dat from scorelib.sql

• start by importing composers & editors into the database

− then continue with scores &c.

• use the classes from previous exercise

− you can copy & extend them

− you can also use inheritance or composition

PV248 Python 86/354 Persistent Data

Exercise 3: Database Structure

• deϐined in scorelib.sql (see study materials)

• test with: sqlite3 scorelib.dat < scorelib.sql

• you can rm scorelib.dat any time to start over

• consult comments in scorelib.sql

• do not store duplicate rows

PV248 Python 87/354 Persistent Data

Exercise 3: Requirements

• the structure in scorelib.sql is compulsory

• you must use SQLite 3

• parsing proceeds using rules from exercise 2

• each row in each table must be unique

− special rules for people, see next slide

PV248 Python 88/354 Persistent Data

Exercise 3: Storing People

• the name alone must be unique

• merge born and died ϐields

− NULL iff it is None in all instances

− resolve conϐlicts arbitrarily

PV248 Python 89/354 Persistent Data

Exercise 3: Invocation

• the script should be called import.py

• ./import.py scorelib.txt scorelib.dat

• ϐirst argument is the input text ϐile

• second argument is the output SQLite ϐile

− assume that this ϐile does not exist

− the script must also set up the schema

PV248 Python 90/354 Persistent Data

SQL Cheat Sheet

• INSERT INTO table (c1, c2) VALUES (v1, v2)

• SELECT (c1, c2) FROM table WHERE c1 = "foo"

sqlite3 Cheats

• conn = sqlite3.connect("scorelib.dat")

• cur = conn.cursor()

• cur.execute("... values (?, ?)", (foo, bar))

• conn.commit() (don’t forget to do this)

PV248 Python 91/354 Memory (Data) Model

Part 4: Memory (Data) Model

PV248 Python 92/354 Memory (Data) Model

Memory

• most program data is stored in ‘memory’

− an array of byte-addressable data storage

− address space managed by the OS

− 32 or 64 bit numbers as addresses

• typically backed by RAM

PV248 Python 93/354 Memory (Data) Model

Language vs Computer

• programs use high-level concepts

− objects, procedures, closures

− values can be passed around

• the computer has a single array of bytes

− and, well, a bunch of registers

PV248 Python 94/354 Memory (Data) Model

Memory Management

• deciding where to store data

• high-level objects are stored in ϐlat memory

− they have a given (usually ϐixed) size

− can contain references to other objects

− have limited lifespan

PV248 Python 95/354 Memory (Data) Model

Memory Management Terminology

• object: an entity with an address and size

− not the same as language-level object

• lifetime: when is the object valid

− live: references exist to the object

− dead: the object unreachable – garbage

PV248 Python 96/354 Memory (Data) Model

Memory Management by Type

• manual: malloc and free in C

• static automatic

− e.g. stack variables in C and C++

• dynamic automatic

− pioneered by LISP, widely used

PV248 Python 97/354 Memory (Data) Model

Automatic Memory Management

• static vs dynamic

− when do we make decisions about lifetime

− compile time vs run time

• safe vs unsafe

− can the program read unused memory?

PV248 Python 98/354 Memory (Data) Model

Object Lifetime

• the time between malloc and free

• another view: when is the object needed

− often impossible to tell

− can be safely over-approximated

− at the expense of memory leaks

PV248 Python 99/354 Memory (Data) Model

Static Automatic

• usually binds lifetime to lexical scope

• no passing references up the call stack

− may or may not be enforced

• no lexical closures

PV248 Python 100/354 Memory (Data) Model

Dynamic Automatic

• over-approximate lifetime dynamically

• usually easiest for the programmer

− until you need to debug a space leak

• reference counting, mark & sweep collectors

PV248 Python 101/354 Memory (Data) Model

Reference Counting

• attach a counter to each object

• whenever a reference is made, increase

• whenever a reference is lost, decrease

• the object is dead when the counter hits 0

• fails to reclaim reference cycles

PV248 Python 102/354 Memory (Data) Model

Mark and Sweep

• start from a root set (in-scope variables)

• follow references, mark every object encountered

• throw away all unmarked memory

• usually stops the program while running

• garbage is retained until the GC runs

PV248 Python 103/354 Memory (Data) Model

Memory Management in CPython

• primarily based on reference counting

• optional mark & sweep collector

− enabled by default

− conϐigure via import gc

PV248 Python 104/354 Memory (Data) Model

Refcounting Advantages

• simple to implement in a ‘managed’ language

• reclaims objects quickly

• no need to pause the program

• easily made concurrent

PV248 Python 105/354 Memory (Data) Model

Refcounting Problems

• signiϐicant memory overhead

• problems with cache locality

• bad performance for data shared between threads

• fails to reclaim cyclic structures

PV248 Python 106/354 Memory (Data) Model

Data Structures

• an abstract description of data

• leaves out low-level details

• makes writing programs easier

• makes reading programs easier, too

PV248 Python 107/354 Memory (Data) Model

Building Data Structures

• there are two types in Python

− built-in, implemented in C

− user-deϐined (includes libraries)

• both types are based on objects

− but built-ins only look that way

PV248 Python 108/354 Memory (Data) Model

Mutability

• some objects can be modiϐied

− we say they are mutable

− otherwise, they are immutable

• immutability is an abstraction

− physical memory is always mutable

• in Python, immutability is not ‘recursive’

PV248 Python 109/354 Memory (Data) Model

Built-in: int

• arbitrary precision integer

− no overϐlows and other nasty behaviour

• it is an object, i.e. held by reference

− uniform with any other kind of object

− immutable

• both of the above make it slow

− machine integers only in C-based modules

PV248 Python 110/354 Memory (Data) Model

Additional Numeric Objects

• bool: True or False

− howmuch is True + True?

− is 0 true? is empty string?

• numbers.Real: ϐloating point numbers

• numbers.Complex: a pair of above

PV248 Python 111/354 Memory (Data) Model

Built-in: bytes

• a sequence of bytes (raw data)

• exists for efϐiciency reasons

− in the abstract is just a tuple

• models data as stored in ϐiles

− or incoming through a socket

− or as stored in raw memory

PV248 Python 112/354 Memory (Data) Model

Properties of bytes

• can be indexed and iterated

− both create objects of type int

− try this sequence: id(x[1]), id(x[2])

• mutable version: bytearray

− the equivalent of C char arrays

PV248 Python 113/354 Memory (Data) Model

Built-in: str

• immutable unicode strings

− not the same as bytes

− bytes must be decoded to obtain str

− (and str encoded to obtain bytes)

• represented as utf-8 sequences in CPython

− implemented in PyCompactUnicodeObject

PV248 Python 114/354 Memory (Data) Model

Built-in: tuple

• an immutable sequence type

− the number of elements is ϐixed

− so is the type of each element

• but elements themselves may be mutable

− x = [] then y = (x, 0)

− x.append(1) y == ([1], 0)

• implemented as a C array of object references

PV248 Python 115/354 Memory (Data) Model

Built-in: list

• a mutable version of tuple

− items can be assigned x[3] = 5

− items can be append-ed

• implemented as a dynamic array

− many operations are amortised 𝑂(1)

− insert is 𝑂(𝑛)

PV248 Python 116/354 Memory (Data) Model

Built-in: dict

• implemented as a hash table

• some of the most performance-critical code

− dictionaries appear everywhere in Python

− heavily hand-tuned C code

• both keys and values are objects

PV248 Python 117/354 Memory (Data) Model

Hashes and Mutability

• dictionary keys must be hashable

− this implies recursive immutability

• what would happen if a key is mutated?

− most likely, the hash would change

− all hash tables with the key become invalid

− this would be very expensive to ϐix

PV248 Python 118/354 Memory (Data) Model

Built-in: set

• implements the math concept of a set

• also a hash table, but with keys only

− a separate C implementation

• mutable – items can be added

− but they must be hashable

− hence cannot be changed

PV248 Python 119/354 Memory (Data) Model

Built-in: frozenset

• an immutable version of set

• always hashable (since all items must be)

− can appear in set or another frozenset

− can be used as a key in dict

• the C implementation is shared with set

PV248 Python 120/354 Memory (Data) Model

Efϐicient Objects: __slots__

• ϐixes the attribute names allowed in an object

• saves memory: consider 1-attribute object

− with __dict__: 56 + 112 bytes

− with __slots__: 48 bytes

• makes code faster: no need to hash anything

− more compact in memory better cache efϐiciency

PV248 Python 121/354 Memory (Data) Model

Exercise 4: Preliminaries

• pull data from scorelib.dat using SQL

• print the results as (nicely formatted) JSON

• invocation: ./search.py Bach

− the scorelib.datwill not be your own

− you must not use the text data

PV248 Python 122/354 Memory (Data) Model

Exercise 4: Part 1

• write a script getprint.py

− the input is a print number (argument)

− the output is a list of composers (stdout)

• each composer is a dictionary

• name, born and died

PV248 Python 123/354 Memory (Data) Model

Exercise 4: Part 1 Output
$./getprint.py 645

[

{ "name": "Graupner, Christoph",

"born": 1683, "died": 1760 },

{ "name": "Grünewald, Gottfried" }

]

PV248 Python 124/354 Memory (Data) Model

Exercise 4: Part 1 Hints

• you will need to use SQL joins

• select ... from person join score_authors

on person.id = score_author.composer ...

where print.id = ?

• the result of cursor.execute is iterable

PV248 Python 125/354 Memory (Data) Model

Exercise 4: Part 2

• write a script search.py

• the input is a composer name substring

• the output is a list of all matching composer names

− along with all their prints in the database

• hint: ... where person.name like "%Bach%"

PV248 Python 126/354 Memory (Data) Model

Exercise 4: Part 2 Output
$./search.py Bach

{

"Bach, Johann Sebastian": [

{ "Print Number": 111,

"Title": "Konzert für ..." , ... },

{ "Print Number": 139, ... }, ...

],

"Bach, Johann Christian": ...,

...

}

PV248 Python 127/354 Numeric Data

Part 5: Numeric Data

PV248 Python 128/354 Numeric Data

Numbers in Python

• recall that numbers are objects

• a tuple of real numbers has 300% overhead

− compared to a C array of float values

− and 350% for integers

• this causes extremely poor cache use

• integers are arbitrary-precision

PV248 Python 129/354 Numeric Data

Math in Python

• numeric data usually means arrays

− this is inefϐicient in python

• we need a module written in C

− but we don’t want to do that ourselves

• enter the SciPy project

− pre-made numeric and scientiϐic packages

PV248 Python 130/354 Numeric Data

The SciPy Family

• numpy: data types, linear algebra

• scipy: more computational machinery

• pandas: data analysis and statistics

• matplotlib: plotting and graphing

• sympy: symbolic mathematics

PV248 Python 131/354 Numeric Data

Aside: External Libraries

• until now, we only used bundled packages

• for math, we will need external libraries

• you can use pip to install those

− use pip install --user <package>

PV248 Python 132/354 Numeric Data

Aside: The Python Package Index

• colloquially known as PyPI (or cheese shop)

− do not confuse with PyPy (Python in almost-Python)

• both source packages and binaries

− the latter known as wheels (PEP 427, 491)

− previously python eggs

• https://pypi.python.org

PV248 Python 133/354 Numeric Data

Aside: Installing numpy

• the easiest way may be with pip

− this would be pip3 on aisa

• linux distributions usually also have packages

• another option is getting the Anaconda bundle

• detailed instructions on https://scipy.org

PV248 Python 134/354 Numeric Data

Arrays in numpy

• compact, C-implemented data types

• ϐlexible multi-dimensional arrays

• easy and efϐicient re-shaping

− typically without copying the data

PV248 Python 135/354 Numeric Data

Entering Data

• most data is stored in numpy.array

• can be constructed from from a list

− a list of list for 2D arrays

• or directly loaded from / stored to a ϐile

− binary: numpy.load, numpy.save

− text: numpy.loadtxt, numpy.savetxt

PV248 Python 136/354 Numeric Data

LAPACK and BLAS

• BLAS is a low-level vector/matrix package

• LAPACK is built on top of BLAS

− provides higher-level operations

− tuned for modern CPUs with multiple caches

• both are written in Fortran

− ATLAS and C-LAPACK are C implementations

PV248 Python 137/354 Numeric Data

Element-wise Functions

• the basic math function arsenal

• powers, roots, exponentials, logarithms

• trigonometric (sin, cos, tan,…)

• hyperbolic (sinh, cosh, tanh,…)

• cyclometric (arcsin, arccos, arctan,…)

PV248 Python 138/354 Numeric Data

Matrix Operations in numpy

• import numpy.linalg

• multiplication, inversion, rank

• eigenvalues and eigenvectors

• linear equation solver

• pseudo-inverses, linear least squares

PV248 Python 139/354 Numeric Data

Additional Linear Algebra in scipy

• import scipy.linalg

• LU, QR, polar, etc. decomposition

• matrix exponentials and logarithms

• matrix equation solvers

• special operations for banded matrices

PV248 Python 140/354 Numeric Data

Sparse Matrices

• sparse = most elements are 0

• available in scipy.sparse

• special data types (not numpy arrays)

− do not use numpy functions on those

• less general, but more compact and faster

PV248 Python 141/354 Numeric Data

Discrete Fourier Transform

• available in numpy.fft

• goes between time and frequency domains

• a few different variants are covered

− real-valued input (for signals, rfft)

− inverse transform (ifft, irfft)

− multiple dimensions (fft2, fftn)

PV248 Python 142/354 Numeric Data

Polynomial Series

• useful in differential problems and functional analysis

• the numpy.polynomial package

• Chebyshev, Hermite, Laguerre and Legendre

• arithmetic, calculus and special-purpose operations

PV248 Python 143/354 Numeric Data

Statistics in numpy

• a basic statistical toolkit

− averages, medians

− variance, standard deviation

− histograms

• random sampling and distributions

PV248 Python 144/354 Numeric Data

Linear and Polynomial Regression, Interpolation

• regressions using the least squares method

− linear: numpy.linalg.lstsq

− polynomial: numpy.polyfit

• interpolation: scipy.interpolate

− e.g. piecewise cubic splines

− Lagrange interpolating polynomials

PV248 Python 145/354 Numeric Data

Pandas: Data Analysis

• the Python equivalent of R

− works with tabular data (CSV, SQL, Excel)

− time series (also variable frequency)

− primarily works with ϐloating-point values

• partially implemented in C and Cython

PV248 Python 146/354 Numeric Data

Pandas Series and DataFrame

• Series is a single sequence of numbers

• DataFrame represents tabular data

− powerful indexing operators

− index by column→ series

− index by condition→ ϐiltering

PV248 Python 147/354 Numeric Data

Pandas Example
scores = [('Maxine', 12), ('John', 12),

('Sandra', 10)]

cols = ['name', 'score']

df = pd.DataFrame(data=scores, columns=cols)

df['score'].max() # 12

df[df['score'] >= 12] # Maxine and John

PV248 Python 148/354 Numeric Data

Exercise 5: Warm-Up 1

• create a matrix from a list of lists

• compute and print (to stdout)

− rank and determinant

− inverse (if applicable)

• all operations are in numpy.linalg

PV248 Python 149/354 Numeric Data

Exercise 5: Warm-Up 2

• a simple non-homogeneous linear equation solver

• put the coefϐicients in a list of lists

• put the constants in a list of numbers

• use linalg.solve from numpy

• make sure you understand what is going on

PV248 Python 150/354 Numeric Data

Exercise 5: Intro

• ‘nice’ equations, invocation: ./eqn.py input.txt

• parse a human-readable system of equations

• variables→ single letters, coefϐicients→ integers

• only+ and− are allowed

• print the solution to stdout (using variable names)

PV248 Python 151/354 Numeric Data

Exercise 5: Unique Solution

• decide a unique solution exists

• if so, print the solution

2x + 3y = 5

x - y = 0

solution: x = 1, y = 1

PV248 Python 152/354 Numeric Data

Exercise 5: No Solution

• print no solution if the system is inconsistent

x + y = 4

x + y = 5

no solution

PV248 Python 153/354 Numeric Data

Exercise 5: Multiple Solutions

• it may also be under-determined

• only print the dimension of the solution space

x + y - z = 0

x = 0

solution space dimension: 1

PV248 Python 154/354 Numeric Data

Exercise 5: Details

• the right hand side is always a constant

− and is the only constant term

• print the solution/result to stdout

− solutions come in alphabetical order

• there are spaces around operators and =

− no space between a coefϐicient and a variable

PV248 Python 155/354 Numeric Data

Exercise 5: Hints

• linalg.solve assumes unique solution

− you can use Rouché-Capelli to check

• you can obtain a rank with linalg.matrix_rank

PV248 Python 156/354 Advanced Constructs

Part 6: Advanced Constructs

PV248 Python 157/354 Advanced Constructs

Callable Objects

• user-deϐined functions (module-level def)

• user-deϐined methods (instance and class)

• built-in functions and methods

• class objects

• objects with a __call__method

PV248 Python 158/354 Advanced Constructs

User-deϐined Functions

• come about from a module-level def

• metadata: __doc__, __name__, __module__

• scope: __globals__, __closure__

• arguments: __defaults__, __kwdefaults__

• type annotations: __annotations__

• the code itself: __code__

PV248 Python 159/354 Advanced Constructs

Positional and Keyword Arguments

• user-deϐined functions have positional arguments

• and keyword arguments

− print("hello", file=sys.stderr)

− arguments are passed by name

− which style is used is up to the caller

• variadic functions: def foo(*args, **kwargs)

− args is a tuple of unmatched positional args

− kwargs is a dict of unmatched keyword args

PV248 Python 160/354 Advanced Constructs

Lambdas

• def functions must have a name

• lambdas provide anonymous functions

• the body must be an expression

• syntax: lambda x: print("hello", x)

• standard user-deϐined functions otherwise

PV248 Python 161/354 Advanced Constructs

Instance Methods

• comes about as object.method

− print(x.foo)→<bound method Foo.foo of ...>

• combines the class, instance and function itself

• __func__ is a user-deϐined function object

• let bar = x.foo, then

− x.foo()→ bar.__func__(bar.__self__)

PV248 Python 162/354 Advanced Constructs

Iterators

• objects with __next__ (since 3.x)

− iteration ends on raise StopIteration

• iterable objects provide __iter__

− sometimes, this is just return self

− any iterable can appear in for x in iterable

PV248 Python 163/354 Advanced Constructs

class FooIter:

def __init__(self):

self.x = 10

def __iter__(self): return self

def __next__(self):

if self.x:

self.x -= 1

else:

raise StopIteration

return self.x

PV248 Python 164/354 Advanced Constructs

Generators (PEP 255)

• written as a normal function or method

• they use yield to generate a sequence

• represented as special callable objects

− exist at the C level in CPython

def foo(*lst):

for i in lst: yield i + 1

list(foo(1, 2)) # prints [2, 3]

PV248 Python 165/354 Advanced Constructs

yield from

• calling a generator produces a generator object

• how do we call one generator from another?

• same as for x in foo(): yield x

def bar(*lst):

yield from foo(*lst)

yield from foo(*lst)

list(bar(1, 2)) # prints [2, 3, 2, 3]

PV248 Python 166/354 Advanced Constructs

Native Coroutines (PEP 492)

• created using async def (since Python 3.5)

• generalisation of generators

− yield from is replaced with await

− an __await__magic method is required

• a coroutine can be suspended and resumed

PV248 Python 167/354 Advanced Constructs

Coroutine Scheduling

• coroutines need a scheduler

• one is available from asyncio.get_event_loop()

• along with many coroutine building blocks

• coroutines can actually run in parallel

− via asyncio.create_task (since 3.7)

− via asyncio.gather

PV248 Python 168/354 Advanced Constructs

Async Generators (PEP 525)

• async def + yield

• semantics like simple generators

• but also allows await

• iterated with async for

− async for runs sequentially

PV248 Python 169/354 Advanced Constructs

Decorators

• written as @decor before a function deϐinition

• decor is a regular function (def decor(f))

− f is bound to the decorated function

− the decorated function becomes the result of decor

• classes can be decorated too

• you can ‘create’ decorators at runtime

− @mkdecor("moo") (mkdecor returns the decorator)

− you can stack decorators

PV248 Python 170/354 Advanced Constructs

def decor(f):

return lambda: print("bar")

def mkdecor(s):

return lambda g: lambda: print(s)

@decor

def foo(f): print("foo")

@mkdecor("moo")

def moo(f): print("foo")

foo() prints "bar", moo() prints "moo"

PV248 Python 171/354 Advanced Constructs

List Comprehension

• a concise way to build lists

• combines a filter and a map

[2 * x for x in range(10)]

[x for x in range(10) if x % 2 == 1]

[2 * x for x in range(10) if x % 2 == 1]

[(x, y) for x in range(3) for y in range(2)]

PV248 Python 172/354 Advanced Constructs

Operators

• operators are (mostly) syntactic sugar

• x < y rewrites to x.__lt__(y)

• is and is not are special

− are the operands are the same object?

• also the ternary (conditional) operator

PV248 Python 173/354 Advanced Constructs

Non-Operator Builtins

• len(x) x.__len__() (length)

• abs(x) x.__abs__() (magnitude)

• str(x) x.__str__() (printing)

• repr(x) x.__repr__() (printing for eval)

• bool(x) and if x: x.__bool__()

PV248 Python 174/354 Advanced Constructs

Arithmetic

• a standard selection of operators

• / is ϐloating point, // is integral

• += and similar are somewhat magical

− x += y→ x = x.__iadd__(y) if deϐined

− otherwise x = x.__add__(y)

PV248 Python 175/354 Advanced Constructs

x = 7 # an int is immutable

x += 3 # works, x = 10, id(x) changes

lst = [7, 3]

lst[0] += 3 # works too, id(lst) stays same

tup = (7, 3) # a tuple is immutable

tup += (1, 1) # still works (id changes)

tup[0] += 3 # fails

PV248 Python 176/354 Advanced Constructs

Relational Operators

• operands can be of different types

• equality: !=, ==

− by default uses object identity

• ordering: <, <=, >, >= (TypeError by default)

• consistency is not enforced

PV248 Python 177/354 Advanced Constructs

Relational Consistency

• __eq__must be an equivalence relation

• x.__ne_(y)must be the same as not x.__eq__(y)

• __lt__must be an ordering relation

− compatible with __eq__

− consistent with each other

• each operator is separate (mixins can help)

− or perhaps a class decorator

PV248 Python 178/354 Advanced Constructs

Exercise 6: Fourier Transform

• continuous: 𝑓(𝜉) = ∫
ஶ

ିஶ
𝑓(𝑥) exp (−2𝜋𝑖𝑥𝜉) dx

• series:

− 𝑓(𝑥) = ∑
ஶ
ୀିஶ 𝑐 exp ቀ

ଶగ௫

 ቁ

• real series:

− 𝑓(𝑥) =
బ
ଶ + ∑

ஶ
ୀଵ ቀ𝑎 sin ቀ

ଶగ௫

 ቁ + 𝑏 cos ቀ
ଶగ௫

 ቁቁ

− 𝑐 =
ଵ

ଶ(𝑎 − 𝑖𝑏)

PV248 Python 179/354 Advanced Constructs

Exercise 6: Signal Basics

• sample rate: number of samples per second

• we process the signal in equal-sized chunks

− 𝑃 is the (time) length of the analysis window

− 𝑁 is the number of samples

• use non-overlapping analysis windows

PV248 Python 180/354 Advanced Constructs

Exercise 6: FFT in numpy

• rfft gives you the 𝑐 of the real series

− 𝑓(𝑥) = ∑
ே/ଶ
ୀ 𝑐 exp(

ଶగ௫

)

− 𝑁/2 because of the Nyquist frequency limit

• we are only interested in amplitudes: |𝑐|

− amplitude of a complex number: numpy.abs

PV248 Python 181/354 Advanced Constructs

Exercise 6: Input

• a .wav ϐile, PCM, sample rate 8–48 kHz

− such that it will be accepted by wave.open

− may be stereo or mono, 16 bit samples

• average the channels for stereo input

• ignore the ϐinal (incomplete) analysis window

• you can use struct.unpack to decode the samples

PV248 Python 182/354 Advanced Constructs

Exercise 6: Output

• a peak is a frequency component with amplitude≥ 20𝑎

− where 𝑎 is the average amplitude in the samewindow

• print thehighest- and lowest-frequencypeakencountered

− in the form low = 37, high = 18000

− print no peaks if there are no peaks

− the numbers are in Hz, precision = exactly 1Hz

PV248 Python 183/354 Advanced Constructs

Exercise 6: Invocation & Hints

• invocation: ./peaks.py audio.wav

− the output goes to stdout

− only a single line for the entire ϐile

• think about how precision relates to 𝑁

• generate simple sine wave inputs for testing

− also a sum of sine waves at different frequencies

PV248 Python 184/354 Advanced Constructs 2, Piƞalls

Part 7: Advanced Constructs 2, Pitfalls

PV248 Python 185/354 Advanced Constructs 2, Piƞalls

Collection Operators

• in is also a membership operator (outside for)

− implemented as __contains__

• indexing and slicing operators

− del x[y]→ x.__delitem__(y)

− x[y]→ x.__getitem__(y)

− x[y] = z→ x.__setitem__(y, z)

PV248 Python 186/354 Advanced Constructs 2, Piƞalls

Conditional Operator

• also known as a ternary operator

• written x if cond else y

− in C: cond ? x : y

• forms an expression, unlike if

− can e.g. appear in a lambda

− or in function arguments, &c.

PV248 Python 187/354 Advanced Constructs 2, Piƞalls

Concurrency & Parallelism

• threading – thread-based parallelism

• multiprocessing

• concurrent – future-based programming

• subprocess

• sched, a general-purpose event scheduler

• queue, for sending objects between threads

PV248 Python 188/354 Advanced Constructs 2, Piƞalls

Threading

• low-level thread support, module threading

• Thread objects represent actual threads

− threads provide start() and join()

− the run()method executes in a new thread

• mutexes, semaphores &c.

PV248 Python 189/354 Advanced Constructs 2, Piƞalls

The Global Interpreter Lock

• memory management in CPython is not thread-safe

− Python code runs under a global lock

− pure Python code cannot use multiple cores

• C code usually runs without the lock

− this includes numpy crunching

PV248 Python 190/354 Advanced Constructs 2, Piƞalls

Multiprocessing

• like threading but uses processes

• works around the GIL

− each worker process has its own interpreter

• queued/sent objects must be pickled

− see also: the picklemodule

− this causes substantial overhead

− functions, classes &c. are pickled by name

PV248 Python 191/354 Advanced Constructs 2, Piƞalls

Futures

• like coroutine await but for subroutines

• a Future can be waited for using f.result()

• scheduled via concurrent.futures.Executor

− Executor.map is like asyncio.gather

− Executor.submit is like asyncio.create_task

• implemented using process or thread pools

PV248 Python 192/354 Advanced Constructs 2, Piƞalls

Exceptions

• an exception interrupts normal control ϐlow

• it’s called an exception because it is exceptional

− never mind StopIteration

• causes methods to be interrupted

− until a matching except block is found

− also known as stack unwinding

PV248 Python 193/354 Advanced Constructs 2, Piƞalls

Life Without Exceptions

int fd = socket(...);

if (fd < 0)

... /* handle errors */

if (bind(fd, ...) < 0)

... /* handle errors */

if (listen(fd, 5) < 0)

... /* handle errors */

PV248 Python 194/354 Advanced Constructs 2, Piƞalls

With Exceptions

try:

sock = socket.socket(...)

sock.bind(...)

sock.listen(...)

except ...:

handle errors

PV248 Python 195/354 Advanced Constructs 2, Piƞalls

Exceptions vs Resources

x = open("file.txt")

stuff

raise SomeError

• who calls x.close()

• this would be a resource leak

PV248 Python 196/354 Advanced Constructs 2, Piƞalls

Using finally

try:

x = open("file.txt")

stuff

finally:

x.close()

• works, but tedious and error-prone

PV248 Python 197/354 Advanced Constructs 2, Piƞalls

Using with

with open("file.txt") as f:

stuff

• with takes care of the finally and close

• with x as y sets y = x.__enter__()

− and calls x.__exit__(...) when leaving the block

PV248 Python 198/354 Advanced Constructs 2, Piƞalls

The @property decorator

• attribute syntax is the preferred one in Python

• writing useless setters and getters is boring

class Foo:

@property

def x(self): return 2 * self.a

@x.setter

def x(self, v): self.a = v // 2

PV248 Python 199/354 Advanced Constructs 2, Piƞalls

Mixing Languages

• for many people, Python is not a ϐirst language

• some things look similar in Python and Java (C++,…)

− sometimes they do the same thing

− sometimes they do something very different

− sometimes the difference is subtle

PV248 Python 200/354 Advanced Constructs 2, Piƞalls

Python vs Java: Decorators

• Java has a thing called annotations

• looks very much like a Python decorator

• in Python, decorators can drastically change meaning

• in Java, they are just passive metadata

− other code canuse them formeta-programming though

PV248 Python 201/354 Advanced Constructs 2, Piƞalls

Class Body Variables

class Foo:

some_attr = 42

• in Java/C++, this is how you create instance variables

• in Python, this creates class attributes

− i.e. what C++/Java would call static attributes

PV248 Python 202/354 Advanced Constructs 2, Piƞalls

Very Late Errors

if a == 2:

priiiint("a is not 2")

• no error when loading this into python

• it even works as long as a != 2

• most languages would tell you much earlier

PV248 Python 203/354 Advanced Constructs 2, Piƞalls

Very Late Errors (cont’d)

try:

foo()

except TyyyypeError:

print("my mistake")

• does not even complain when running the code

• you only notice when foo() raises an an exception

PV248 Python 204/354 Advanced Constructs 2, Piƞalls

Late Imports

if a == 2:

import foo

foo.say_hello()

• unless a == 2, mymod is not loaded

• any syntax errors don’t show up until a == 2

− it may even fail to exist

PV248 Python 205/354 Advanced Constructs 2, Piƞalls

Block Scope

for i in range(10): pass

print(i) # not a NameError

• in Python, local variables are function-scoped

• in other languages, i is conϐined to the loop

PV248 Python 206/354 Advanced Constructs 2, Piƞalls

Assignment Pitfalls

x = [1, 2]

y = x

x.append(3)

print(y) # prints [1, 2, 3]

• in Python, everything is a reference

• assignment does not make copies

PV248 Python 207/354 Advanced Constructs 2, Piƞalls

Python vs Java: Closures

• captured variables are final in Java

• but they are mutable in Python

− and of course captured by reference

• they are whatever you tell them to be in C++

PV248 Python 208/354 Advanced Constructs 2, Piƞalls

Explicit super()

• Java and C++ automatically call parent constructors

• Python does not

• you have to call them yourself

PV248 Python 209/354 Advanced Constructs 2, Piƞalls

Setters and Getters

obj.attr

obj.attr = 4

• in C++ or Java, this is an assignment

• in Python, it can run arbitrary code

− this often makes getters/setters redundant

PV248 Python 210/354 Advanced Constructs 2, Piƞalls

Exercise 7: Music Analysis

• invocation: ./music.py 440 audio.wav

− 440 is the frequency of the pitch a’

− audio.wav is the same as for exercise 6

• use a sliding window for .1 second precision

• print peak pitches instead of frequencies

PV248 Python 211/354 Advanced Constructs 2, Piƞalls

Exercise 7: Output

01.0-02.3 e+0 gis+0 b+0

10.0-12.0 b'+10

12.0-12.7 C+0 e-3

• consider only the 3 most prominent peaks

• print 1 line for each segment with the same peaks

− print nothing for segments with no peaks

− order the peaks by increasing frequency

PV248 Python 212/354 Advanced Constructs 2, Piƞalls

Exercise 7: Pitch Formatting

• pitch names: c, cis, d, es, e, f, ϐis, g, gis, a, bes, b

• octaves (Helmholtz): A,, / A, / A / a / a’ / a’’ and so on

• pitches use a logarithmic scale

− if a’ is 440 Hz, then a is 220 Hz and A is 110 Hz

• valid pitch examples: ϐis / Cis / bes’ / Es,

PV248 Python 213/354 Advanced Constructs 2, Piƞalls

Exercise 7: Pitch Deviation

• not all pitches are exactly ‘right’

− i.e. they won’t exactly match a named pitch

• cent is 1/100 the distance between semitones

− remember that this is a logarithmic scale

• print the closest named pitch and the deviation in cents

− if a’ = 440 Hz, then 448 Hz is a’ + 31 cents

− likewise, 115 Hz is Bes− 23 cents

PV248 Python 214/354 Advanced Constructs 2, Piƞalls

Exercise 7: Peak Clustering

• most instruments have complex spectra

− individual notes are not pure sine waves

• this can lead to peak clustering

− that is multiple peaks next to each other (1Hz apart)

− consider only the strongest peak in each cluster

− if equal, pick the one closer to the center of the cluster

PV248 Python 215/354 TesƟng, Debugging & Profiling

Part 8: Testing, Debugging & Proϐiling

PV248 Python 216/354 TesƟng, Debugging & Profiling

Why Testing

• reading programs is hard

• reasoning about programs is even harder

• testing is comparatively easy

• difference between an example and a proof

PV248 Python 217/354 TesƟng, Debugging & Profiling

What is Testing

• based on trial runs

• the program is executed with some inputs

• the outputs or outcomes are checked

• almost always incomplete

PV248 Python 218/354 TesƟng, Debugging & Profiling

Testing Levels

• unit testing

− individual classes

− individual functions

• functional

− system

− integration

PV248 Python 219/354 TesƟng, Debugging & Profiling

Testing Automation

• manual testing

− still widely used

− requires human

• semi-automated

− requires human assistance

• fully automated

− can run unattended

PV248 Python 220/354 TesƟng, Debugging & Profiling

Testing Insight

• what does the test or tester know?

• black box: nothing known about internals

• gray box: limited knowledge

• white box: ‘complete’ knowledge

PV248 Python 221/354 TesƟng, Debugging & Profiling

Why Unit Testing?

• allows testing small pieces of code

• the unit is likely to be used in other code

− make sure your code works before you use it

− the less code, the easier it is to debug

• especially easier to hit all the corner cases

PV248 Python 222/354 TesƟng, Debugging & Profiling

Unit Tests with unittest

• from unittest import TestCase

• derive your test class from TestCase

• put test code into methods named test_*

• run with python -m unittest program.py

− add -v for more verbose output

PV248 Python 223/354 TesƟng, Debugging & Profiling

from unittest import TestCase

class TestArith(TestCase):

def test_add(self):

self.assertEqual(1, 4 - 3)

def test_leq(self):

self.assertTrue(3 <= 2 * 3)

PV248 Python 224/354 TesƟng, Debugging & Profiling

Unit Tests with pytest

• a more pythonic alternative to unittest

− unittest is derived from JUnit

• easier to use and less boilerplate

• you can use native python assert

• easier to run, too

− just run pytest in your source repository

PV248 Python 225/354 TesƟng, Debugging & Profiling

Test Auto-Discovery in pytest

• pytest ϐinds your testcases for you

− no need to register anything

• put your tests in test_*.py or *_test.py

• name your testcases (functions) test_*

PV248 Python 226/354 TesƟng, Debugging & Profiling

Fixtures in pytest

• sometimes you need the same thing in many testcases

• in unittest, you have the test class

• pytest passes ϐixtures as parameters

− ϐixtures are created by a decorator

− they are matched based on their names

PV248 Python 227/354 TesƟng, Debugging & Profiling

import pytest

import smtplib

@pytest.fixture

def smtp_connection():

return smtplib.SMTP("smtp.gmail.com", 587)

def test_ehlo(smtp_connection):

response, msg = smtp_connection.ehlo()

assert response == 250

PV248 Python 228/354 TesƟng, Debugging & Profiling

Property Testing

• writing test inputs is tedious

• sometimes, we can generate them instead

• useful for general properties like

− idempotency (e.g. serialize + deserialize)

− invariants (output is sorted,…)

− code does not cause exceptions

PV248 Python 229/354 TesƟng, Debugging & Profiling

Using hypothesis

• property-based testing for Python

• has strategies to generate basic data types

− int, str, dict, list, set,…

• compose built-in generators to get custom types

• integrated with pytest

PV248 Python 230/354 TesƟng, Debugging & Profiling

import hypothesis

import hypothesis.strategies as s

@hypothesis.given(s.lists(s.integers()))

def test_sorted(x):

assert sorted(x) == x # should fail

@hypothesis.given(x=s.integers(), y=s.integers())

def test_cancel(x, y):

assert (x + y) - y == x # looks okay

PV248 Python 231/354 TesƟng, Debugging & Profiling

Going Quick and Dirty

• goal: minimize time spent on testing

• manual testing usually loses

− but it has almost 0 initial investment

• if you can write a test in 5 minutes, do it

• useful for testing small scripts

PV248 Python 232/354 TesƟng, Debugging & Profiling

Shell 101

• shell scripts are very easy to write

• they are ideal for testing IO behaviour

• easily check for exit status: set -e

• see what is going on: set -x

• use diff -u to check expected vs actual output

PV248 Python 233/354 TesƟng, Debugging & Profiling

Shell Test Example

set -ex

python script.py < test1.in | tee out

diff -u test1.out out

python script.py < test2.in | tee out

diff -u test2.out out

PV248 Python 234/354 TesƟng, Debugging & Profiling

Continuous Integration

• automated tests need to be executed

• with many tests, this gets tedious to do by hand

• CI builds and tests your project regularly

− every time you push some commits

− every night (e.g. more extensive tests)

PV248 Python 235/354 TesƟng, Debugging & Profiling

CI: Travis

• runs in the cloud (CI as a service)

• trivially integrates with pytest

• virtualenv out of the box for python projects

• integrated with github

• conϐigure in .travis.yml in your repo

PV248 Python 236/354 TesƟng, Debugging & Profiling

CI: GitLab

• GitLab has its own CI solution (similar to travis)

• also available at FI

• runs tests when you push to your gitlab

• drop a .gitlab-ci.yml in your repository

• automatic deployment into heroku &c.

PV248 Python 237/354 TesƟng, Debugging & Profiling

CI: Buildbot

• written in python/twisted

− basically a framework to build a custom CI tool

• self-hosted and somewhat complicated to set up

− more suited for complex projects

− much more ϐlexible than most CI tools

• distributed design

PV248 Python 238/354 TesƟng, Debugging & Profiling

CI: Jenkins

• another self-hosted solution, this time in Java

− widely used and well supported

• native support for python projects (including pytest)

− provides a dashboard with test result graphs &c.

− supports publishing sphinx-generateddocumentation

PV248 Python 239/354 TesƟng, Debugging & Profiling

Print-based Debugging

• no need to be ashamed, everybody does it

• less painful in interpreted languages

• you can also use decorators for tracing

• never forget to clean your program up again

PV248 Python 240/354 TesƟng, Debugging & Profiling

def debug(e):

f = sys._getframe(1)

v = eval(e, f.f_globals, f.f_locals)

l = f.f_code.co_filename + ':'

l += str(f.f_lineno) + ':'

print(l, e, '=', repr(v), file=sys.stderr)

x = 1

debug('x + 1')

PV248 Python 241/354 TesƟng, Debugging & Profiling

The Python Debugger

• run as python -m pdb program.py

• there’s a built-in help command

• next steps through the program

• break to set a breakpoint

• cont to run until end or a breakpoint

PV248 Python 242/354 TesƟng, Debugging & Profiling

What is Proϐiling

• measurement of resource consumption

• essential info for optimising programs

• answers questions about bottlenecks

− where is my program spending most time?

− less often: how is memory used in the program

PV248 Python 243/354 TesƟng, Debugging & Profiling

Why Proϐiling

• ‘blind’ optimisation is often misdirected

− it is like ϐixing bugs without triggering them

− program performance is hard to reason about

• tells you exactly which point is too slow

− allows for best speedup with least work

PV248 Python 244/354 TesƟng, Debugging & Profiling

Proϐiling in Python

• provided as a library, cProfile

− alternative: profile is slower, but more ϐlexible

• run as python -m cProfile program.py

• outputs a list of lines/functions and their cost

• use cProfile.run() to proϐile a single expression

PV248 Python 245/354 TesƟng, Debugging & Profiling

python -m cProfile -s time fib.py

ncalls tottime percall file:line(function)

13638/2 0.032 0.016 fib.py:1(fib_rec)

2 0.000 0.000 {builtins.print}

2 0.000 0.000 fib.py:5(fib_mem)

PV248 Python 246/354 TesƟng, Debugging & Profiling

Exercise 8: Statistics

• fetch points.csv from study materials

− each column is one deadline of one exercise

− each line is one student, cells are points

• an average student has average points in each column

• you can use pandas and/or numpy if you like

PV248 Python 247/354 TesƟng, Debugging & Profiling

Exercise 8: Bulk Stats

• invocation: ./stat.py file.csv <mode>

• <mode> is one of: dates, deadlines, exercises

• in each mode, list all such entities along with

− mean, median, first and last quartile of points

− number of students that passed (points > 0)

• the output is a JSON dictionary of dictionaries

• date YYYY-MM-DD, exercise NN, deadline YYYY-MM-DD/NN

PV248 Python 248/354 TesƟng, Debugging & Profiling

Bulk Output (stat.py)

{ "01": { "mean": 1, "median": 1, ... },

"02": { ..., "passed": 60, ... }, ... }

or

{ "2018-09-26": { ... "last": 2.5, ... },

"2018-10-03": { ... "passed": 20, ... },

... } }

PV248 Python 249/354 TesƟng, Debugging & Profiling

Exercise 8: Individual Stats

• invocation: ./student.py file.csv <id>

• <id> is the student identiϐier or average

• output mean and median points per exercise

• a number of passed exercises and total points

• a linear regression for cumulative points in time

− keys: regression slope (intercept is 0)

• expected date to pass the 16 and 20 point marks

− keys: date 16 and date 20

PV248 Python 250/354 TesƟng, Debugging & Profiling

Per-Student Output (student.py)

{ "mean": 1.66, "median": 1.5,

"total": 10, "passed": 6,

"regression slope": 0.2,

"date 16": "2018-12-05",

"date 20": "2018-12-25" }

PV248 Python 251/354 CommunicaƟon, HTTP

Part 9: Communication, HTTP

PV248 Python 252/354 CommunicaƟon, HTTP

Running Programs (the old way)

• os.system is about the simplest

− also somewhat dangerous – shell injection

− you only get the exit code

• os.popen allows you to read output of a program

− alternatively, you can send input to the program

− you can’t do both (would likely deadlock anyway)

− runs the command througha shell, sameasos.system

PV248 Python 253/354 CommunicaƟon, HTTP

Low-level Process API

• POSIX-inherited interfaces (on POSIX systems)

• os.exec: replace the current process

• os.fork: split the current process in two

• os.forkpty: same but with a PTY

PV248 Python 254/354 CommunicaƟon, HTTP

Detour: bytes vs str

• strings (class str) represent text

− that is, a sequence of unicode points

• ϐiles and network connections handle data

− represented in Python as bytes

• the bytes constructor can convert from str

− e.g. b = bytes("hello", "utf8")

PV248 Python 255/354 CommunicaƟon, HTTP

Running Programs (the new way)

• you can use the subprocessmodule

• subprocess can handle bidirectional IO

− it also takes care of avoiding IO deadlocks

− set input to feed data to the subprocess

• internally, run uses a Popen object

− if run can’t do it, Popen probably can

PV248 Python 256/354 CommunicaƟon, HTTP

Getting subprocess Output

• only available via run since Python 3.7!

• the run function returns a CompletedProcess

• it has attributes stdout and stderr

• both are bytes (byte sequences) by default

• or str if text or encodingwere set

• available if you enabled capture_output

PV248 Python 257/354 CommunicaƟon, HTTP

Running Filters with Popen

• if you are stuck with 3.6, use Popen directly

• set stdin in the constructor to PIPE

• use the communicatemethod to send the input

• this gives you the outputs (as bytes)

PV248 Python 258/354 CommunicaƟon, HTTP

import subprocess

from subprocess import PIPE

input = bytes("x\na\nb\ny", "utf8")

p = subprocess.Popen(["sort"], stdin=PIPE,

stdout=PIPE)

out = p.communicate(input=input)

out[0] is the stdout, out[1] is None

PV248 Python 259/354 CommunicaƟon, HTTP

Subprocesses with asyncio

• import asyncio.subprocess

• create_subprocess_exec, like subprocess.run

− but it returns a Process instance

− Process has a communicate async method

• can run things in background (via tasks)

− also multiple processes at once

PV248 Python 260/354 CommunicaƟon, HTTP

Protocol-based asyncio subprocesses

• let loop be an implementation of the asyncio event loop

• there’s subprocess_exec and subprocess_shell

− sets up pipes by default

• integrates into the asyncio transport layer (see later)

• allows you to obtain the data piece-wise

https://docs.python.org/3/library/asyncio-protocol.html

PV248 Python 261/354 CommunicaƟon, HTTP

Sockets

• the socket API comes from early BSD Unix

• socket represents a (possible) network connection

• sockets are more complicated than normal ϐiles

− establishing connections is hard

− messages get lost much more often than ϐile data

PV248 Python 262/354 CommunicaƟon, HTTP

Socket Types

• sockets can be internet or unix domain

− internet sockets connect to other computers

− Unix sockets live in the ϐilesystem

• sockets can be stream or datagram

− stream sockets are like ϐiles (TCP)

− you can write a continuous stream of data

− datagramsockets can send individualmessages (UDP)

PV248 Python 263/354 CommunicaƟon, HTTP

Sockets in Python

• the socketmodule is available on all major OSes

• it has a nice object-oriented API

− failures are propagated as exceptions

− buffer management is automatic

• useful if you need to do low-level networking

− hard to use in non-blocking mode

PV248 Python 264/354 CommunicaƟon, HTTP

Sockets and asyncio

• asyncio provides sock_* to work with socket objects

• this makes work with non-blocking sockets a lot easier

• but your program needs to be written in async style

• only use sockets when there is no other choice

− asyncio protocols are both faster and easier to use

PV248 Python 265/354 CommunicaƟon, HTTP

Hyper-Text Transfer Protocol

• originally a simple text-based, stateless protocol

• however

− SSL/TLS, cryptography (https)

− pipelining (somewhat stateful)

− cookies (somewhat stateful in a different way)

• typically between client (browser) and a front-end server

• but also as aback-endprotocol (web server to app server)

PV248 Python 266/354 CommunicaƟon, HTTP

Request Anatomy

• request type (see below)

• header (text-based, like e-mail)

• content

Request Types

• GET – asks the server to send a resource

• HEAD – like GET but only send back headers

• POST – send data to the server

PV248 Python 267/354 CommunicaƟon, HTTP

Python and HTTP

• both client and server functionality

− import http.client

− import http.server

• TLS/SSL wrappers are also available

− import ssl

• synchronous by default

PV248 Python 268/354 CommunicaƟon, HTTP

Serving Requests

• derive from BaseHTTPRequestHandler

• implement a do_GETmethod

• this gets called whenever the client does a GET

• also available: do_HEAD, do_POST, etc.

• pass the class (not an instance) to HTTPServer

PV248 Python 269/354 CommunicaƟon, HTTP

Serving Requests (cont’d)

• HTTPServer creates a new instance of your Handler

• the BaseHTTPRequestHandlermachinery runs

• it calls your do_GET etc. method

• request data is available in instance variables

− self.path, self.headers

PV248 Python 270/354 CommunicaƟon, HTTP

Talking to the Client

• HTTP responses start with a response code

− self.send_response(200, 'OK')

• the headers follow (set at least Content-Type)

− self.send_header('Connection', 'close')

• headers and the content need to be separated

− self.end_headers()

• ϐinally, send the content by writing to self.wfile

PV248 Python 271/354 CommunicaƟon, HTTP

Sending Content

• self.wfile is an open ϐile

• it has a write()method which you can use

• sockets only accept byte sequences, not str

• use the bytes(string, encoding) constructor

− match the encoding to your Content-Type

PV248 Python 272/354 CommunicaƟon, HTTP

HTTP and asyncio

• thebaseasyncio currentlydoesn’t directly supportHTTP

• but: you can get aiohttp from PyPI

• contains a very nice web server

− from aiohttp import web

− minimum boilerplate, fully asyncio-ready

PV248 Python 273/354 CommunicaƟon, HTTP

SSL and TLS

• you want to use the sslmodule for handling HTTPS

− this is especially true server-side

− aiohttp and http.server are compatible

• you need to deal with certiϐicates (loading, checking)

• this is a rather important but complex topic

PV248 Python 274/354 CommunicaƟon, HTTP

Certiϐicate Basics

• certiϐicate is a cryptographically signed statement

− it ties a server to a certain public key

− the client ensures the server knows the private key

• the server loads the certiϐicate and its private key

• the client must validate the certiϐicate

− this is typically a lot harder to get right

PV248 Python 275/354 CommunicaƟon, HTTP

SSL in Python

• start with import ssl

• almost everything happens in the SSLContext class

• get an instance from ssl.create_default_context()

− you can use wrap_socket to run an SSL handshake

− you can pass the context to aiohttp

• if httpd is a http.server.HTTPServer:

httpd.socket = ssl.wrap_socket(httpd.socket,

...)

PV248 Python 276/354 CommunicaƟon, HTTP

HTTP Clients

• there’s a very basic http.client

• for a more complete library, use urllib.request

• aiohttp has client functionality

• all of the above can be used with ssl

• another 3rd party module: Python Requests

PV248 Python 277/354 CommunicaƟon, HTTP

Exercise 9: Forwarding HTTP

• invocation: ./http-forward.py 9001 example.com

− listen on the speciϐied port (9001 above) for HTTP

− use example.com as the upstream for GET

• for GET requests:

− forward the request as-is to the upstream

− send back JSON to your client (see next slide)

• for POST requests

− accept JSON data, construct request, proceed as GET

− supply suitable default headers unless overridden

PV248 Python 278/354 CommunicaƟon, HTTP

Exercise 9: GET Requests

• the reply to the client must be valid JSON dictionary

• send the upstream response code as code

− or "timeout" (by default after 1 second)

• send all the received headers to the client

• if the response is valid JSON, include it under json

− include it as a string in content otherwise

PV248 Python 279/354 CommunicaƟon, HTTP

Exercise 9: POST Requests

• read a JSON dictionary from the request content; keys:

− type – string, either GET (default) or POST

− url – string, the address to fetch

− headers – dictionary, the headers to send

− content – the content to send if type is POST

− timeout – number of seconds to wait for completion

• if the JSON is invalid, set code to "invalid json"

− also if a crucial key is missing (url, content for POST)

PV248 Python 280/354 CommunicaƟon, HTTP

POST request content

{ "type": "GET", "url": "http://example.com",

"headers": { "Accept-Encoding": "...", ... },

"timeout": 3 }

reply from http-forward.py

{ "code": 200

"headers": { "Content-Length": ... },

"json": ... }

PV248 Python 281/354 CommunicaƟon, HTTP

Exercise 9: Bonus

• handle SSL/TLS when connecting to your upstream

− speciϐied by https as a protocol in url

• include a boolean certificate valid in response JSON

− rely on the default system trusted CA certs

− also certificate forwith a list of hostnames

• get 0.5 extrapoint (regardless ofwhichdeadline youpass)

PV248 Python 282/354 Closures, CorouƟnes &c.

Part 10: Closures, Coroutines &c.

PV248 Python 283/354 Closures, CorouƟnes &c.

Exercise 10: CGI

• invocation: ./serve.py 9001 dir

• listen on the speciϐied port (9001 in this case)

• serve the content of dir over HTTP

• treat ϐiles named .cgi specially (see next slide)

• serve anything else as static content

PV248 Python 284/354 Closures, CorouƟnes &c.

Exercise 10: Running CGI Scripts

• if a .cgi ϐile is requested, run it

• adhere to the CGI protocol

− request info goes into environment variables

− the stdout of the script goes to the client

− refer to RFC 3875 and/or Wikipedia

• do not forget to deal with POST requests

PV248 Python 285/354 Closures, CorouƟnes &c.

Exercise 10: Various

• no need to auto-index directories

• you must handle concurrent connections

− even while a CGI script is running

• you must handle arbitrarily large data

− this applies to static ϐiles

− but also to CGI script outputs

PV248 Python 286/354 Closures, CorouƟnes &c.

Execution Stack

• made up of activation frames

• holds local variables

• and return addresses

• in dynamic languages, often lives in the heap

PV248 Python 287/354 Closures, CorouƟnes &c.

Variable Capture

• variables are captured lexically

• deϐinitions are a dynamic / run-time construct

− a nested deϐinition is executed

− creates a clousre object

• always by reference in Python

− but can be by-value in other languages

PV248 Python 288/354 Closures, CorouƟnes &c.

Using Closures

• closures can be returned, stored and called

− they can be called multiple times, too

− they can capture arbitrary variables

• closures naturally retain state

• this is what makes them powerful

PV248 Python 289/354 Closures, CorouƟnes &c.

Objects from Closures

• so closures are essentially code + state

• wait, isn’t that what an object is?

• indeed, you can implement objects using closures

PV248 Python 290/354 Closures, CorouƟnes &c.

The Role of GC

• memory management becomes a lot more complicated

• forget C-style ‘automatic’ stack variables

• this is why the stack is actually in the heap

• this can go as far as form reference cycles

PV248 Python 291/354 Closures, CorouƟnes &c.

Coroutines

• coroutines are a generalisation of subroutines

• they can be suspended and re-entered

• coroutines can be closures at the same time

• the code of a coroutine is like a function

• a suspended coroutine is like an activation frame

PV248 Python 292/354 Closures, CorouƟnes &c.

Yield

• suspends execution and ‘returns’ a value

• may also obtain a new value (cf. send)

• when re-entered, continue where we left off

for i in range(5): yield i

PV248 Python 293/354 Closures, CorouƟnes &c.

Send

• with yield, we have one-way communication

• but in many cases, we would like two-way

• a suspended coroutine is an object in Python

− with a sendmethod which takes a value

− send re-enters the coroutine

PV248 Python 294/354 Closures, CorouƟnes &c.

Yield From and Await

• yield from is mostly a generator concept

• await basically does the same thing

− call out to another coroutine

− when it suspends, so does the entire stack

PV248 Python 295/354 Closures, CorouƟnes &c.

Suspending Native Coroutines

• this is not actually possible

− not with async-native syntax anyway

• you need a yield

− for that, you need a generator

− use the types.coroutine decorator

PV248 Python 296/354 Closures, CorouƟnes &c.

Event Loop

• not required in theory

• useful also without coroutines

• there is a synergistic effect

− event loops make coroutines easier

− coroutines make event loops easier

PV248 Python 297/354 asyncio, Projects

Part 11: asyncio, Projects

PV248 Python 298/354 asyncio, Projects

IO at the OS Level

• often defaults to blocking

− read returns when data is available

− this is usually OK for ϐile

• but what about network code?

− could work for a client

PV248 Python 299/354 asyncio, Projects

Threads and IO

• there may be work to do while waiting

− waiting for IO can be wasteful

• only the calling (OS) thread is blocked

− another thread may do the work

− but multiple green threads may be blocked

PV248 Python 300/354 asyncio, Projects

Non-Blocking IO

• the program calls read

− read returns immediately

− even if there was no data

• but how do we know when to read?

− we could poll

− for example call read every 30ms

PV248 Python 301/354 asyncio, Projects

Polling

• trade-off between latency and throughput

− sometimes, polling is okay

− but is often too inefϐicient

• alternative: IO dispatch

− useful when multiple IOs are pending

− wait only if all are blocked

PV248 Python 302/354 asyncio, Projects

select

• takes a list of ϐile descriptors

• block until one of them is ready

− next readwill return data immediately

• can optionally specify a timeout

• only useful for OS-level resources

PV248 Python 303/354 asyncio, Projects

Alternatives to select

• select is a rather old interface

• there is a number of more modern variants

• poll and epoll system calls

− despite the name, they do not poll

− epoll is more scalable

• kqueue and kevent on BSD systems

PV248 Python 304/354 asyncio, Projects

Synchronous vs Asynchronous

• the select family is synchronous

− you call the function

− it may wait some time

− you proceed when it returns

• OS threads are fully asynchronous

PV248 Python 305/354 asyncio, Projects

The Thorny Issue of Disks

• a ϐile is always ‘ready’ for reading

• this may still take time to complete

• there is no good solution on UNIX

• POSIX AIO exists but is sparsely supported

• OS threads are an option

PV248 Python 306/354 asyncio, Projects

IO on Windows

• select is possible (but slow)

• Windows provides real asynchronous IO

− quite different from UNIX

− the IO operation is directly issued

− but the function returns immediately

• comes with a notiϐication queue

PV248 Python 307/354 asyncio, Projects

The asyncio Event Loop

• uses the select family of syscalls

• why is it called async IO?

− select is synchronous in principle

− this is an implementation detail

− the IOs are asynchronous to each other

PV248 Python 308/354 asyncio, Projects

How Does It Work

• you must use asyncio functions for IO

• an async read does not issue an OS read

• it yields back into the event loop

• the fd is put on the select list

• the coroutine is resumed when the fd is ready

PV248 Python 309/354 asyncio, Projects

Timers

• asyncio allows you to set timers

• the event loop keeps a list of those

• and uses that to set the select timeout

− just uses the nearest timer expiry

• when a timer expires, its owner is resumed

PV248 Python 310/354 asyncio, Projects

Blocking IO vs asyncio

• all user code runs on the main thread

• you must not call any blocking IO functions

• doing so will stall the entire application

− in a server, clients will time out

− even if not, latency will suffer

PV248 Python 311/354 asyncio, Projects

DNS

• POSIX: getaddrinfo and getnameinfo

− also the older API gethostbyname

• those are all blocking functions

− and they can take a while

− but name resolution is essential

• asyncio internally uses OS threads for DNS

PV248 Python 312/354 asyncio, Projects

Signals

• signals on UNIX are very asynchronous

• interact with OS threads in a messy way

• asyncio hides all this using C code

PV248 Python 313/354 asyncio, Projects

Exercise 11: Tic Tac Toe

• write a game server for (3x3) tic tac toe

• invocation: ./ttt.py port

− listen on the given port (number)

− serve HTTP (only GET requests)

− all responses are JSON dictionaries

PV248 Python 314/354 asyncio, Projects

Exercise 11: Start

• GET /start?name=string

• returns a numeric id

− multiple games may run in parallel

• the game starts with an empty board

• player 1 plays ϐirst

PV248 Python 315/354 asyncio, Projects

Exercise 11: Status

• GET /status?game=id

• if the game is over:

− set winner to 0 (draw), 1 or 2

• otherwise set:

− board is a list of lists of numbers

− 0 = empty, 1 and 2 indicate the player

− next 1 or 2 (who plays next)

PV248 Python 316/354 asyncio, Projects

Exercise 11: Playing

• GET /play?game=id&player=1&x=1&y=2

• must validate the request

• set status to either "ok" or "bad"

− if status is "bad", set message

− message is free-form text for the user

PV248 Python 317/354 asyncio, Projects

Exercise 12: Tic Tac Toe Client

• include ttt.py from exercise 11

− add a /list request

− returns a JSON list of games

− each is a dict with name and id

• invocation: client.py host port

PV248 Python 318/354 asyncio, Projects

Exercise 12: User Interface

• start by offering a list of games

− only offer games with empty boards

• the user enters the numeric id to join

− joining makes you player 2

• typing new starts a new game

− you start as player 1

PV248 Python 319/354 asyncio, Projects

Exercise 12: Polling

• ask for status ~once per second

• while waiting, print (once)

− waiting for the other player

• draw an up-to-date board

− use _, x and o, no spaces

PV248 Python 320/354 asyncio, Projects

Exercise 12: Gameplay

• prompt with your turn (o): (or x)

− read 𝑥 and 𝑦 (whitespace separated)

− if invalid, print invalid input

− then ask again (until satisϐied)

• on game over, print you lose or you win

PV248 Python 321/354 asyncio, Projects

Exercise 12: Bonus

• make an interactive graphical interface

− make the interaction mouse-based

− use pygame or pyglet

• must be ready for the last seminar

− you can get 1 extra point

PV248 Python 322/354 asyncio, Projects

Projects

• you can earn 4 points

− that’s 2 exercises worth

− the effort should match that

• submit by the end of the exam period

• this is a fallback option

− exercises and reviews are preferred

PV248 Python 323/354 asyncio, Projects

Project Grading

• there is only 1 automated option (see DF)

− can be evaluated repeatedly

• everything else is evaluated manually

− should work 100% on ϐirst try

− you get at most one retry

− expect latency of about a week

PV248 Python 324/354 asyncio, Projects

Project Reviews

• projects can be reviewed before submission

− excluding the machine-corrected variant

− you can seek multiple reviews

− getting at least one is strongly recommended

• otherwise same rules as for exercises

− review point limits are shared

PV248 Python 325/354 asyncio, Projects

Project Topics

• do not try to sell something you already have

• seek approval before you start working

− put a project.txt in your repository

− I will make a note in the IS notebook

• it is okay to come up with your own

− but I may request changes

PV248 Python 326/354 asyncio, Projects

Project Idea: Breakout

• write a breakout clone (game)

− or another game of similar complexity

− do not settle for absolute bare-bones

− add simple sound effects or animation

• you can use pygame or pyglet

PV248 Python 327/354 asyncio, Projects

Project Idea: Scorelib Redux

• write an editor for the score database

− should be practically usable

− work with the SQL representation

• you can use pyqt5

• alternatively flask or django

− might need some javascript

− you can also use aiohttp and AJAX

PV248 Python 328/354 asyncio, Projects

Project Idea: A Real Tuner

• should work in real time

• process microphone input

− alternatively work with a recording

− in which case, provide a slider

• visualize the outputs

− try pygame or pyglet

PV248 Python 329/354 Modules and Packages

Part 12: Modules and Packages

PV248 Python 330/354 Modules and Packages

Code Modularity

• common tasks are bundled as functions

• functions can be bundled into classes

− often contains shared state (via attributes)

• classes are bundled into modules

− simpler than classes: usually no data

• modules can be bundled into packages

PV248 Python 331/354 Modules and Packages

Why Modularity

1. managing size and complexity

2. management of names

3. code re-use and sharing

PV248 Python 332/354 Modules and Packages

Code Size

• there are natural limits on function size

− long functions are hard to understand

− likewise on class sizes

• this also holds for modules

− big modules are hard to use

− but even harder to maintain

PV248 Python 333/354 Modules and Packages

Naming Things

• human brain is highly context-sensitive

− same name can refer to many things

− consider a method called open

• there is no optimal length for a name

− wider scopes require longer names

− long names in narrow scopes are wasteful

PV248 Python 334/354 Modules and Packages

Namespaces

• a hierarchical approach to names

− use a short name from within the scope

− use a longer name from outside

• with a built-in mechanism for shortcuts

• realized by classes, modules, packages

PV248 Python 335/354 Modules and Packages

Python Modules

• creating a single module is simple

• a collection of re-usable code

− mainly classes (class)

− and functions (def, async def)

• there is no special syntax

− a ϐile, basically the same as a script

PV248 Python 336/354 Modules and Packages

Python Packages

• a package is a bundle of modules

• realized as a ϐile system directory

− it must have an __init__.py

− but it could be empty

• this is what gives us import foo.bar

PV248 Python 337/354 Modules and Packages

Package Mechanics

• the __init__.py has two roles

− prevent conϐlicts with non-package directories

− provide deϐinitions

• import foowill load foo/__init__.py

PV248 Python 338/354 Modules and Packages

More on Import

• import loads and evaluates the module

• it creates an object to represent it

• creates a variable in the current scope

• assigns the object to the variable

• import is somewhat like def

PV248 Python 339/354 Modules and Packages

Bytecode

• CPython is actually a bytecode interpreter

• there is a frontend which parses code

− and emits an intermediate representation

− which can be stored as bytecode

• bytecode is stored in .pyc ϐiles

• and for modules, it is cached under __pycache__

PV248 Python 340/354 Modules and Packages

Modules Written in C

• those are implemented as shared libraries

− .so on UNIX (typically ELF shared object)

− .pyd on Windows (really a PE DLL ϐile)

• the lookup is the same as for .pymodules

• functions show up as built-in functions

PV248 Python 341/354 Modules and Packages

The View from C

• CPython objects are of type PyObject *

• C APIs exist to create and use objects

• recall that modules are just objects

• a special function PyInit_modname()

− say PyInit_spam() in spam.so

− import calls this to create the object

PV248 Python 342/354 Modules and Packages

Built-in Modules

• some modules are completely built into CPython

• internally, they are much like C modules

• may be for efϐiciency or for low-level system access

• the sysmodule is always built-in

− sys.path is needed to load any other modules

PV248 Python 343/354 Modules and Packages

Modules are Garbage-Collected

• sys.modules holds references to all loaded modules

• it’s possible to remove modules from there

• importing again will then reload the module

• the old version can be garbage-collected

• some C modules are excluded from this mechanism

PV248 Python 344/354 Modules and Packages

Distributing Packages: Reminder

• python packages are distributed via PyPI

• source trees are different from installed modules

• extra metadata in the source tree

− info about authors, links to resources

− most importantly package dependencies

PV248 Python 345/354 Modules and Packages

Source Trees

• python is not a compiled language

− the source code is what is installed

• some packages also contain C code

− think number crunching in numpy

− this must be actually compiled

• there’s also unit tests of course

PV248 Python 346/354 Modules and Packages

setup.py

• a script that installs your package

• it knows where to put it and how

• also knows how to build C code

• usually written using setuptools

PV248 Python 347/354 Modules and Packages

Versioning

• so you have made a package…

− it is probably not complete

− and it may have some bugs in it

• you add features, ϐix bugs…

− other people already use it

− you need to make a new version

PV248 Python 348/354 Modules and Packages

Version Numbers

• often major.minor or major.minor.patch

− for example: python 3.6.5

• a change in major indicates incompatibility

− like when print x no longer works in python 3

• minor is for non-breaking feature additions

• patch is for bug ϐixes

PV248 Python 349/354 Modules and Packages

Dependencies

• packages are meant for re-use

• so you want to use some package

− your users will need it too

− maybe you need a dozen

• sure enough, packages need other packages

− this is ripe for automation

PV248 Python 350/354 Modules and Packages

Dependency Chasing

• setup.py could just download dependencies

− setuptools automate this for you

− and use PyPI to ϐind the packages

• it also only downloads what is missing

• pipwill ϐind you the ‘toplevel’ package

PV248 Python 351/354 Modules and Packages

Versioned Dependencies

• so you use function bar from package foo

− but it only appeared in version 2.4

• so you need package foo newer than 2.4

• but foowas then removed in version 3

− no time right now to deal with that

• welcome to dependency hell

PV248 Python 352/354 Modules and Packages

Chasing Dependencies Redux

• versioning makes dependencies NP-hard

• dependencies may be impossible to satisfy

• mistakes happen with version numbers too

− those usually affect other packages

• this is a problem in every complex software system

PV248 Python 353/354 Modules and Packages

Versioning Strategies

• optimistic dependencies

− maybe next foomajor won’t break my code

− if it does, my package breaks and i must ϐix it

• defensive dependencies

− next major of foowill probably break my code

− i use baz 1.1 and foo 2.4 and depend on foo < 3

− around comes baz 1.2 but it needs foo 3.1

PV248 Python 354/354 Modules and Packages

Questions & (maybe) Answers

