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Basic Concepts



Transition Systems

directed graph & = (S, (Ea)aea> (P,')id,so) with
> states S
» initial state sy € S
» edge relations E, with edge colours a € A (‘actions’)

» unary predicates P; with vertex colours i € I (‘properties’)
SN

b b

a,b Co<—o:> a
g b 9



Modal logic

Propositional logic with modal operators

» (a)e ‘there exists an a-successor where ¢ holds’

» [ale ‘¢ holds in every a-successor’

Notation: ¢, O if there are no edge labels

Formal semantics

S,sEP
S,sEpAY
S,sEovy
S,sF -9
S,sE (a)p
S,sE [ale

sepP

S,sFpand &,sFy
S,sEgorS,skEy

S,sk ¢

there is s > ¢ such that S, ¢ = ¢
foralls > t, wehave S,t = ¢



Examples

P A<$Q  ‘The state is in P and there exists a transition to Q.

[a]L “The state has no outgoing a-transition.

Interpretations
» Temporal Logic talks about time:

> states: points in time (discrete/continuous)
» O ‘sometime in the future ¢ holds’
> Op ‘always in the future ¢ holds’

» Epistemic Logic talks about knowledge:

> states: possible worlds
» O¢ ‘¢ might be true’
> Op ‘¢ is certainly true’



Examples: Temporal Logic

system & = (S, <, P)

» “P never holds”
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Examples: Temporal Logic

system & = (S, <, P)

> “P never holds”
-OP

> “After every P there is some Q.
0(P » ©Q)

» “Once P holds, it holds forever”
o(P — OP)

» “There are infinitely many P
ooP



Translation to first-order logic

Proposition

For every formula ¢ of propositional modal logic, there exists a
formula ¢* (x) of first-order logic such that

S,sEe iff GSE@(s).

Proof



Translation to first-order logic

Proposition

For every formula ¢ of propositional modal logic, there exists a
formula ¢* (x) of first-order logic such that

S,sEe iff GSE@(s).
Proof

P* := P(x)
(pAy)" = 9™ (x) Ay (x)
(pvy)" = 9™ (x) vy (x)
(~g)" = -9"(x)
((a)p)* = Fy[Ea(x,y) A 9" (¥)]
([al@)" = Vy[Ea(x,y) = ¢"(¥)]



Bisimulation

G and T transition systems
Z < S x T is a bisimulation if, for all (s, t) € Z,
(local) seP < teP
(forth) foreverys —¢ ', exists t % t' with (s',t') € Z,

(back) for everyt -, exists s % s’ with (s, ¢') € Z.

S, sand T, t are bisimilar if there is a bisimulation Z with (s, t) € Z.

S Z t
a a
v Z v
s’ t'
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Examples

.........................



Unravelling

G | Z/{(S)l

TN
N
VERNVARN

Lemma

S and U(S) are bisimilar.



Bisimulation invariance

Theorem

Two finite transition systems & and T are bisimilar if, and only if,

GFep < Tko, for every modal formula ¢ .

Definition

A formula ¢(x) is bisimulation invariant if

S,s~%,t implies Sk ¢(s) = TE(1).

Theorem

A first-order formula ¢ is equivalent to a modal formula if, and only
if, it is bisimulation invariant.



First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢
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First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢

Models
transistion systems where each state s is labelled with a >-structure 2,
such that

s—>%t implies A;C A,
Examples

» OVxe(x) > VYx O ¢(x) is valid.
» VxO¢(x) - OYx@(x) is not valid.



Tableaux



Tableau Proofs

Statements
SEQ SE@ s>t

s, t state labels, ¢ a modal formula

Rules
SE@

7N\

SEWe T sk 9,

SHE Ym seE 9,



Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:

| 2

| 2

| 2

start with so ¥ ¢

choose a branch of the tree

choose a statement s = y//s v on the branch
choose a rule with head s = y/s # v

add it at the bottom of the branch

repeat until every branch contains both statements s = y and
s # v for some formula y



Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:
> start with sp ¥ ¢
» choose a branch of the tree
» choose a statement s = /s # y on the branch
» choose a rule with head s & y/s # v
> add it at the bottom of the branch

» repeat until every branch contains both statements s = y and
s # v for some formula y

Tableaux with premises I

> choose a branch, a state s on the branch, a premise y € I', and add
s = v to the branch



Rules

SE @ SHF -
| |
SFE @ SEQ
SEQAY SEQAY SEQVY SEQVY
| TN
SE@ SFE @ SEY SEQ SEY SE @
| |
SEY SFEY
SEQ->y SEQ->y SEQ oy sEQ oy



Rules

sk (a)o st (a)y sk [a]e si[ale
s_lat t’hlégo t’rlz(p 5—>|ﬂt
t|:|(p tI#lgo
sEVxe SEVxe skEdxe s dxe

sEolxpu]l  sEex—c]  sE@xec] s o[x e u]

t a new state, ¢’ every state with entry s —¢ ¢’ on the branch,
¢ a new constant symbol, u an arbitrary term



Example ¢ = O¢



Example = 0(¢ - v) - (O¢p — Oy)

s# (¢ > y) > (B¢ > Oy)
s=0(e—>vy)

s#EOe —» Oy

skE Qe

s Oy



Example £ OVxg — VxOg

s#EOVxe — VxOe

sEOVxe

s ¥ Vxlg

st Oolx — c]

s>t

tE @[x > c]

tEVxo

tE o[x ]



Soundness and Completeness

Consequence

v is a consequence of I if, and only if, for all transition systems &,
S,sk¢, forallseSandgel,
implies that

S,sey, forallseS.



Soundness and Completeness

Consequence

v is a consequence of I if, and only if, for all transition systems &,
S,sk¢, forallseSandgel,
implies that

S,s=y, forallseS.

Theorem

A modal formula ¢ is a consequence of I' if, and only if, there exists a
tableau T for ¢ with premises I' where every branch is contradictory.



Complexity

Theorem

Satisfiability for propositional modal logic is in deterministic linear
space.

Theorem

Satisfiability for first-order modal logic is undecidable.



Temporal Logics



Linear Temporal Logic (LTL)

Speaks about paths. P—e—>0¢—PQ—Q— 00—

Syntax
> atomic predicates P, Q, . ..
> boolean operations A, V, -
> next X¢
> until Uy
» finally Fp := TU¢
» generally G := -F-¢

Examples
FP a state in P is reachable
GFP we can reach infinitely many states in P

(=P)U(P A Q) the first reachable state in P is also in Q



Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
» L can be defined in LTL.
» L can be defined in first-order logic.

» L can be defined by a star-free regular expression.



Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
» L can be defined in LTL.
» L can be defined in first-order logic.

» L can be defined by a star-free regular expression.

Translation LTL to FO

P* := P(x)
(pAy)" = 9" (x) Ay'(x)
(pvy)” = ¢ (x) vy (x)
(=9)" = =" (x)
(X@)" == y[x<yn-Fz(x<zrz<y) Ao (y)]
(pUW)" = Plx<yry () AVz[x<zrz<y > ¢*(2)]]



Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
» L can be defined in LTL.
» L can be defined in first-order logic.
» L can be defined by a star-free regular expression.

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking G, s = ¢ for LTL is PSPACE-complete. It can be done
in

time O(|S]- 2(9(""')) or space O((|g| +log|S])?).

(formula complexity: PSPACE-complete; data complexity:
NLOGSPACE-complete)



Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)
> state formulae ¢:

pu=Plorp|oVvel|-g|Ay|Ey
» path formulae y:
vi=glyay|yvy|-y|[Xy|yUy|Fy|Gy

Examples
I a state in P is reachable
AFP every branch contains a state in P
EGFP  there is a branch with infinitely many P
EGEFP there is a branch such that we can reach P from every

of its states



Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking G, s = ¢ for CTL is P-complete. It can be done in
time O(lg|-15I) or space O(lg|-log? (lgl - ISI)) .

(data complexity: NLOGSPACE-complete)



Theorem
Satisfiability for CTL is EXPTIME-complete.
Model checking G, s = ¢ for CTL is P-complete. It can be done in

time O(1g|-[s]) ot space O(lg]-log? (lg] S1)) .
(data complexity: NLOGSPACE-complete)
Theorem

Satisfiability for CTL* is 2EXPTIME-complete.

Model checking G, s = ¢ for CTL* is PSPACE-complete. It can be
done in

timeO(|S]2-20(|"’|)) or space O(|¢|(|g| +log|S])?).

(formula complexity: PSPACE-complete; data complexity:
NLOGSPACE-complete)



The modal y-calculus (L,,)

Adds recursion to modal logic.
Syntax

9:=Plonglovel-g[(ag][ale|uX.o(X)|vX.0(X)
(X positive in pX.¢(X) and vX.¢@(X))



The modal y-calculus (L,,)

Adds recursion to modal logic.
Syntax
9:=Plonglovel-¢l{a)g|[alp|uX.o(X)[vX.9(X)
(X positive in pX.¢(X) and vX.¢@(X))
Semantics
Fo(X)={s5€S|6,sF 9(X)}

uX.9(X): Xo:=0, X :=Fo(Xi)
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The modal y-calculus (L,,)

Adds recursion to modal logic.
Syntax
9:=Plonglovel-g[(ag][ale|uX.o(X)|vX.0(X)
(X positive in pX.¢(X) and vX.¢@(X))
Semantics
Fo(X)={s5€S|6,sF 9(X)}
uX.9(X): Xo:=0, Xi:=Fy(X;)
vX.o(X): Xo:=S, Xip1:=Fyp(X;)
Examples

uX(Pv &X) astate in P is reachable
vX(PAOX)  there is a branch with all states in P



Expressive power

Theorem

For every CTL*-formula ¢ there exists an equivalent formula ¢* of the
modal p-calculus.



Expressive power

Theorem

For every CTL*-formula ¢ there exists an equivalent formula ¢* of the
modal p-calculus.

Proof (for CTL)
P =P
(pAy)" = 9" Ay”
(pvy)" = 9" vy”
(=)™ = —¢"
(EXg)" = Og”
(AXg)" := Dg"
(EeUy)™" = uX[y" v (9" A OX)]

pX[y* v (9" AOX)]

(ApUy)*



The modal y-calculus (L,,)

Theorem

A regular tree language can be defined in the modal y-calculus if, and
only if, it is bisimulation invariant.
Theorem

Satisfiability of y-calculus formulae is decidable and complete for
exponential time.

Model checking &, s E ¢ for the modal y-calculus can be done in
time (’)((|g0| . |S|)“P|).

(The satisfiability algorithm uses tree automata and parity games.)



Fixed points

Theorem

Let (A, <) be a complete partial order and f : A — A monotone. Then
f has aleast and a greatest fixed point and

Ifp(f) = lim f"(1) and gfp(f) = lim f*(T)



Monotonicity

L<f(L)



Monotonicity

L<f(1)
= £(1) <f(F(1))
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Monotonicity
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Monotonicity
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Monotonicity

L<f(1)

= f(1) <f(f(1))

= f(f(1) <f(F(f(1)))
= (1)) <)
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exists n with (L) = f"1(1)
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Monotonicity

L<f(1)

= f(1) <f(f(1))

= f(f(1) <f(F(f(1)))
= (1)) <)

= 1<f(1) <L) << ML) <o

exists n with (L) = f"1(1)

Least fixed point
P :f(P) fixed point,f”(l) :an(L)
L<P



Monotonicity

L<f(1)

= f(1) <f(f(1))

= f(f(1) <f(F(f(1)))
= (1)) <)

= 1<f(1) <L) << ML) <o

exists n with (L) = f"1(1)

Least fixed point
P :f(P) fixed point,f”(l) :an(L)
L<P

= f"(1) <f"(P) =P



Monadic Second-Order Logic

Syntax

« element variables: x, y, z, . ..

o set variables: X, Y, Z, ...

« atomic formulae: R(X), x = y, X(x)
o boolean operations: A, v, -, —, <>
o quantifiers: Jx, Vx, 3X, VX

Example

 “The set X is empty.’
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Monadic Second-Order Logic

Syntax

« element variables: x, y, z, . ..

o set variables: X, Y, Z, ...

« atomic formulae: R(X), x = y, X(x)
o boolean operations: A, v, -, —, <>
o quantifiers: Jx, Vx, 3X, VX

Example
 “The set X is empty.’
-3xX(x)
«XcY”
Vz[X(2) - Y(2)]
o “There exists a path from x to y
VZ[Z(x) AVuVv[Z(u) AE(u,v) = Z(v)] > Z(y)]
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Equivalence

Quantifier rank

nesting depth of quantifiers in ¢

Equivalence
A,P,a=,B,Qb :iff Ar¢(P,a) = BEe(Q,b)
for all ¢(X, %) of quantifier rank < m



Equivalence

Quantifier rank

nesting depth of quantifiers in ¢
Equivalence

A,P,a=,B,Qb :iff Ar¢(P,a) = BEe(Q,b)
for all ¢(X, %) of quantifier rank < m

word structures: 20 = ([n], <, (Py) aex)



Equivalence

Quantifier rank

nesting depth of quantifiers in ¢

Equivalence
A,P,a=,B,Qb :iff Ar¢(P,a) = BEe(Q,b)
for all ¢(X, %) of quantifier rank < m

word structures: 20 = ([n], <, (Py) aex)

Lemma
us,u andv=,v implies uv=,u'v

Proof induction on m



Automata

Given ¢ of quantifier rank m, construct A, = (Q, X, 8, qo, F)
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Given ¢ of quantifier rank m, construct A, = (Q, X, 8, qo, F)
e Q:=2%/=,
*qo = [e]m
« 8([wlm> ) = [wc]m
P (Wl | W g}



Automata

Given ¢ of quantifier rank m, construct A, = (Q, X, 8, qo, F)
e Q:=2%/=,
*qo = [e]m
« 8([wlm> ) = [wc]m
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Automata

Given ¢ of quantifier rank m, construct A, = (Q, X, 8, qo, F)
e Q:=2%/=,
*qo = [e]m
« 8([wlm> ) = [wc]m
P (Wl | W g}

Theorem

A(p accepts a word w € 2* if, and only if, w = ¢.

Corollary

¢ is satisfiable if, and only if, A, accepts some word.



Description Logics



Description Logic

General Idea

Extend modal logic with operations that are not
bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling,
semantic web

Ingredients
» individuals: elements (Anna, John, Paul, Marry,...)
> concepts: unary predicates (person, male, female,...)
» roles: binary relations (has_child, is_married_to,...)
» TBox: terminology definitions

» ABox: assertions about the world



Example

TBox

man := person A male
woman := person A female
father := man A Jhas_child.person

mother := woman A Jhas_child.person

ABox

man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)

is_married_to(Anna, John)



Syntax

Concepts
¢:=P[T[L|-¢|lorp|pVve|VYRp|IRp|(2nR)|(<nR)
Terminology axioms
PEY =y
TBox Axioms of the form P = ¢.
Assertions
o(a)  R(a.b)

Extensions
> operations onroles: RN'S, RUS, Ro S, =R, R*, R*, R~

» extended number restrictions: (>nR)¢, (<nR)¢@



Algorithmic Problems

v

Satisfiability: Is ¢ satisfiable?

> Subsumption: ¢ = y?

> Equivalence: ¢ = y?

» Disjointness: ¢ A y unsatisfiable?

All problems can be solved with standard methods like tableaux or
tree automata.



Semantic Web: OWL (functional syntax)

Ontology(

Class(pp:man complete

intersectionOf (pp:person pp:male))
Class(pp:woman complete

intersectionOf (pp:person pp:female))
Class(pp:father complete

intersectionOf (pp:man

restriction(pp:has_child pp:person)))
Class(pp:mother complete
intersectionOf (pp:woman
restriction(pp:has_child pp:person)))

Individual(pp:John type(pp:man))

Individual(pp:Paul type(pp:man))

Individual (pp:Anna type(pp:woman)
value(pp:has_child pp:Paul)
value(pp:is_married_to pp:John))

Individual(pp:Marry type(pp:woman))



