
IV054: Coding, Cryptography and

Cryptographic Protocols

Exercise Book

Preliminary Version

Jozef Gruska, Lukáš Boháč, Luděk Matyska, Matej Pivoluska

Faculty of Informatics, Masaryk University, Brno

December 2015

INTRODUCTION

The main part of these lecture notes contain typical exercises and their solutions, which were
chosen mainly from exercises that were given to the students, during years 2001-2014, as to-be
graded homeworks of the lecture “IV054: Coding theory, cryptography and cryptographic protocols”
at Faculty of Informatics, Masaryk University.

The goal of these lecture notes is to help the future students of this course to handle successfully
homeworks that are given for the first 10 lectures of the course, by learning the way how the solutions
of such exercises are done and presented. In some cases even more than one solution to an exercise
is presented – in the cases some new ideas were used.

The lecture notes contain 10 chapters, each with a 2-3 pages of an introductory summary of some
concepts and results of the corresponding lecture and about 12-20 exercises and their solutions as
well as an appendix of some relevant concepts from (especially discrete) mathematics and theoretical
informatics.

Exercises for the lectures used to be created and graded always by a collective consisting also
from several very successful (in solving given exercises) students of the lecture in former years. The
collective was supervised by L. Boháč and later also by M. Pivoluska.

In spite of the fact that both exercises and their solutions were carefully checked, the current
version of the lecture notes are seen as preliminary ones and the final ones will be made in 1-2 years
taking into account comments and corrections coming from students using them.

These lecture notes are the product of Masaryk University supported by the project
MUNI/FR/1740/2014 and this support is to be acknowledged and thanked.

The authors, December 2015

Contents

1 Basics of Coding Theory 1
1.1 Introduction . 1

1.1.1 Noiseless coding . 1
1.1.2 Error correcting codes . 2

1.2 Exercises . 3
1.3 Solutions . 5

2 Linear Codes 11
2.1 Introduction . 11

2.1.1 Basic properties . 11
2.1.2 Encoding and decoding with linear codes . 12
2.1.3 Hamming codes . 12

2.2 Exercises . 13
2.3 Solutions . 15

3 Cyclic Codes 20
3.1 Introduction . 20

3.1.1 Polynomials over GF (q) . 20
3.1.2 Rings of polynomials . 20
3.1.3 Algebraic characterization of cyclic codes . 21
3.1.4 Check polynomials and parity check matrices for cyclic codes 21

3.2 Exercises . 22
3.3 Solutions . 24

4 Secret Key Cryptosystems 30
4.1 Introduction . 30

4.1.1 Basics of the design and analysis of cryptosystems 30
4.1.2 Basic classical secret-key cryptosystems . 31
4.1.3 Product cryptosystems . 32
4.1.4 Perfect secrecy . 32

4.2 Exercises . 33
4.3 Solutions . 35

5 Public-Key Cryptography, I. 42
5.1 Introduction . 42

5.1.1 Diffie-Hellman protocol . 42
5.1.2 Knapsack cryptosystem . 42
5.1.3 McEliece cryptosystem . 43
5.1.4 RSA cryptosystem . 43
5.1.5 Rabin-Miller’s prime recognition . 43

5.2 Exercises . 44
5.3 Solutions . 45

iii

CONTENTS iv

6 Public-Key Cryptography, II. 51
6.1 Introduction . 51

6.1.1 Rabin Cryptosystem . 51
6.1.2 ElGamal cryptosystem . 51
6.1.3 Shanks’ algorithm for discrete logarithm . 51
6.1.4 Perfect security of cryptosystems . 52
6.1.5 Blum-Goldwasser cryptosystem . 52
6.1.6 Hash functions . 52

6.2 Exercises . 53
6.3 Solutions . 54

7 Digital Signatures 61
7.1 Introduction . 61

7.1.1 Signature schemes – basic ideas and goals . 61
7.1.2 Digital signature scheme – definition . 61
7.1.3 Attacks . 62
7.1.4 Examples . 62

7.2 Exercises . 63
7.3 Solutions . 65

8 Elliptic Curve Cryptography 69
8.1 Introduction . 69

8.1.1 Elliptic curves . 69
8.1.2 Group structure and addition law . 69
8.1.3 Elliptic curve cryptography . 70
8.1.4 Factorization . 70

8.2 Exercises . 71
8.3 Solutions . 73

9 Identification, Authentication and Secret Sharing 79
9.1 Introduction . 79

9.1.1 User identification . 79
9.1.2 Message authentication . 80
9.1.3 Secret sharing . 81

9.2 Exercises . 82
9.3 Solutions . 85

10 Coin Tossing, Bit commitment, Oblivious Transfer, Zero-knowledge Proofs and
Other Crypto-protocols 90
10.1 Introduction . 90

10.1.1 Coin-flipping protocols . 90
10.1.2 Bit commitment protocols . 90
10.1.3 Oblivious transfers . 91
10.1.4 Interactive and zero-knowledge proofs . 91

10.2 Exercises . 92
10.3 Solutions . 94

A 99
A.1 Introduction . 99
A.2 Notation . 99
A.3 Central concepts and principles of modern cryptography 99
A.4 Groups . 100

A.4.1 Groups Zn and Z∗n . 100

CONTENTS v

A.4.2 Order of the group . 100
A.4.3 Properties of the group Z∗n . 100

A.5 Rings and fields . 101
A.5.1 Finite fields . 101

A.6 Arithmetics . 101
A.6.1 Ceiling and floor functions . 101
A.6.2 Modulo operations . 102
A.6.3 Exponentiation . 102
A.6.4 Euclid algorithm for GCD - I. 102
A.6.5 Extended Euclid algorithm . 103

A.7 Basics of the number theory . 103
A.7.1 Primes . 103
A.7.2 Chinese remainder theorem . 103
A.7.3 Euler totient function . 104
A.7.4 Euler and Fermat theorems . 104
A.7.5 Discrete logarithms and square roots . 104
A.7.6 Quadratic residues and non-residues . 105
A.7.7 Blum integers . 106

Chapter 1

Basics of Coding Theory

1.1 Introduction

Coding theory aims to develop systems and methods to transmit information through communication
channels efficiently and reliably.

Formally, a communication channel is described by a triple (Σ,Ω, p), where Σ is an input alpha-
bet; Ω is an output alphabet; p is a probability distribution on Σ×Ω and for i ∈ Σ, o ∈ Ω, p(i, o) is
the probability that the output of the channel is o if the input is i.

Some examples of important channels are

• Binary symmetric channel maps with fixed probability p0 each binary input into the
opposite one, i.e. Σ = Ω = {0, 1}. and p(0, 1) = p(1, 0) = p0 and p(0, 0) = p(1, 1) = 1− p0

• Binary erasure channel maps, with fixed probability p0, each binary input without an error
and with probability 1− p0 an erasure occurs, i.e. Σ = {0, 1},Ω = {0, 1, e}, where e is called
erasure symbol and p(0, 0) = p(1, 1) = p0, p(0, e) = p(1, e) = 1− p0.

• A noiseless channel maps inputs into outputs without an error, i.e. Σ = Ω and ∀ i ∈
Σ, p(i, i) = 1.

A Code C over alphabet Σ is a subset of Σ∗ (set of all strings over alphabet Σ). A q-nary code
is a code over alphabet of q symbols and a binary code is a code over the alphabet {0, 1}.

There is a distinction in the goals of the codes for noisy and noiseless channels.

1.1.1 Noiseless coding

The main goal of noiseless coding is to send information through a noiseless channel as effectively
as possible. Here we model information to be send by a random variable X taking values x ∈ X
with probability p(x). Information content (in bits) of X can be expressed as Shannon entropy:

S(X) = −
∑
x∈X

p(x) log2 p(x). (1.1)

Shannon’s noiseless coding theorem says that in order to transmit n values of X we need at least
nS(X) bits. An example of an optimal code for noiseless coding is a Huffman code.

Huffman coding. Given is a source Sn as a sequence of n objects, x1, . . . , xn with probabilities
p1 ≥ · · · ≥ pn. The Huffman code is designed as follows:

1. replace xn−1, xn with a new object yn−1 (thus creating source Sn−1) with probability pn−1 +pn
and rearrange sequence so one has again non-increasing probabilities. Keep repeating the above
step until there are only two objects left.

1

CHAPTER 1. BASICS OF CODING THEORY 2

2. Optimal prefix code for two objects encodes the first object as 0 and the second object as
1. We can construct the code for more objects as follows. Repeatedly apply the following
procedure. If C = {c1, . . . , cr} is a prefix optimal code for a source Sr, then C ′ = {c′1, . . . c′r+1}
is an optimal code for Sr+1, where c′i = ci for 1 ≤ i ≤ r − 1 and c′r = cr1, c

′
r+1 = cr0.

1.1.2 Error correcting codes

The goal of error correcting codes is to encode the information over a noisy channel in such a way
that errors can be corrected, or at least detected.

An example of an error correcting code is the International Standard Book Number (ISBN) code,
which is a 10 digit number x1, . . . x10 such that the first 9 digits encode the language, publisher and
the serial number of the book, while the last digit is used as a checksum, so that:

10∑
i=1

(11− i)xi ≡ 0 mod 11.

The checksum x10 = X if x10 is to have value 10. This code can correct one single digit error and
also one transposition error.

In this chapter we deal only with block codes – all the codewords have the same length and we
want to transmit a message through a binary symmetric channel.

An important concept is the closeness of two words x, y is formalized through Hamming distance
h(x, y), which is equal to the number of symbols in which words x and y differ.

An important parameter of codes is their minimal distance defined as:

h(C) = min{h(x, y)|x, y ∈ Cx 6= y}. (1.2)

For decoding we use so called nearest neighbor decoding strategy, which says that the receiver
should decode a received word w′ as the codeword w that is the closest one to w′. With this error
correcting strategy can formulate the basic error correcting theorem.

• A code C can detect up to s errors if h(C) ≥ s+ 1 and

• A code C can correct up to t errors if h(C) ≥ 2t+ 1.

An (n,M, d)-code C is a code such that

• n is the length of codewords;

• M is the number of codewords;

• d is the minimum distance in C.

A good (n,M, d)-code has small n, large M and large d. Let us denote Aq(n, d) the largest M
such that there is a q-nary (n,M, d)-code. An important upper bound on Aq(n, d) is called a Sphere
packing bound : If C is a q-nary (n,M, 2t+ 1)- code, then

M

[(
n

0

)
+

(
n

1

)
(q − 1) + · · ·+

(
n

t

)
(q − 1)t

]
≤ qn. (1.3)

If a code obtains equality for the sphere packing bound, it is called a perfect code.
Two q-ary codes are equivalent, if one can be obtained from the other by a combination of

operations of following type:

• a permutation of the positions of the code;

• a permutation of symbols appearing in a fixed position.

CHAPTER 1. BASICS OF CODING THEORY 3

1.2 Exercises

1.1. Which of the following codes is a Huffman code for some probability distribution?

(a) {0, 10, 11}.

(b) {00, 01, 10, 110}.

(c) {01, 10}.

1.2. Assume a source X sends messages A,B,C,D with the following probabilities

symbol probability

A 0.8
B 0.1
C 0.05
D 0.05

(a) Calculate the entropy of the source X.

(b) Design the Huffman code for the source X. Determine the average number of bits used per
symbol.

(c) Assume that the source sends sequences of thousands of messages. Assume that the probability
of each symbol occurring is independent of the symbol that have been sent previously. Find a
way to modify the design of Huffman code so that the average number of bits used per source
symbol decreases to a value no greater than 110% of the source entropy. Design a code using
this modification and determine the average number of bits per symbols achieved.

* 1.3.

(a) Prove for any binary Huffman code that if the most probable message symbol has the proba-
bility p1 > 2/5, then that symbol must be assigned a codeword of length 1.

(b) Prove for any binary Huffman code that if the most probable message symbol has probability
p1 < 1/3, then that symbol must be assigned a codeword of length ≥ 2.

1.4.

(a) Consider the ISBN number 0486x00973. Determine x. Which book has this ISBN code?

(b) Consider the code C = {x ∈ Z9
10|
∑9

i=1 ixi ≡ 0 mod 10}. Show that this version of the ISBN
code is not able to detect all transposition errors.

1.5.

(a) Find a binary (10, 6, 6)-code.

(b) Find a binary (5, 4, 3)-code.

1.6.

(a) Find the minimal distance of the code C = {10001, 11010, 01101, 00110}.

(b) Decode, for the code C, the strings 11110, 01101, 10111, 00111 using the nearest neighbor
decoding strategy.

CHAPTER 1. BASICS OF CODING THEORY 4

1.7. Let us have an error correction code over the 5-ary alphabet

C = {0 7→ 01234, 1 7→ 12340, 2 7→ 23401, 3 7→ 34012, 4 7→ 40123}.

We want to use a channel X over the 5-ary alphabet. For p being a probability of error and x a
character from {0, 1, 2, 3, 4}, the channel acts as follows:

x 7→ x with probability 1− p
x 7→ x+ 1 mod 5 with probability p/4

x 7→ x+ 2 mod 5 with probability p/4

x 7→ x+ 3 mod 5 with probability p/4

x 7→ x+ 4 mod 5 with probability p/4.

We have received the following message as the output of the channel

0120000110012301223022401444233333340023.

Decode the message.

1.8. Let C = {111111, 110000, 001100, 000011}. Suppose that the codewords are transmitted
using a binary symmetric channel with an error probability p < 1

2 . Determine the probability that
the receiver does not notice that a codeword has been corrupted during the transfer.

1.9. Let q > 0. What are relations (≤,=,≥) between:

(a) A2(n, 2d− 1) and A2(n+ 1, 2d);

(b) Aq(n, d) and Aq(n+ 2, 2d);

(c) Aq(n, d) and Aq(n+ 1, d).

1.10. Show that the following codes are perfect:

(a) Codes containing all words of given alphabet;

(b) Codes consisting of exactly one codeword;

(c) Binary repetition codes of odd length;

(d) Binary codes of odd length consisting of a vector c and the vector c′ with zeros and ones
interchanged.

* 1.11. Consider a perfect binary (n,M, 5)-code. Find two lowest values of n for which such a
code exists.

1.12. Consider an erasure channel with the erasure probability p.

(a) Suppose we use an error correcting code for this erasure channel with codewords of the length
n. How many n-symbol strings can appear as the channel output?

(b) Derive an upper bound for the erasure channel analogous to the sphere packing bound.

CHAPTER 1. BASICS OF CODING THEORY 5

* 1.13. A (v, b, k, r, λ)-block-design D is a partition of v elements e1, e2, . . . , ev into b blocks
s1, s2, . . . , sb, each of cardinality k, such that each of the objects appears exactly in r blocks and
each pair of them appears exactly in λ blocks. An incidence matrix of (v, b, k, r, λ) block design is a
v × b binary matrix M such that for any (i, j) ∈ {1, 2, . . . , v} × {1, 2, . . . , b}, mi,j = 1, if vi ∈ sj and
mi,j = 0 otherwise.

Let D be a (v, b, k, r, λ)-block-design. Consider a code C whose codewords are rows of the
incidence matrix of D:

(a) Show that each codeword of C has the same weight;

(b) Find the minimal distance of C;

(c) How many errors is C able to correct and detect?

* 1.14. For each of the following pairs of binary codes, prove their equivalence or prove that they
are not equivalent.

(a)

A =


0 0 1 0 0
0 0 0 1 1
1 1 1 1 1
1 1 0 0 0

 , B =


0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1

 ,

(b)

A =


0 0 0 0 0
0 0 1 1 1
0 1 1 1 0
0 1 0 1 1
1 0 1 0 1

 , B =


0 1 0 0 0
1 1 0 1 1
1 1 1 1 0
0 1 1 0 1
1 0 0 0 1

 ,

(c)

A0 = {0}, Ai =


Ai−1

1
0
1
0
...

1 0 1 0 . . .
(
1 + (−1)i

)
/2


,

B0 = {1}, Bi ==


Bi−1

0
0
0
...
0

0 1 1 . . . 1 1


,

1.3 Solutions

1.1.

(a) Yes. An example is a random variable with probabilities 1/2, 1/4, 1/4.

CHAPTER 1. BASICS OF CODING THEORY 6

(b) No. This code is not a Huffman code for any distribution. Huffman code has two longest
codewords of the same length.

(c) No. This code is not minimal. A code {0, 1} is shorter and in fact this is always the code for
variable with two outcomes only.

1.2.

(a)

S(X) = − (p(A) log2 p(A) + p(B) log2 p(B) + p(C) log2 p(C) + p(D) log2 p(D))

= − (p(0.8) log2 p(0.8) + p(0.1) log2 p(0.1) + p(0.05) log2 p(0.05) + p(0.05) log2 p(0.05))

= 1.022

(b) The code is given in the following table:

symbol probability code

A 0.8 0
B 0.1 10
C 0.05 110
D 0.05 111

Average code length L(C) is

L(C) =
∑
x

length(C(x)) Pr(X = x) = 0.8 · 1 + 0.1 · 2 + 0.05 · 3 + 0.05 · 3 = 1.3

(c) The solution is to divide the stream of symbols into pairs and then find Huffman coding for
the pairs. We know that if we divide the stream of symbols into substrings of length n and
use Huffman encoding with these strings as items, the average length approaches entropy. In
our case n = 2 is sufficient. The solution is:

symbols code symbols code

AA 1 BA 001
AB 010 DA 0001
AC 0110 CA 01110
AD 011111 BB 000001
BD 0000100 BC 0000101
DB 0000110 CB 0000111
CD 00000000 CC 00000001
DD 00000010 DC 00000011

With this encoding the average number of code bits per symbol is 1.06.

1.3.

(a) Let us order the probabilities of n outcomes of the random variable X as p1 ≥ p2 ≥ p3 · · · ≥ pn
In case of a random variable with three outcomes, there is always one codeword of length 1.
In order to have the optimal code, it is assigned to the most probable outcome. In case of
four possible outcomes, let us take a look at the Huffman algorithm. In order to have the
shortest codeword of length 2, the sum of probabilities of the least two probable outcomes
has to be greater than p1. Then we have: p1 > 2/5, p3 + p4 > p1, then p2 < 1/5. Hence
p3, p4 < 1/5, which is a contradiction. This argument can be extended to random variable of
arbitrary number of outcomes.

CHAPTER 1. BASICS OF CODING THEORY 7

(b) Note that if p1 < 1/3, then there are at least four outcomes. Hence, Huffman algorithm
continues to a stage where there are only three last items left. In order to assign a codeword
of length 2 to the most probable element we need p1 ≥ p′2 + p′3, but since p1 < 1/3, we also
have p′2 + p′3 > 2/3, which is a contradiction.

1.4.

(a) We have to solve the following equation for x:

1 · 0 + 2 · 4 + 3 · 8 + 4 · 6 + 5 · x+ 6 · 0 + 7 · 0 + 8 · 9 + 9 · 7 + 10 · 3 ≡ 0 mod 11

221 + 5 · x ≡ 0 mod 11

x = 2.

The full ISBN is 0486200973 and belongs to the book Cryptanalysis by Helen F. Gaines.

(b) The checksum of the 9 digit code is
∑9

i=1 ixi ≡ 0 mod 10. Let us exchange two positions xj
and xk in order to create a transposition error. The resulting checksum can be written as:

9∑
i=1

ixi + (j − k)xk + (k − j)xj ≡ 0 mod 10

9∑
i=1

ixi + (k − j)(xj − xk) ≡ 0 mod 10

.

Since we know that
∑9

i=1 ixi ≡ 0 mod 10, in order to find a transposition error which cannot
be corrected it suffices to find j, k, xj , xk, such that (k− j)(xj −xk) ≡ 0 mod 10. An example
of such a solution is a code 005000013 and j = 3, k = 8. After the transposition we have a
code 01000053, which also has a checksum 0.

1.5.

(a) For example Ca = {0000001111, 00011110001, 11100000001, 0110110110, 1011011010, 1101101100}
is a (10, 6, 6)-code.

(b) For example Cb = {11111, 00100, 10010, 01001} is a (5, 4, 3)-code.

1.6.

(a) h(C) = h(10001, 11010) = 3.

(b) Nearest neighbor decoding is given by the following table:

11110 7→ 11010

01101 7→ 01101

10111 7→ 10001 or 00110

00111 7→ 00110

Note, that the decoding 10111 is not unique.

CHAPTER 1. BASICS OF CODING THEORY 8

1.7.
The decoded message is 040124?4. The symbol “?” is used to inform that the given symbol cannot
be decoded uniquely.

1.8.
The distance between any two codewords in the code C is d = 4. If the error happens on 4 particular
bits such that the resulting word is another codeword, the receiver would not notice it. Let X be
the event of 4 particular errors happening. P (X) = p4(1 − p)2. There are three codewords the
codeword can change into, therefore the overall probability is 3p4(1− p)2.

1.9.

(a) A2(n, 2d− 1) = A2(n+ 1, d). Substitute m = n+ 1 and f = 2d to obtain A2(m− 1, f − 1) =
A2(m, f). This holds for even f as shown in the lecture.

(b) There is no given relation. As an example consider A2(2, 1) = 4 < A2(4, 2) = 8, but A2(4, 2) =
8 > A2(6, 4) = 4.

(c) Aq(n, d) ≤ Aq(n + 1, d). Appending a zero to every codeword preserves M and d but raises
the length of the codeword. We can only improve d by appending in a more sophisticated way.

1.10.

(a) Such codes are (n, qn, 1)-codes, therefore t = 0 and the perfect code condition states:

qn
[(
n

0

)]
= qn · 1 = qn.

(b) Such codes have M = 1 and can correct up to n errors (every error can be detected and
corrected, since there is only one valid codeword). The perfect code condition states:

1 ·
[(
n

0

)
+

(
n

1

)
(q − 1) + · · ·+

(
n

n

)
(q − 1)n

]
= (1 + (q − 1))n = qn,

where the first equality follows from the binomial theorem.

(c) Binary repetition code off the odd length is a (2k+1, 2, 2k+1)-code. The perfect code condition
then states:

2 ·
[(

2k + 1

0

)
+

(
2k + 1

1

)
(2− 1) + · · ·+

(
2k + 1

k

)
(2− 1)k

]
= 2 · 1

2

[
2k+1∑
i=0

(
2k + 1

i

)]
= 22k+1,

where we used the equality
(
n
k

)
=
(
n

n−k
)
.

(d) The distance of two codewords is 2k + 1, therefore it is a (2k + 1, 2, 2k + 1)-code and we can
use the argumentation from the previous case.

1.11. First we will give necessary conditions for values n. Obvious condition is n ≥ 5 (since d = 5).
Another condition follows from definition of perfect code:

M ·
[(
n

0

)
+

(
n

1

)
+

(
n

2

)]
= 2n.

We know that M ∈ N and from that we get

M =
2n+1

n2 + n+ 2

CHAPTER 1. BASICS OF CODING THEORY 9

which means that n2 + n + 2 is some power of 2. This is very strict restriction as we will see.
We want to solve diophantine equation (for n ≥ 5):

n2 + n+ 2 = 2k

(n+
1

2
)2 +

7

4
= 2k

(2n+ 1)2 + 7 = 2k+2

x2 + 7 = 2y

where x = 2n+ 1 and y = k+ 2. Last form of our diophantine equation is actually Ramanujan-
Nagell equation. This equation was conjectured in 1913 by Srinivasa Ramanujan and solved in 1948
by Trygve Nagell and the result is that the only solutions for x ∈ N are 1, 3, 5, 11 and 181. Our
first condition n ≥ 5 gives x ≥ 11 and from this we obtain two solutions: n = 5 and n = 90.

It is quite easy to see that for n = 5 we have repetition code C1 = {00000, 11111} which is
perfect. For n = 90 we would like to obtain (90, 278, 5)-code (we do not know if such a code even
exists because we obtained only necessary conditions for n but not sufficient).

Assume that such code exists and without loss of generality that it contains word 00 . . . 0. Then
we consider words with three nonzero digits and with 1 in the first two places:

11100 . . . 0, 11010 . . . 0, 110010 . . . 0, . . . 110 . . . 01

There are 88 of those words. If any word of weight 5 is at distance 2 from any of these words
then it is at distance 2 from exactly 3 of these words (note that the mentioned word of weight 5 has
to begin with 11). For example

111110 . . . 0 is at distance 2 from 111000 . . . 0, 110100 . . . 0, 110010 . . . 0

Since the code is perfect, each word is at distance at most 2 from some code word. We have 88
words and they are divided into groups of 3 which is impossible. We have a contradiction with the
only assumption that (90, 278, 5)-code exists.

There exists only one value of n which meets required conditions and that is n = 5.

1.12.

(a) At each position three different symbols can appear, therefore there are 3n possible channel
outputs.

(b) Let t be the maximum number of erasures that we want C to be able to correct. Erasure of
exactly k symbols of an n-bit codeword can result in

(
n
k

)
possible channel outputs. Erasure

of t or less symbols can result in
∑t

i=0

(
n
i

)
different channel outputs. The upper bound on

maximum number of codewords M is therefore

M

[
t∑
i=0

(
n

i

)]
≤ 3n,

where 3n is the number of possible outputs.

1.13.

(a) We know that mi,j = 1, iff vi belongs to block sj and because every vi appears exactly in r
blocks. Row i represents the incidence of the element vi, so the weight of each row is r.

CHAPTER 1. BASICS OF CODING THEORY 10

(b) Each two elements vi and vj are together contained in exactly λ blocks, therefore, every two
rows have exactly λ columns, in which they have both value 1. On the other hand, each row
has exactly r values 1 and therefore there are exactly r − λ columns k in which mi,k = 0 and
mj,k = 1 and exactly r − λ columns k′, in which mi,k′ = 1 and mj,k′ = 0. In all the other
columns both rows have value 0. Summing it up, each pair of rows differs in exactly 2(r − λ)
positions.

(c) If h(C) = s + 1 = 2t + 1, the code can detect up to s errors and correct up to t errors. The

code C is therefore able to detect up to 2(r − λ)− 1 errors and repair
⌊

2(r−λ)−1
2

⌋
.

1.14.

(a) In order to obtain B from A do the following: (a) In the third column of A permute symbols.
(b) Exchange second and fourth columns. The resulting matrix is the matrix of the code B.

(b) Code A contains an all zero codeword. All other codewords contain three values 1 and 2 values
zero. We exchange 1s and 0s in columns to obtain an equivalent code. We will use this rule to
transform codewords in code B into all zero code words. After we do this for all 5 codewords
we can see that the resulting 5 codes are not equivalent to code A, as their non-zero codewords
do not all contain three symbols 1.

(c) A0 is equivalent to A1 as both codes contain only one codeword. In order to show equivalence
also for i > 0, we present an algorithm to transform the matrix Ai to the matrix Bi:

(a) Sort all codewords except the first one according to their weight – the codeword with the
highest weight first. The topmost codeword stays on the top.

(b) Permute columns except the first one, so that all symbols 1 are on the right side of the
matrix.

(c) Permute all symbols.

The resulting matrix is a matrix of the code Bi.

Chapter 2

Linear Codes

2.1 Introduction

Linear codes are a very important class of codes, because they have a concise description, easy
encoding and easy to describe (and often efficient) decoding.

Linear codes are special sets of words of a fixed length over an alphabet Σq = {0, . . . , q − 1},
where q is a power of prime. The reason for this restriction is that with a suitable operations Σq

constitutes a Galois field (also called finite field) GF (q). In case of q being a prime, the suitable
operations are sum and product modulo q. We will denote Fnq a vector space of all n-tuples over the
Galois field GF (q).

Definition 2.1.1. A subset C ⊆ Fnq is a linear code, if

1. u+ v ∈ C, for all u, v ∈ C;

2. au ∈ C, for all u ∈ C and all a ∈ GF (q).

It follows from the definition that C ⊆ Fnq is a linear code, iff C is a subspace of Fnq . Moreover
for the case q = 2, C ⊆ Fnq is a linear code, if sum of any two codewords is a codeword as well.

If C is a k-dimensional subspace of Fnq , then it is called [n, k]-code and it has qk codewords. If
the minimal distance of C is d, then it is called a [n, k, d]-code.

2.1.1 Basic properties

The minimal distance of the code w(C) is equal to the smallest of the weights of non-zero codewords.
If C is a linear [n, k]-code, then it has a basis Γ consisting of k linearly independent codewords and
each codeword of C is a linear combination of the codewords from Γ.

Definition 2.1.2. A k × n matrix with rows forming a basis of a linear [n, k]-code C is called a
generator matrix of C.

Two k×n matrices generate equivalent linear [n, k]-codes over Fnq if one matrix can be obtained
from the other by a sequence of the following operations: (a) permutation of the rows; (b) multipli-
cation of a row by a non-zero scalar; (c) addition of one row to another; (d) permutation of columns;
(e) multiplication of a column by a non-zero scalar.

With the use of operations (a)–(c) it is possible to transform every generator matrix G into a
form [Ik|A], where Ik is a k × k identity matrix.

11

CHAPTER 2. LINEAR CODES 12

2.1.2 Encoding and decoding with linear codes

Encoding

Encoding of a dataword u = (u1, . . . , uk) using a generator matrix G of an [n, k]-code C is

u ·G =

k∑
i=1

uiri,

where r1, . . . , rk are rows of G.

Nearest neighbor decoding

If a codeword x = (x1, . . . , xn) is sent through a channel and a word y = (y1, . . . , yn) is received,
then e = x− y = (e1, . . . , en) is called the error vector.

Definition 2.1.3. Suppose C is an [n, k]-code over Fnq and u ∈ Fnq . Then the set u+C = {u+x|x ∈
C} is called a coset of C in Fnq .

Suppose C is a linear [n, k]-code. It holds that (a) every vector of Fnq is in some coset of C; (b)

every coset contains exactly qk elements; (c) two cosets are either identical or disjoint. Each vector
having minimum weight in a coset is called a coset leader.

Let C = {c0, . . . c2k−1}, with c0 being all zero codeword (thus being a coset leader of C). Also
let us denote li, i ∈ {1, . . . , qn−k − 1} the coset leader of the ith coset Ci = C + bin(i), where bin(i)
is the n-bit binary representation of i.

The standard array for an [n, k]-code C is a qn−k × qn array of the form

c0 c1 . . . c2k−1

l1 c1 + l1 . . . c2k−1 + l1
...

...
...

lqn−k−1 c1 + lqn−k−1 . . . c2k−1 + lqn−k−1

A received word y is decoded as the codeword in the first row of the columns in which y occurs.
Error vectors which are corrected are precisely the coset leaders li.

Syndrome decoding

Inner product of two vectors u = (u1, . . . , un), v = (v1, . . . , vn) in Fnq is defined as u · v = u1v1 +

· · ·+ unvn. If u · v = 0, then u and v are orthogonal. The dual code C⊥ of a linear [n, k]-code C is
defined as C⊥ = {v ∈ Fnq |v · u = 0,∀u ∈ C}. The dual code C⊥ is a linear [n, n− k]-code.

A parity check matrix H for an [n, k]-code C is any generator matrix of C⊥. If G = [Ik|A] is
the standard form generator matrix of an [n, k]-code C, then H = [−A>|In−k], where A> is the
transpose of A, is it’s parity check matrix. A syndrome S(y) of the received word y is calculated as
S(y) = yH>.

Two words have the same syndrome, iff they are in the same coset. Therefore it is sufficient to
store only two columns – one for syndromes z and one for their corresponding coset leaders l(z). The
decoding procedure is as follows: (a) Given y, compute S(y); (b) Locate z = S(y) in the syndrome
column; (c) Decode y as y − l(z).

2.1.3 Hamming codes

An important family of simple linear codes that are easy to encode and decode are called Hamming
codes.

CHAPTER 2. LINEAR CODES 13

Definition 2.1.4. Let r be an integer and H be an r×2r−1 matrix with columns being all non-zero
distinct words from Fr2. The code having H as it’s parity check matrix is called a binary Hamming
code and denoted by Ham(3, 2).

The code Ham(r, 2) is a [2r − 1, 2r − 1 − r, 3]-code, therefore it can repair exactly one error. If
the columns of H are arranged in the order of increasing binary numbers the columns represent,
than the syndrome S(y) gives, in the binary representation, the position of the error.

2.2 Exercises

2.1. Find the standard form of generator matrix for codes that are linear.

(a) Binary code C1 = {00000, 00110, 00101, 10111, 10010, 10001, 10100, 00011}.

(b) 5-ary code C2 = {000, 224, 132, 444, 312}.

2.2. How many codewords does the smallest ternary linear code containing keywords 100, 010
and 210 have?

2.3. Consider the 5-ary code C such that

x1x2x3x4 ∈ C ⇔ x1 + 2x2 + 3x3 + 4x4 = 0 mod 5.

Show that C is a linear code and find it’s generator matrix in standard form.

2.4. Consider a ternary linear code C. What fraction of codewords can have the digit 2 as the
last digit?

2.5.

(a) Show that in a linear binary code, either all the codewords begin with 0, or exactly half begin
with 0 and half with 1.

(b) Show that in a linear binary code, either all the codewords have even weight, or exactly half
have even weight and half have odd weight.

2.6. A binary code C is called weakly self dual if C ⊂ C⊥. Prove the following.

(a) If C is binary weakly self dual code, every codeword is of even weight.

(b) If each row of the generator matrix G of weakly self-dual code C has weight divisible by 4,
then so does every codeword.

2.7. Consider a binary linear code C generated by the matrix

G =

(
1 0 1 1 0
0 1 0 1 1

)
(a) Construct a standard array for C.

(b) Find an example of a received word with two errors which is not decoded correctly using the
coset decoding method.

CHAPTER 2. LINEAR CODES 14

2.8. Consider a binary [n, k]-code C with a parity check matrix

H =

1 1 0 1 0 0 1
0 1 1 1 1 0 0
1 0 0 1 1 1 0


(a) Find n, k, h(C) and |C|.

(b) Find the standard form generator matrix for C.

(c) Prove that C⊥ ⊂ C.

(d) Find coset leaders and the corresponding syndromes

2.9. Let C be a binary code of length n. Consider a binary code C ′ of length n + 1 such that
C ′ = {x1 . . . xnxn+1|x1 . . . xn ∈ C, xn+1 =

∑n
i=1 xi}, where the addition modulo 2. Show that:

(a) if C is a linear code, then C ′ is also a linear code;

(b) if H is a parity check matrix of C, then matrix

G =

(
H r>

s 1

)
,

where r is vector of all 0s and s vectors of all 1s, is a parity check matrix of code C ′.

2.10. Let C be a binary linear [4, 2]-code such that C = C⊥. Show that C contains at least two
words of weight 2.

* 2.11. How many different binary linear [6, 3]-codes C fulfill C = C⊥?

2.12. Let C1 and C2 be linear codes of the same length. Decide whether the following statements
hold

(a) If C1 ⊆ C2, then C⊥2 ⊆ C⊥q ;

(b) (C1 ∩ C2)⊥ = C⊥1 ∪ C⊥2 .

* 2.13. Show that there exists a [2k, k] self dual code over Fq, if and only if there is a k×k matrix
P with entries from Fq such that PP> = −Ik.

2.14. Let Mi be the family of all binary linear codes with weight equal to mi, where mi is the
ith Mersenne prime (a prime of the form 2j − 1 for some j ∈ N). For all N, decide whether there
exists a self-dual code in Mi.

2.15. Let G1, G2 be generator matrices of [n1, k, d1]-linear code and [n2, k, d2]-linear code,
respectively. Find values n, k, d of codes with generator matrices:

(a)
G3 = [G1|G2]

(b)

G4 =

(
G1 0
0 G2

)

CHAPTER 2. LINEAR CODES 15

* 2.16. Let G24 be the extended Golay code with the following generator matrix:

row ∞ 0 1 2 3 4 5 6 7 8 9 10 ∞ 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 1 1 1

Show that:

(a) G24 = G⊥24.

(b) Every codeword of G24 code has weight divisible by 4.

(c) G24 contains word with all ones.

(d) If G24 contains codeword |L|R| with

L = a∞a0a1 . . . a10, R = b∞b0b1 . . . b10,

it also contains codeword |L′|R′| with

L′ = b∞b0b10b9 . . . b1, R
′ = a∞a0a10a9 . . . a1.

2.3 Solutions

2.1.

(a) The code C1 is linear, because ∀c1, c2 ∈ C1, c1 + c2 ∈ C1, which is a sufficient condition for
binary codes. Since C1 contains 8 codewords, it is a subspace of F5

2 of dimension 3. Therefore
the generator matrix has log2(8) = 3 rows. Without the loss of generality we can choose any
three non-zero and linearly independent vectors as the base of C1 and write them down in a
matrix form: 1 0 1 1 1

0 0 1 0 1
0 0 1 1 0

 .

In order to obtain a standard form of generator matrix we need two steps: (a) Swap second
and fifth column; (b) Add second row to the first one and third row to a second one:1 0 1 1 1

0 0 1 0 1
0 0 1 1 0

 7→(a)

1 1 1 1 0
0 1 1 0 0
0 0 1 1 0

 7→(b)

1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

 .

(b) This is not a linear code, since 444 + 444 = 333 /∈ C2.

CHAPTER 2. LINEAR CODES 16

2.2. Since 210 = 2 ·100+010, there are only two linearly independent codewords in the assignment.
The smallest bases of the code containing them is of the size 2 and contains only these two codewords.
Such code contains 32 = 9 codewords.

2.3. Let u = u1u2u3u4 and v = v1v2v3v4 be two codewords from C. Then we have that u + v =
(u1+v1)(u2+v2)(u3+v3)(u4+v4) and (u1+v1)+2(u2+v2)+3(u3+v3)+4(u4+v4) = 0 mod 5. Also
we have that for any scalar w and corresponding word wu it holds that w(u1 + 2u2 + 3u3 + 4u4) = 0
mod 0.

Note that C is defined by an orthogonality relation (u1, u2, u3, u4) · (1, 2, 3, 4) = 0. Since we are
working with words in F4

q , there are 3 linearly independent vectors orthogonal to vector (1, 2, 3, 4),
which also constitute a basis of code C. To construct a generator matrix of C we first construct
it’s parity check matrix H = (1, 2, 3, 4). It’s normal form is 4H = (4, 3, 2, 1). If H = [−A>|I], then
G = [I|A], i.e.

G =

1 0 0 1
0 1 0 2
0 0 1 3

 .

2.4. There are linear codes with all codewords ending in 0. However, this case is pathological,
since these codes can be shortened by leaving out the last symbol, retaining all the parameters.

Therefore, let us consider only codes, which have at least one basis codeword w not ending in
0. without the loss of generality assume that w ends in 1. We now can create a basis, in which all
other codewords w′ 6= w end in 0, by subtracting in the generator matrix from each row the correct
multiple of w. Each codeword ending in 2 can be decomposed as a linear combination of vectors in
this new basis, i.e. 2 ·w+ u, where u is some linear combination of basis vectors ending in 0. If the
dimension of the code is d, there are 3d−1 different linear combinations u. Together with the fact
that the number of codewords in C is 3d, we have that exactly 1

3 of codewords ends in digit 2.

2.5.

(a) Consider a basis of the code C. If all the basis codewords begin with 0, also all their linear
combinations start with 0 and we are done.

Suppose l out of k words in the basis start with 1. All codewords starting with 1, can be
written as a linear combination of basis words bi, out of which odd number start with 1. It
remains to calculate the number of such linear combinations.

l∑
i=2j+1,j∈N

(
k

i

)
2k−l = 2l−12k−l = 2k−1,

which is exactly a half of all the codewords in C.

(b) Let us label a codeword with even number of symbols 1 as even and a word with odd number
of 1s as odd. Note that a sum of two even words results in an even word. If the basis of the
code contains only even words, we are done. Additionally sum of an even word and an odd
word is odd and sum of two odd words is even. Now we can argue similarly to the previous
question. If l out of k basis words are odd, then linear combination containing odd number
of odd words result in an odd codeword. As we have shown previously there are exactly 2k−1

such linear combinations.

2.6.

(a) Since C is a binary weakly self dual code we have that ∀c ∈ Cc · c. This means that every
code c must have even weight.

CHAPTER 2. LINEAR CODES 17

(b) We have established that each row has even weight. Let u and v be two rows of the generator
matrix G of C. In order to have u ·v = 0, u and v must both have symbol 1 in even number of
positions. This implies that in even number of positions u has symbol 1 and v has symbol 0
and vice versa. These are exactly the positions in which word u+ v will have symbol 1. Sum
of two even numbers is always divisible by 4, therefore the weight of u + v is divisible by 4.
This fact can be be proven for any linear combination of rows of G by induction.

2.7.

(a) The standard array for C:

00000 10110 01011 11101

10000 00110 11011 01101

01000 11110 00011 10101

00100 10010 01111 11001

00010 10100 01001 11111

00001 10111 01010 11100

10001 00111 11010 01100

00101 10011 01110 11000

(b) An example of such codeword is 01100, which can be obtained by two errors on both codewords
00000 and 11101. This is however not surprising, since h(C) = 3, and therefore the code can
reliably correct only a single error.

2.8.

(a) H is a n − k × k matrix, therefore n = 7 and k = 4. |C| = qk = 24 = 16. h(C) = w(C) = 3
(see (c) below).

(b) A normal form of H is

Hnorm =

0 1 1 1 1 0 0
1 1 1 0 0 1 0
1 1 0 1 0 0 1

 .

It is of the form [−A>|In−k], which implies that standard form of G = [Ik|A], i.e.

G =


1 0 0 0 0 1 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1

 .

(c) We have that C = {u ·G|u ∈ F4
2}and C⊥ = {u ·H|u ∈ F3

2}. In our case this yields:

C⊥ = {0000000, 1101001, 1110010, 0111100, 1001110, 0011011, 1010101, 0100111}
C = {0000000, 1000011, 0100111, 0010110, 0001101, 1100100, 1010101, 1001110,

0110001, 0101010, 0011011, 1110010, 1101001, 1011000, 0111100, 1111111}

(d)
l(z) z

0000000 000

1000000 101

0100000 110

0010000 010

0001000 111

0000100 011

0000010 001

0000001 100

CHAPTER 2. LINEAR CODES 18

2.9.

(a) Since we are working with a binary code C, we need only to prove that ∀x, y ∈ C, xxn+1 +
yyn+1 ∈ C ′. We have that:

xxn+1 + yyn+1 = (x+ y)

(
n∑
i=1

xi +
n∑
i=1

yi

)
= (x+ y)

(
n∑
i=1

xi + yi

)
.

(b) Let us denote gi the ith row of G and hi the ith row of H. We need to prove that x · gi = 0,
where · is the scalar product. Since H is the parity check matrix of C, we have that

∀x ∈ C,∀i ∈ {1, . . . , n} : x · hi = 0.

This implies that

∀xxn+1 ∈ C ′,∀i ∈ {1, . . . , n} : xxn+1 · gi = x · hi + xn+1 · 0 = 0.

It now suffices to investigate the scalar product of codewords from C ′ and the last row of G.

∀xxn+1 ∈ C ′, x · (11 . . . 11) =

n∑
i=1

xi + xn+1 = xn+1 + xn+1 = 0.

Since all codewords of C ′ are orthogonal to all rows of G, G is the parity check matrix of C ′.

2.10. Since C is a [4, 2]-code and C = C⊥, we have that ∀x ∈ C : x · x = 0, therefore x2
1 + x2

2 +
x2

3 + x2
4 = x1 + x2 + x3 + x4 = 0. In other words each x contains an even number of 1s. Since C is a

linear code, it has a generator matrix (xy), with x, y ∈C, x 6= y 6= 0000. There are two possibilities:
(a) both x and y contain exactly two 1s and we are done; (b) x contains all 1s and y contains two
1s. Then the codewords we are looking for are x+ y and y.

2.11. For every x, y ∈ C, x · y = 0, especially x · x = 0, therefore each codeword is of even weight
and since ∀x, y ∈ C, x+ y ∈ C, h(x, y) is even. Now let us take a look at couple of facts this implies:

• C contains at most three codewords of weight 2. This is implied by the fact that each pair of
such words has to have symbols 1 in different positions.

• C contains at most three codewords of weight 4. This is implied by the fact that each pair of
such words has to share two positions with symbols 1 and be different in all the other positions,
i.e. these words have 0s in different positions.

• The previous two facts imply that C contains all 1s codeword. Together with all 0s codeword
we now know weights of all the codewords.

Since the codewords of weight 2 have symbols 1 in all different positions, they constitute a basis of
C. Therefore the task is reduced to a question of how many choices for these three words we have.
We can choose the first word in

(
6
2

)
ways, the second word in

(
4
2

)
ways and the last one is determined

by the first two. The order in which we pick the words is not important, therefore we divide by 3!
to obtain the solution: (

6
2

)(
4
2

)
3!

= 15.

2.12.

(a) Let C1 = {c1, dots, cn}, C2 = {c1, . . . , cn, . . . , cm}, with n,m ∈ N,m ≥ n. We have that
C⊥1 = {v|v · c1 = 0∧ · · · ∧ v · cn = 0} and C⊥2 = {v|v · c1 = 0∧ · · · ∧ v · cn = 0∧ · · · ∧ v · cm = 0}.
Since for all v ∈ C⊥2 and ci ∈ C2 it holds that v · ci = 0, it holds particularly for all ci ∈ C1,
(i.e. for all ci with i ≤ n), therefore we have that C⊥2 ⊆ C⊥1 .

CHAPTER 2. LINEAR CODES 19

(b) Let C1 = {00, 01} and C2 = {00, 10}. Then C⊥1 = {00, 10} and C⊥2 = {00, 01}. We have
(C1 ∩ C2)⊥ = {00, 10, 01, 11} and C⊥1 ∪ C⊥2 = {00, 10, 01}, hence (C1 ∩ C2)⊥ 6= C⊥1 ∪ C⊥2 .

2.13. We will first prove the “if” part of the statement. Let P be a k × k matrix such that
PP> = −Ik. Let G = [Ik|P]. Rows of G are independent, therefore G is a generator matrix of some
[2k, k] linear code C. Also

GG> = [Ik|P]
[Ik
P

]
= Ik − PP> = 0,

which means G is also a parity check matrix for code C and therefore C is self dual.
The “only if” part can be proven as follows. Let C be the self-dual [2k, k]-code. As C is a linear

code it has a generator matrix G of the form G = [Ik|A], where Ais a k × k matrix. Since C is
self-dual, we have that GG> = 0. However

GG> = [Ik|P]
[Ik
P

]
= Ik +AA>.

We obtained Ik +AA> = 0, therefore AA> = −Ik and we can take P = A.

2.14. There is no self-dual code in Mi for any i ∈ N. The reason for this is the fact that each
Marsenne prime mi is odd. We know that the weight of the code is equivalent to the weight of the
word with the lowest weight among the non-zero codewords. Therefore code of weight mi contains
at least one word of weight mi. On the other hand, for every word c of a self-dual code C holds that
c · c = 0, which doesn’t hold for codewords of odd weight.

2.15.

(a) • n = n1 + n2,

• k3 = k because G3 has the same dimension as G1 and G2,

• d3 = d1 + d2, as the code C3 contains a codeword composed of concatenation of c1 and
c2, where c1 and c2 are the codewords of minimum weight from C1 and C2.

(b) • n = n1 + n2,

• k4 = 2k because G4 contains all rows from G1 and G2 supplemented by zeros,

• d3 = min(d1, d2), because C4 contains the same codewords as C1 and C2 only extended
by 0’s so the codeword of the minimal weight stays the same as for one of the original
codes.

2.16.

(a) It is easy to check that for every pair u, v of rows of G, we have u · v = 0, therefore G24 ⊆ G⊥24.
However, we also know, that G24 has dimension 12. For each [n, k]-code C the dimension of
C⊥ is n− k, therefore G⊥24 also has dimension 12 and G24 = G⊥24.

(b) We have established that G24 is weakly self-dual and we can see that each row of G24 is
divisible by 4. Then by exercise 6 it follows that each word of G24 has weight divisible by 4.

(c) It is easy to verify that the sum of all rows gives the all 1 codeword, as the number of 1s in
each column is odd.

(d) Let us compute the inner product of L|R and L′|R′ for arbitrary L|R ∈ G24:

L|R · L′|R′ = a∞b∞ + a0b0 +
10∑
i=1

aib11−ib∞a∞ + b0a0 +

10∑
i=1

bia11−i

= 2

(
a∞b∞ + a0b0 +

10∑
i=1

aib11−i

)
= 0.

Since G24 is self dual, it mus contain all the words orthogonal to L|R, so in particular it
contains L′|R′.

Chapter 3

Cyclic Codes

3.1 Introduction

Cyclic codes are very special linear codes. They are of large interest and importance for several
reasons:

• They posses a rich algebraic structure that can be utilized in variety of ways.

• They have extremely concise specifications.

• Their encodings can be efficiently implemented using shift registers.

Definition 3.1.1. A code C is cyclic, if:

(i) C is a linear code;

(ii) any cyclic shift of a codeword is also a codeword i.e. whenever a0 . . . an−1 ∈ C, then also
an−1a1 . . . an−2 ∈ C.

3.1.1 Polynomials over GF (q)

Let us denote a codeword of a cyclic code as a0a1 . . . an−1. With each codeword we will associate a
codeword polynomial a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1. Fq[x] will denote the set of all polynomials

f(x) over GFq. Also let us define the degree deg(f(x)) of a polynomial f(x) as the largest m, such
that xm has non-zero coefficient in f(x). Some basic properties of polynomials follow:

• Multiplication.If f(x), g(x) ∈ Fq[x], then deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).

• Division. For every pair of polynomials a(x), b(x) 6= 0 in Fq[x] there exists a unique pair of
polynomials q(x), r(x) ∈ Fq[x], such that a(x) = q(x)b(x) + r(x),deg(r(x)) < deg(b(x)).

• Congruence. Let f(x) be a fixed polynomial in Fq[x]. Two polynomials g(x), h(x) are said
to be congruent modulo f(x) (notation g(x) ≡ h(x) mod f(x)), if g(x)− h(x) is divisible by
f(x).

A cyclic code C with codewords of length n can be seen as a set of polynomials of degree (at most)
n− 1.

3.1.2 Rings of polynomials

For any polynomial f(x), the set of all polynomials Fq[x] of degrees less than deg(f(x)), with addition
and multiplication modulo f(x) forms a ring denoted Fq[x]/f(x). A polynomial f(x) in Fq[x] is said
to be reducible if f(x) = a(x)b(x), where a(x), b(x) ∈ Fq[x] and deg(a(x)) < deg(f(x)), deg(b(x)) <

20

CHAPTER 3. CYCLIC CODES 21

deg(f(x)). If f(x) is not reducible, then it is said to be irreducible in Fq[x]. The ring Fq[x]/f(x) is
a field, if f(x) is irreducible in Fq[x].

An important factor ring in the context of cyclic codes is the ring Rn = Fq[x]/(xn − 1). The
reason for this is that a cyclic shift is easy to represent in Rn. Since xn ≡ 1 mod (xn − 1), we have
that

x(a0 + a1x+ · · ·+ an−1x
n−1) = an−1 + a0x+ a1x2 + · · ·+ an−2x

n − 1.

3.1.3 Algebraic characterization of cyclic codes

A binary code C of words of length n is cyclic if and only if it satisfies two conditions:

(i) a(x), b(x) ∈ C ⇒ a(x) + b(x) ∈ C,

(ii) a(x) ∈ C, r(x) ∈ Rn ⇒ r(x)a(x) ∈ C.

For any f(x) ∈ Rn we can define 〈f(x)〉 = {r(x)f(x)|r(x) ∈ Rn} with multiplication modulo
xn−1 to be a set of polynomials. Now we are ready to formulate the main characterization theorem
for cyclic codes.

For any f(x) ∈ Rn, the set 〈f(x)〉 is a cyclic code (generated by f(x)). Conversely, for each non-
zero cyclic code C with codeword length n, there exists a unique monic polynomial g(x) ∈ Fq[x] such
that C = 〈g(x)〉 and g(x) is a factor of xn − 1. The polynomial g(x) is called generator polynomial
of C.

Suppose C is a cyclic code of codewords of length n with generator polynomial

g(x) = g0 + g1x+ · · ·+ grx
r.

Then dim(C) = n− r and generator matrix G for C is

G =


g0 g1 g2 . . . gr 0 0 0 . . . 0
0 g0 g1 g2 . . . gr 0 0 . . . 0
0 0 g0 g1 g2 . . . gr 0 . . . 0
...

...
...

...
...

. . .
...

...
...

...
0 0 . . . 0 0 . . . 0 g0 . . . gr

 .

Encoding using a cyclic code can be done by multiplication of polynomials. Let C be a cyclic
[n, k]-code with generator polynomial g(x) of degree n− k− 1. Each message m can be represented
by a polynomial m(x) of degree at most k. If message is encoded by a standard generator matrix
introduced above, then we have c = mG and for m(x) and c(x) it holds that c(x) = m(x)g(x).

3.1.4 Check polynomials and parity check matrices for cyclic codes

Let C be a cyclic [n, k]-code with the generator polynomial g(x) of degree n − k. Since g(x) is a
factor of xn − 1, we have that xn − 1 = g(x)h(x) for some h(x) of degree k. Polynomial h(x) is
called the check polynomial of C.

Let C be a cyclic code in Rn with a generator polynomial g(x) and a check polynomial h(x).
Then c(x) ∈ Rn is a codeword of C if and only if c(x)h(x) ≡ 0 mod xn − 1. Also, if h(x) =
h0 + h1x+ · · ·+ hkx

k, then

(i) a parity-check matrix for C is

H =


hk hk−1 . . . h0 0 . . . 0
0 hk . . . h1 h0 . . . 0
...

...
. . .

...
...

...
...

0 0 . . . 0 hk . . . h0

 ;

CHAPTER 3. CYCLIC CODES 22

(ii) C⊥ is the cyclic code generated by the polynomial

h̄(x) = hk + hk−1x+ · · ·+ h0x
k,

i. e. by the reciprocal polynomial of h(x).

3.2 Exercises

3.1. Determine whether the following codes are cyclic. Explain your reasoning.

(a) The ternary code C1 = {0000, 1212, 2121}

(b) The ternary code C2 = {x|x ∈ Z5
3 ∧ w(x) ≡ 0 mod 3}

(c) The ternary code C3 = {x|x ∈ Z5
3 ∧ x1 + x2 + · · ·+ x5 ≡ 0 mod 3}

(d) The 7-ary code C4 = {x|x ∈ Z5
7 ∧
∑5

i=1 ixi ≡ 0 mod 7}

3.2. Which of the following polynomials are generator polynomials of a binary cyclic code of
length 7?

(a) x3 + x2 + x+ 1

(b) x3 + x2 + 1

(c) x2 + x+ 1

3.3. Consider the following binary linear [8, 5]-code C generated with

G =


1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
1 1 1 0 0 0 0 1

 .

(a) Prove that C is a cyclic code.

(b) Find the generator polynomial of C.

3.4. Let C be a binary cyclic code of length 15 and dimension 11 such that each word from C⊥

has even weight and 011111111110000 ∈ C. Find a generator polynomial g(x), generator matrix G
and a minimum distance of C.

3.5. Consider the binary cyclic code C of length 7 with the generator polynomial g(x) = x3+x+1.

(a) Find the generating matrix G and the parity check matrix H.

(b) Decide, whether the code C is perfect or not.

(c) Encode the message 1001.

3.6. Find a generator polynomial for the smallest binary cyclic code containing codewords
00101000 and 01001000.

3.7. Let C be the smallest binary cyclic code which contains the word 011011.

CHAPTER 3. CYCLIC CODES 23

(a) List the codewords of C.

(b) Determine the the generator polynomial g(x) of C.

(c) Use g(x) to encode a message 11.

3.8.

(a) Factorize x6 − 1 ∈ F3[x] into irreducible polynomials.

(b) Let nk be the number of ternary cyclic codes of length 6 and dimension k. Determine nk for
k ∈ {0, 1, 2, 3, 4, 5, 6}.

(c) For each cyclic code of dimension 5, find the check polynomial and parity check matrix and
determine whether it contains the word 120210.

* 3.9.

(a) Describe all binary cyclic codes of length 19.

(b) How many different binary cyclic [65, 36] codes are there?

(c) Is it possible to find a binary cyclic [65, 20] code?

* 3.10. Let C1, C2 be q-ary cyclic codes of length n with generator polynomials g1(x) and g2(x)
respectively. Show that C3 = C1 ∩ C2 is also cyclic. Find it’s generator polynomial.

* 3.11. Let C1, C2 be q-ary cyclic codes of length n with generator polynomials g1(x) and g2(x)
respectively. Show that C3 = {c1 + c2|c1 ∈ C1, c2 ∈ C2}, where the addition is in Fq, is also cyclic.
Find it’s generator polynomial.

* 3.12. Let C be a q-ary cyclic code of length n and let g(x) be its generator polynomial. Show
that all the codewords c0c1 . . . cn−1 ∈ C satisfy c0 + c1 + · · ·+ cn−1 = 0, where addition is in Fq, if
and only if the polynomial x− 1 is a factor of g(x) in Fq[x].

3.13. Let g(x) = gkx
k + · · · + g1x

1 + g0 6= 0 be a generator polynomial of some cyclic code C.
Show that g0 6= 0.

* 3.14. Consider a binary cyclic code with a generator polynomial g(x). Show that g(1) = 0 if
and only if weight of each word in C is even.

3.15. Let C be a binary cyclic code whose codewords have length n. Let ci denote the number
of codewords of weight i in C. Show that ici is a multiple of n

3.16. Let C be a binary cyclic code of odd length. Show that C contains a codeword of odd
weight if and only if it contains the all 1s word 111 . . . 11.

* 3.17. Let C be a cyclic code over Fq of length 7, such that 1110000 is a codeword of C. Show
that C is a trivial code (i.e. Fnq or {0n}), of q is not a power of 3.

CHAPTER 3. CYCLIC CODES 24

3.3 Solutions

3.1.

(a) C1 is cyclic, because every sum of two codewords from C1 is in C1 and every cyclic shift of
any codeword from C1 is also in C1.

(b) C2 is not a cyclic code. Counterexample: 00111 ∈ C2 and 00112 ∈ C2, but 00111 + 00112 =
00220 /∈ C2.

(c) C3 is a cyclic code. Let x = x1x2x3x4x5 ∈ C3, y = y1y2y3y4y5 ∈ C3. Then

• x + y = (x1 + y1)(x2 + y2)(x3 + y3)(x4 + y4)(x5 + y5) = z1z2z3z4z5 ∈ C3, because
z1 + z2 + z3 + z4 + z5 = (x1 + y1) + (x2 + y2) + (x3 + y3) + (x4 + y4) + (x5 + y5) =
(x1 +x2 +x3 +x4 +x5)+(y1 +y2 +y3 +y4 +y5) ≡ 0 mod 3, since x1 +x2 +x3 +x4 +x5 ≡ 0
mod 3 and y1 + y2 + y3 + y4 + y5 ≡ 0 mod 3.

• if x ∈ C3, then its cyclic shift is also in C3, because the sum of positions is commutative.

(d) C4 is not a cyclic code. Counterexample: 12341 ∈ C4, but its cyclic shift 11234 /∈ C4, because
1 · 1 + 2 · 1 + 3 · 2 + 4 · 3 + 5 · 4 = 41 ≡ 6 mod 7.

3.2. The polynomial needs to divide x7 − 1 in F2. We have:

(a) x7 − 1 = (x4 + x)(x3 + x2 + x+ 1) + x3 + 1;

(b) x7 − 1 = (x4 + x3 + x2 + 1))(x3 + x2 + 1);

(c) x7 − 1 = (x5 + x4 + x2 + x)(x2 + x+ 1) + x+ 1;

Therefore only the second polynomial generates a binary cyclic code of length 7.

3.3. If C is cyclic, it has to be generated by a divisor of x8− 1, with degree 8− 5 = 3. Since in F2,
x8 − 1 = (x+ 1)8, only one of it’s divisors is of degree 3 – f(x) = (x+ 1)3 = x3 + x2 + x+ 1. Using
the algorithm from the introduction, the generator matrix of a code with generator polynomial f(x)
is

F =


1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1

 .

We can obtain G from F by the following transformations:

1. The first rows are identical.

2. Add the first row of F to it’s second row to obtain the second row of G.

3. Add the second row of F to it’s third row to obtain the third row of G.

4. Add the third row of F to it’s fourth row to obtain the fourth row of G.

5. The last row of G can be obtained by adding the first, fourth and fifth row’s of F .

We have therefore established that G and F generate the same code, which is a cyclic code generated
by f(x).

CHAPTER 3. CYCLIC CODES 25

3.4. It follows from the codeword length that g(x) divides x15 − 1. It must also hold that the
polynomial

w(x) = x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

associated with the codeword 011111111110000 is a multiple of g(x). The factors of w(x) and x15−1
are the following:

x15 − 1 = (x+ 1)(x2 + x+ 1)(x4 + x3 + x2 + x+ 1)(x8 + x7 + x5 + x4 + x3 + x+ 1)

w(x) = x(x+ 1)(x4 + x3 + x2 + x+ 1)(x4 + x3 + x2 + x+ 1).

Candidates for g(x) are therefore (x+ 1), (x4 + x3 + x2 + x+ 1) and their product (x+ 1)(x4 + x3 +
x2 + x+ 1) = x5 + 1. However, we also need to take into account that C⊥ contains only codewords
of even weight. Since both C and C⊥ are linear, we also know from the previous chapter that all
basis codewords of C⊥ need to have even weight, which in turn, together with the construction of
generator matrix of C⊥ implies, that generator polynomial h̄(x) of C⊥ needs to have even weight.

We also know that x15−1 = g(x)h(x). Therefore it suffices to divide x15−1 by all the candidates
for g(x) and see which one has a check polynomial h(x) of even weight:

x15 − 1/(x+ 1) =

14∑
i=0

xi;

x15 − 1/(x4 + x3 + x2 + x+ 1) = x11 + x10 + x6 + x5 + x+ 1;

x15 − 1/(x5 + 1) = x10 + x5 + 1.

The only check polynomial of even weight is the second one, therefore g(x) = (x4 +x3 +x2 +x+ 1).
The generator matrix is therefore:

G =



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1



.

Minimum distance of a linear code is equal to the minimum weight of non-zero codewords. In
this case the minimum weight is 2. An example is the codeword we get by adding first and second
row of G. Codeword with weight 1 doesn’t belong to the code C, because otherwise all its cyclic
shifts would be in C as well and then C would be a trivial code containing all words of length 15.

3.5.

(a) The generating matrix is:

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

CHAPTER 3. CYCLIC CODES 26

In order to find the parity check matrix H, we need to find the check polynomial. In this case
it is h(x) = 1 + x+ x2 + x4, because g(x)h(x) = x7 − 1. The reciprocal polynomial of h(x) is
h̄(x) = 1 + x2 + x3 + x4, therefore the parity check matrix is:

H =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

(b) After examining H, we can see that this is in fact the Hamming (3, 2) code, which is perfect.

(c) With the message we can associate a polynomial x3 + 1. Multiplying with the generator
polynomial we get 1 + x+ x4 + x6, and therefore the codeword is 1100101.

3.6. Since we are dealing with codewords of length 8, we know that all candidate cyclic codes are
generated by a polynomial dividing x8− 1. Since x8− 1 = (x− 1)8, we need to find 0 ≤ k ≤ 8, such
that a cyclic code Ck generated by gk(x) = (x− 1)k contains both codewords.

In order to check whether the codewords belong to a code generated by gk(x), we will consider
the check polynomials of the form hk(x) = (x− 1)8−k. Both codewords belong to Ck, if the product
of their polynomial representation with hk(x) is equal to zero modulo x8 − 1. Checking all the
polynomials hk(x) reveals that the smallest code containing both codewords is generated by x+ 1.

3.7.

(a) The smallest code has to be linear and contain 011011, all its cyclic shifts and the zero
codeword. Examining this set {000000, 011011, 101101, 110110} of codewords reveals that it
indeed is a linear subset of F6

2, and therefore it is the smallest cyclic code containing 011011.

(b) The generator polynomial can be obtained as the non-zero polynomial with the smallest degree
in C. Since we have a list of all the codewords, it is easy to see that such polynomial corresponds
to codeword 110110. Therefore, g(x) = 1 + x+ x3 + x4.

(c) The message 11 is equivalent to the polynomial 1 + x. Then (1 + x)(1 + x + x3 + x4) =
1 + x2 + x3 + x5. Finally, the codeword corresponding to message 11 is 101101.

3.8.

(a) x6 − 1 = (x+ 1)3(x+ 2)3.

(b) nk is equal to the number of factors of x6 − 1 with degree 6 − k in Fq – n0 = 1, n1 = 2n2 =
3, n3 = 4, n4 = 3, n5 = 2, n6 = 1.

(c) We now know there are 2 non-equivalent codes of dimension 5:

(i) g(x) = (x+1). Then the check polynomial is (x+1)2(x+3)3 = x5 +2x4 +x3 +2x2 +x+2
and the parity check matrix is

H =
(
1 2 1 2 1 2

)
.

Since (120210) ·H> = 1, the code does not contain the word 120210.

(ii) g(x) = (x+ 2). Then the check polynomial is (x+ 1)3(x+ 3)2 = x5 +x4 +x3 +x2 +x+ 1
and the parity check matrix is

H =
(
1 1 1 1 1 1

)
.

Since (120210) ·H> = 0, the code contains the word 120210.

CHAPTER 3. CYCLIC CODES 27

3.9.

(a) Factorizing x19−1 yields two factors:

f1(x) = x+ 1

f2(x) =
18∑
i=0

xi.

Therefore there are 22 = 4 cyclic codes in F19
2 . These codes are described by their gener-

ator polynomials 1, f1(x), f2(x), f1(x)f2(x) = x19 − 1. Codes therefore are C1 = 〈1〉, C2 =
〈f1(x)〉, C3 = 〈f2(x)〉, C4 = 〈f1(x)f2(x)〉.

(b) The dimension of an [n, k] code is n− k, therefore the [65, 36] codes we are searching for have
dimension 29. After factoring x65 − 1 (e. g. using a suitable software), we know there are 5
factors with degree 12, one factor with degree 4 and one factor with degree 1. The only way
how to get a polynomial of degree 29 by multiplying these factors is 12 + 12 + 4 + 1. We can
do this in

(
5
2

)
= 10 ways. Thus there are 10 distinct [65, 36] binary cyclic codes.

(c) A polynomial that is both product of the previously listed factors and has degree 65−20 = 45
doesn’t exist. Therefore, a [65, 20] binary cyclic code does not exist.

3.10. Let us first prove that C3 is a linear code. We know that C1 and C2 are linear codes,
therefore:

u, v ∈ C3 ⇒ u, v ∈ C1∩C2 ⇒ u, v ∈ C1∧u, v ∈ C2 ⇒ u+v ∈ C1∧u+v ∈ C2 ⇒ u+v ∈ C1∩C2 ⇒ u+v ∈ C3.

Also,

∀a ∈ Fq, u ∈ C3 ⇒ u ∈ C1 ∩ C2 ⇒∈ C1 ∧ u ∈ C2 ⇒ au ∈ C1 ∧ au ∈ C2 ⇒ au ∈ C1 ∩ C2 ⇒ au ∈ C3.

We will continue by showing that C3 is a cyclic code. We know that C1 and C2 are cyclic codes,
therefore:

u ∈ C3 ⇒ u ∈ C1 ∩ C2 ⇒ u ∈ C1 ∧ u ∈ C2 ⇒ us ∈ C1 ∧ us ∈ C2 → us ∈ C1 ∩ C2 ⇒ us ∈ C3,

where us is any cyclic shift of u.
The generator polynomial of C3 is the least common multiple of g1(x) and g2(x) (lcm(g1(x), g2(x))).

We can prove this fact in the following way.

u(x) ∈ C3 ⇒ u(x) ∈ C1 ∩ C2 ⇒ u(x) ∈ C1 ∧ u(x) ∈ C2 ⇒ g1(x)|u(x) ∧ g2(x)|u(x).

If u(x) 6= 0, then deg(u(x)) ≥ deg(lcm(g1(x), g2(x))). This implies that lcm(g1(x), g2(x)) has the
smallest degree of all non-zero polynomials in C3, hence it is a generator polynomial of C3.

3.11. Let us first prove that C3 is linear. If u, v ∈ C3, then u = u1 + u2 and v = v1 + v2, where
u1, v1 ∈ C1 and u2, v2 ∈ C2. Since C1 and C2 are both linear, we have that (u1 + v1) ∈ C1 and
(u2 + v2) ∈ C2. Therefore, (u1 + v1) + (u2 + v2) = (u1 + u2) + (v1 + v2) = u+ v ∈ C3.

Next let us prove that C3 is also cyclic. A word w ∈ C3 has the form

w = (u0 + v0)(u1 + v1) . . . (un−1 + vn−1),

where u = u0 . . . un−1 ∈ C1 and v = v0 . . . vn−1 ∈ C2. Since C1 and C2 are cyclic codes, they also
contain arbitrary cyclic shifts us, vs of codewords u, v. Therefore, their corresponding cyclic shift
ws of codeword w belongs to the code C3.

The generator polynomial of C is g(x) = gcd(g1(x), g2(x)). We will now show that C3 = 〈g(x)〉.

CHAPTER 3. CYCLIC CODES 28

• C3 ⊆ 〈g(x)〉: Each codeword w ∈ C3 has the form w = a(x) + b(x), where a(x) ∈ C1 and
b(x) ∈ C2. We can write a(x) = r(x)g1(x) and b(x) = s(x)g2(x) for some r(x), s(x) ∈ Rn.
Therefore we have

w = r(x)g1(x) + s(x)g2(x) = g(x)

(
r(x)

g1(x)

g(x)
+ s(x)

g2(x)

g(x)

)
.

Since g(x) divides both g1(x) and g2(x), we have that
(
r(x)g1(x)

g(x) + s(x)g2(x)
g(x)

)
∈ Rn and

therefore w ∈ 〈g(x)〉, hence C ⊆ 〈g(x)〉.

• 〈g(x)〉 ⊆ C3: C3 contains words of the form r(x)g1(x) + s(x)g2(x) for some r(x), s(x) ∈ Rn.
According to the Bézout’s identity there exist some r′(x), s′(x) ∈ Rn such that r′(x)g1(x) +
s′(x)g2(x) = gcd(g1(x), g2(x)), hence g(x) ∈ C3. Any word in 〈g(x)〉 has the form t(x)g(x),
where t(x) ∈ Rn. Since C is a cyclic code, it contains also any cyclic shifts of g(x) and their
linear combinations. These can be expressed as t(x)g(x) for any t(x) ∈ Rn. Therefore 〈g(x)〉.

3.12. Since a0 . . . an−1 corresponds to a polynomial a0 + a1x + · · · + an−1x
n−1, we will use both

notations interchangeably.

• “⇒”. Suppose (x − 1) is a factor of g(x). Let f(x) = g(x)/(x − 1). Let D be the code
with generator polynomial f(x). Note that C = {d(x)(x − 1)|d(x) ∈ D}. Therefore, for each
d = d0 . . . dn−1 ∈ D there is a word

d(x)(x− 1) = d(x)x− d(x) = (dn−1d0 . . . dn−2)− (d0 . . . dn−1)

= (dn−1 − d0)(d0 − d1) . . . (dn−2 − dn−1) ∈ C.

The sum of characters of the word in C is therefore dn−1−d0 +d0−d1 + · · ·+dn−2−dn−1 = 0

• “⇐”. Assume that c0 + . . . cn−1 = 0 for any c0c1 . . . cn−1 ∈ C. Every c ∈ C has the form
g(x)r(x) for some r(x) ∈ Rn, hence g(x) · 1 ∈ C. Then g(x) = a0 + a1x+ · · ·+ an−1x

n−1, and
a0 + · · ·+ an−1 = 0. This implies that 1 is a root of g(x): g(1) = a0 + · · ·+ an−1 = 0. Finally,
because 1 is a root of g(x), g(x) = (x− 1)f(x) for some f(x) ∈ Rn.

3.13. The fact that g0 = 0 implies that g(x) = x(gkx
k−1 + · · · + g1). Therefore, x is a factor of

xn − 1. This is clearly false as xn − 1 divided by x always yields a remainder −1.

3.14. We begin with an observation that in Fq the sum of even number of 1s is equal to 0 and
sum of odd number of 1s is equal to 1. This implies that ∀f(x) ∈ C : 2|w(f(x))⇔ f(1) = 0, where
w(f(x)) is the number of nonzero coefficients of polynomial f(x).

• “⇒”. Suppose g(1) = 0. Since ∀f(x) ∈ C we have that f(x) ∈ 〈g(x)〉, which is equivalent to
f(x) = g(x)a(x) for some a(x) ∈ Rn, we also have f(1) = g(1)a(1) = 0a(1) = 0. Hence, each
word in C is of even weight.

• “⇐”. Converse is trivial. weight of every codeword of C is even, so is the weight of codeword
corresponding to g(x) and therefore g(1) = 0.

3.15. Let us work with the subset Ci ∈ C containing all codewords of weight i. Without loss of
generality suppose Ci contains k words starting with symbol 1. After applying a cyclic shift to all
the words in Ci, we get exactly k words ending with 1 with weight i contained in C.

We can argue similarly for all the positions of the code. Hence we have that at each position of
words from Ci there are exactly k symbols 1. All in all we have that ici = nk.

CHAPTER 3. CYCLIC CODES 29

3.16.

• “⇐” If code of odd length contains the all 1s word, it trivially contains a word of odd weight.

• “⇒” Let C contain an odd-weight word a = a1 . . . an, with n = 2k+1 for some k ∈ N. Clearly
a0 + a1 + · · ·+ an−1 ≡ 1 mod 2. Because C is cyclic, it also contains all cyclic shifts of a and
their sum w. Every position of w can be expressed as a0 +a1 + · · ·+an−1, which as we already
argued is equal to 1 in F2

3.17. We need to show that if C is not a trivial code, q is a power of 3. Suppose C is not trivial
and it’s generator polynomial is g(x). We have that g(x)|(x7− 1) and also 1110000 ∈ C. Therefore,
1 + x + x2 = g(x)a(x) for some a(x) ∈ R7. Together with non-triviality of g(x) this implies that
1 ≤ deg(g(x)) ≤ 2. Regardless of q we can write

x7 − 1 = (x− 1)(x6 + x5 + x4 + x3 + x2 + x+ 1).

Since (x6 + x5 + x4 + x3 + x2 + x + 1) has no divisors of degree 1 or 2 in any basis, we have that
g(x) = x− 1. As 1110000 ∈ C, we have that (x− 1)|(1 + x+ x2). After the division in R we get a
remainder 3, which is congruent to 0 only in fields of characteristic equal to three, implying that q
is a power of 3.

Chapter 4

Secret Key Cryptosystems

4.1 Introduction

Cryptosystems (called also as ciphers) serve to provide secret communication between two parties.
They specify how to encrypt a message (usually called plaintext) by a sender, to get the encypted
message (usually called cryptotext), and then how the receiver can decrypt the received cryptotext
to get the original plaintext.

Security of secret key cryptosystems is based on the assumption that both the sender and the re-
ceiver posses the same secret key (and that is why secret key cryptosystems are called also symmetric
cryptosystems) that is an important parameter of both encoding and decoding processes.

Some secret key cryptosystems are very old. Many of them are easy to break using the power of
modern computers. They were dealt with in Chapter 4 of the lecture for the following reasons: (1)
They are often simple enough to illustrate basic approaches to the design of cryptosystems and to
methods of cryptanalysis; (2) They can be used even nowadays in combination with more modern
cryptosystems; (3) Historically, many of them used to play an important role for centuries.

In the Chapter 4 of the lecture basic ideas and examples of such main secret key cryptosystems
are presented, analysed and illustrated.

4.1.1 Basics of the design and analysis of cryptosystems

Every cryptosystem S works with a plaintexts space P (a set of plaintexts over an alphabet Σ), a
cryptotexts space C (a set of cryptotexts over an alphabet ∆) and a keyspace K (a set of possible
keys).

In any cryptosystem S, each key k ∈ K determines an encryption algorithm ek and a decryption
algorithm dk such that for any plaintext w ∈ P , ek(w) is the corresponding cryptotext and it holds

w = dk(ek(w)) or w ∈ dk(ek(w)),

where the last relation is to be valid if the encryption is done by a randomized algorithm.
A good cryptosystem should have the following properties: (1) Both encryption and decryption

should be easy once the key is known; (2) Cryptotexts should be not much larger than corresponding
plaintexts and the set of keys should be very large; (3) Encryption should not be closed under
composition and should create so called avalanche effect – small changes in plaintexts should lead
to big changes in cryptotexts; (4) Decryption should be unfeasible when the used key is not known.

Two basic types of cryptosystems are: (a) Block cryptosystems – to encrypt plaintexts of a fixed
size; (b) Stream cryptosystems – to encrypt (arbitrarily long) streams of input data.

Another basic classification of secret-key cryptosystems divides cryptosystems into: (1) substi-
tution based cryptosystems (characters of plaintexts are replaces by another ones); (2) transposition
based cryptosystems (characters of plaintexts are permuted). Different cryptosystems use different,
but usually easy to work with, substitutions and permutations.

30

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 31

If in a substitution based cryptosystem the substitution used is fixed (that is any character
is always replaced in the same way) we talk about a mono-alphabetic cryptosystem; otherwise a
cryptosystem is called poly-alphabetic.

Some of the main types of cryptoanalytics attacks are:

1. Cryptotexts-only attack. The cryptanalysts get cryptotexts c1 = ek(w1), . . . , cn = ek(wn)
and try to infer the key k, or as many of the plaintexts w1, . . . , wn as possible.

2. Known-plaintexts attack. The cryptanalysts know some pairs wi, ek(wi), 1 ≤ i ≤ n, and
try to infer k, or at least wn+1 for a new cryptotext ek(wn+1).

For mono-alphabetic cryptosystems the basic cryptanalytic attack is based on performing fre-
quency analysis of symbols of the plaintext and comparing it to the publicly known frequency analysis
tables for a given language. Highly frequent symbols in the cryptotext are then likely substitutes for
highly probably symbols in such publishd tables. Cryptanalytic attacks for POLYALPHABETIC
cryptosystems can be much more complicated, but in some important cases can be, after some effort,
reduced to those for monoalphabetic cryptosystems.

4.1.2 Basic classical secret-key cryptosystems

Caesar cryptosystem can be used to encrypt texts in any alphabet. For English the key space
K = {0, 1, 2, . . . , 25} is usually used. For any k ∈ K the encryption algorithm ek substitutes any
letter by the one occurring k positions ahead (cyclically) in the alphabet; the decryption algorithm
dk substitutes any letter by the one occurring k position backwards (cyclically) in the alphabet.

Polybious cryptosystem was originally designed for encrypting messages in the old English
alphabet without the letter “J”. The key space consists of checkerboards of the size 5 × 5 of all
remaining 25 letters of English and with rows and also columns labelled by different letters of
English. At encryptions, each letter is replaced by a pair of letters denoting the row and the column
the letter is in the checkerboard. At the decryption consecutive pairs XY of letters are replaced by
the letter in the X-row and the Y-column of the checkerboard used.

When the Hill cryptosystem is used to encrypt n-ary vectors v of integers from the set
{0, 1, 2, . . . , 25}, the key space consists of n× n matrices Mn of integers from the set {0, 1, 2, . . . 25}
such that M−1

n mod 26 exists. Encryption is done by multiplication c = Mnp and decryption by an-
other multiplication p = M−1c. In order to encrypt text-messages, the alphabet symbols are at first
replaced by their ordering numbers in the alphabet and the reverse process is used at decryptions.

Playfair cryptosystem uses the same key space as the Polybious cryptosystems. Encryption
is done by replacing subsequent pairs of input symbols (x, y) as follows: (1) If x and y are in the
same row (column) they are replace by the pair of symbols to the right of them; (2) If x and y are
in different rows and columns, then they are replaced by the symbols in the opposite corners of the
rectangle crated by x and y.

Affine cryptosystem has as the key space K the set of all pairs of integers {(a, b) | 0 ≤ a, b <
26; gcd(a, 26) = 1}. Encryption of an integer w from the set {0, 1, 2, . . . , 25} is done by computation
c = aw+ b mod 26; decryption by the computation w = a−1(c− b) mod 26}, where a−1 is computed
modulo 26.

The key space of (Keyword) Vigenere cryptosystem space consists of all words (strings of
symbols) in the English alphabet. To encrypt a message m of length n using a key k0 another key
k is created as the prefix of the word k∞0 (infinite concatenation of k0) of the length n and a matrix
T of size 26 × 26 is used the first row of which consists of all symbols of the English alphabet and
each column consists again of all symbols of the English alphabet, in their natural order but starting

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 32

with the symbol in the first row and cyclically extended. At any encryption the i-th symbol s of
the plaintext is replaced by the symbol in the ith row and in the column with i-th symbol of k in
the first row.
In Autoclave cryptosystem, a key k0 is concatenated with the plaintext message m to form the
key k.

Keyword Caesar cryptosystem has as the key space the set of all pairs (k0, i) where k0 is
an English word with all letters different and 1 ≤ i ≤ 26. To make the encryption of a plaintext w
using a key (k0, i), k0 is at first extended by adding in the usual order all letters not in k0 to get a
word k that specify a substitution in which i-th letter of the alphabet is replaced by the i-th symbol
of k.

A homophonic cryptosystem is specified by describing for each letter of the input alphabet
a set of potential substitutes (symbols or words). The number of substitutes for any letter X is
usually proportional to the frequency of X in usual texts in the input alphabet. Encryption is done
by replacing each letter X of the plantext by one, randomly chosen, of the substitutes of X.

In binary One-time paid cryptosystem the key space consists of all binary strings. To encrypt
a binary plaintext w using a binary string k of the same length, as the key, the cryptotext c = w⊕k
where the operation ⊕ is a bit-wise XORing; decryption is then done by computation w = c⊕ k.

4.1.3 Product cryptosystems

A cryptosystem S = (P,K,C, e, d) with the sets of plaintexts P , keys K and cryptotexts C and en-
cryption (decryption) algorithms e(d) is called endomorphic if P = C. If S1 = (P, K1, P, e

(1), d(1))
and S2 = (P, K2, P, e

(2), d(2)) are endomorphic cryptosystems, then the product cryptosystem is

S1 × S2 = (P, K1 ×K2, P, e, d),

where encryption is performed by the procedure e(k1, k2)(w) = ek2(ek1(w)) and decryption by the
procedure d(k1, k2)(c) = dk1(dk2(c)).

4.1.4 Perfect secrecy

Let P , K and C be sets of plaintexts, keys and cryptotexts. Let Pr[K = k] be the probability that
the key k is chosen from K and let Pr[P = w] be the probability that the plaintext w is chosen
from P . If for a key k ∈ K, C(k) = {ek(w)|w ∈ P}, then the probability that c is the cryptotext
that is transmitted is

Pr[C = c] =
∑

{k|c∈C(k)}

Pr[K = k]Pr[P = dk(c)].

For the conditional probability Pr[C = c|P = w] that c is the cryptotext if w is the plaintext it
holds

Pr[C = c|P = w] =
∑

{k|w=dk(c)}

Pr[K = k].

Using Bayes’ conditional probability formula Pr[y]Pr[x|y] = Pr[x]Pr[y|x] we get for probability
Pr[P = w|C = c] that w is the plaintext if c is the cryptotext the following expression

Pr[P = w|C = c] =
Pr[P = w]

∑
{k|w=dk(c)} Pr[K = k]∑

{k|c∈C(k)} Pr[K = k]Pr[P = dk(c)]
.

A cryptosystem has perfect secrecy if Pr[P = w|C = c] = Pr[P = w] for all w ∈ P and c ∈ C.
That is, the a posteriori probability that the plaintext is w, given that the cryptotext is c is obtained,
is the same as a priori probability that the plaintext is w.

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 33

4.2 Exercises

4.1. During the siege of a castle one of the attackers tried to choke you to death by a leather belt.
You were lucky and managed to escape and steal the belt. Afterwards, you noticed that on the belt
there is written the following text. Try to decrypt it.

AERTLTTEHAVGCEAKNTANETO

4.2. Encrypt the word “cryptology” with

(a) the Polybius square cryptosystem;

(b) the Hill cryptosystem with M =

(
6 7
3 11

)
;

(c) the keyword Caesar cryptosystem with k = 6 and the keyword “SHIFT”;

(d) the Autoclave cryptosystem with the keyword “KEY”.

4.3. What is the relation between the permutation cipher and the Hill cipher.

4.4. Decrypt the following cryptotexts:

(a) ROSICRUCIAN CIPHER

(b) CJ CI CF EI AG BI DJ DH DH DF DJ AF DG AJ

(c) AQ HP NT NQ UN

Hint: The password used to encrypt this message is the name of the cryptosystem used.

(d) GEOGRAPHY ANTS

MARKETING WAR

4.5. If possible, decode the following ciphertext obtained with the one-time pad knowing that
the key used to encrypt a message starts with GSC:

GLUYM YIFGH EJPCR OFLSM DOFML QSFCDF MZHLL VDJLE

TTYNM XDKEC ALIOP DHTFN ECRKF GKDVRJ DJVMR WICKF

4.6. On the basis of frequency analysis it has been guessed that the most frequent cryptotext
letter, Z, corresponds to the plaintext letter o and the second most frequent cryptotext letter, I,
corresponds to t. Knowing that the Affine cryptosystem is used, determine its coefficients a and b.

* 4.7. Decrypt the following cryptotext:

XQFXMGAFFDSCHFZGYFZRSHEGHXQZXMFQRSPEGHXQKPZNKZGHGNGHX

QDEEFDSZHQGAFVDJDZNGSDDGFIGBSHGGFQHQGAF4GARFQGNSPDYKP

GAFKSDAJHQZRAXCDSUDGZPDPDQDKNGKDZFYXQJDQNZRSHEGZYDGHQ

TKDRVGXGAF4GARFQGNSPKRGAFVDJDZNGSDSFRXJJFQYZGADGBXJFQ

ZAXNCYZGNYP64DSGZHQRCNYHQTRXXVHQTYSFZZHQTJDZZDTFDQYGA

FESFEDSDGHXQXMEFSMNJFZGAFCHZGDCZXHQRCNYFZZXJFCFZZXKUH

XNZDSGZHQRCNYHQTRXQONSHQTRAFZZKXXVKHQYHQTDQYRDSEFQGSP

QNJKFS45XQGAFCHZGHZJCFRRAHGDUHVDCEDGAFDSGXMZFRSFGBSHG

HQTDYUXRDGFYHQXSYFSGXAFCEBXJFQRXQRFDCGAFYFGDHCZXMGAFH

SCHDHZXQZXQFXMGAFSFRXJJFQYFYGFRAQHLNFZHQUXCUFZSDQYXJC

PEDHSHQTCFGGFSZXMGAFDCEADKFGDQYGAFQZNKZGHGNGHQTFDRACF

GGFSHQGAFXSHTHQDCJFZZDTFBHGAHGZEDSGQFS

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 34

* 4.8. A simple substitution cipher f : Z26 → Z26 (a bijective function which maps plaintext
letters x to cryptotext letters f(x)) is called self-inverting if f(x) = f−1(x), i.e. f(f(x)) = x.

(a) How many different self-inverting substitution ciphers are there?

(b) What is the proportion of self-inverting substitution ciphers to all simple substitution ciphers?

(c) How many self-inverting substitution ciphers which do not map any letter onto itself are there?

4.9. For the following cryptosystems, describe a chosen plaintext attack which enables the
adversary to determine the key using only a single message. This message should be as short as
possible.

(a) the Caesar cryptosystem;

(b) monoalphabetic substitution cryptosystem;

(c) transposition cryptosystem with a block length not greater than the number of symbols in the
alphabet

(d) the Affine cryptosystem;

(e) the Vigenère cryptosystem with a key of known length.

4.10. Assume that the Affine cryptosystem is implemented in Z126.

(a) Determine the number of possible keys.

(b) For the encryption function e(x) = 23x + 7 (mod 126) find the corresponding decryption
function.

* 4.11. Decrypt the following cryptotext obtained with the Vigenère cryptosystem:

DLCCC QDIKW YQDFC ZVYMX GMEJV CGPRM DQYDL CWERS GYVPW SRBOG GZLCB EZVI

SXKEW RXSRL IPOUS SVCNX MLIQO GPOXY XHGDQ SCXZO EZVIR YJYVP GXXMD LCREL NWMPX

FOILO QWGMR RSSDM LMSLF ILSIL MI

SXQUI WWYQD FCMSK WYLSG YLPCK RBBIR KMLKF JOAGD LMEXR RIFOP NYJUB MRDIL XSROW

YXHAR ELQIY LPCYV KYHGP MYLPC KXRRI USPJY JRRIA YVPOW NYRBO RRC

SXKEW RLIYZ TJSGY LPCDS ROPCQ VYZLG MGMBV CCTMX HCXGC

SXKEW RLINY VRKFJ OELNM RCYQK KCKRB PYLMX GYRKE WRXSR BIOEM POXFO GMXGM EVQOS

DCITO VYVTC YTJO

PMLKP JIMRS WLOGC CWYBC ESZCX XFOGG BGSWW RKRAO WRRER MSKWE LNMRC ENZPG MERSS

LDLYD XFOWW CXCWF COEQI XMEWC BIOEM PSREX IGDLC BQCXX YVWRB EGXRM BXFOO LYAJO

HEOSD KPMXK QOVGO WMPVS VIQDS MLWCB ZC

4.12. Let S be an endomorphic cryptosystem. Let S2 = S × S. Which of the following simple
cryptosystems – the Caesar, Vigenère, Hill or Affine cryptosystem – would you prefer to use as S2.
Explain your reasoning.

4.13. You have two devices – a machine E, which encrypts the given text (suppose that it
provides perfect encryption) and a machine H, which performs the Huffmann compression of a given
message. Decide the order in which you should use these machines to get the shorter encrypted
message. Justify your answer.

* 4.14. Let C = (P,C,K, e, d) be a cryptosystem.

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 35

(a) Suppose that C is perfectly secure. Show that for any m ∈ P and c ∈ C it holds that
Pr[C = c|P = m] = Pr[C = c].

(b) Suppose that for any m, m′ ∈ P and c ∈ C it holds that

Pr[P = m|C = c] = Pr[P = m′|C = c].

Show that C is perfectly secure.

4.15. Let C be a cryptosystem with the plaintext space P = {x, y, z}, the key space K =
{k1, k2, k3} and the cryptotext space C = {a, b, c}. Let the probability distributions Pr[P = w] and
Pr[K = k] be defined as Pr[P = x] = 3

8 , Pr[P = y] = 1
8 , Pr[P = z] = 1

2 and Pr[K = k1] = 1
3 ,

Pr[K = k2] = 1
6 , Pr[K = k3] = 1

2 , respectively. Let the encryption function be given by the
following table:

x y z

k1 a b c
k2 b c a
k3 c a b

(a) Determine the probability distribution Pr[C = c].

(b) Is the proposed cryptosystem perfectly secure? Provide your reasoning.

* 4.16. A cryptosystem is said to be 2-perfectly secure if two cryptotexts encrypted using the
same key provide no information about the corresponding plaintexts.

(a) Propose a formal definition of a 2-perfectly secure cryptosystem.

(b) Show that one-time pad is not 2-perfectly secure.

* 4.17. Let p be a prime. Consider the Hill system with alphabet of order p and matrices of
degree 2. What is the number of keys?

* 4.18. Write a short interesting text in English or Czech/Slovak concerning cryptography or
informatics without using the letter “E”.

4.3 Solutions

4.1. A scytale was used to encrypt the message. One can read the message if the belt is wrapped
around a cylinder with the right diameter. Scytale used to encrypt this message allowed one to
write three letters around in a circle. We can write the cryptotext in columns of length 3:

ATTACKAT

ELEVENNO

RTHGATE

Finally, we can read the secret message as “attack at eleven north gate”.

4.2.

(a) Let the key be the table:

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 36

F G H I K

A A B C D E
B F G H I K
C L M N O P
D Q R S T U
E V W X Y Z

Then c→AH, r→DG, and so on until we get the resulting cryptotext “AHDGEICKDICICFCIBGEI”.

(b) We have to convert the word cryptology to a sequence of vectors over Z26 of length 2. Each
vector will then be multiplied by the matrix M and the resulting vectors transformed back to
a string.

cr→ v1 =

(
2
17

)
, yp→ v2 =

(
24
15

)
, to→ v3 =

(
9
14

)
,

lo→ v4 =

(
11
14

)
, gy→ v5 =

(
6
24

)

Mv1 =

(
1
11

)
→ BL, Mv2 =

(
15
3

)
→ PD, Mv3 =

(
4
3

)
→ ED,

Mv4 =

(
3
5

)
→ IF, Mv5 =

(
22
22

)
→WW.

The cryptotext is therefore “BLPDEDIFWW”.

(c) For the given key we get this permutation table:

abcdefghijklmnopqrstuvwxyz

UVWXYZSHIFTABCDEGJKLMNOPQR

The letter c maps to W, r to J and so on, until we get the cryptotext WJQELDADSQ.

(d) The autoclave key is formed with the keyword “KEY” concatenated with the plaintext, to
obtain the ciphertext we perform the following operation:

cryptology 02 17 24 15 19 14 11 14 06 24

+ KEYCRYPTOL 10 04 24 02 17 24 15 19 14 11

= MVWRKMAHUJ 12 21 22 17 10 12 00 07 20 09

The cryptotext is “MVWRKMAHUJ”.

4.3. The permutation cipher is a special case of the Hill cipher.
Let π be a permutation of the set {1, . . . , n}. We can define an n×n permutation matrix Mπ = (mij)
as follows:

mij =

{
1 if i = π(j)
0 otherwise

Using the matrix Mπ in the Hill cryptosystem is equivalent to perform encryption using the permu-
tation π. Decryption in the Hill cryptosystem is done with the matrix MT

π = M−1
π = Mπ−1 .

4.4.

(a) The given message is encrypted with the Pigpen cipher and can be easily decoded with the
following tables:

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 37

The hidden message is “rosicrucian cipher”.

(b) One can notice that in the given cryptotext similar characters appear on even positions and
similar on odd positions. One can guess that message was encrypted with the Polybius cryp-
tosystem and can be decoded to “polybius square”.

(c) This is the Playfair cipher with the key “PLAYFAIR”. The Playfair square is as follows:

P L A Y F

I R B C D

E G H K M

N O Q S T

U V W X Z

and the hidden message reads “wheatstone” (Charles Wheatstone was an inventor of the Play-
fair cipher).

(d) These are anagrams for “steganography” and “watermarking”.

4.5. Assuming the one-time pad was used correctly, that is, no other message was encrypted with
the same key and the key is truly random, we are unable to decrypt this message even if we know
that key starts with GSC. We can only say that the first three characters of the decrypted message
are ats. Without knowledge of the whole key we could not decrypt the whole plaintext message.

4.6. We have e(a,b)(o) = Z and e(a,b)(T) = I which can be rewritten to the following system of
linear equation:

a · 14 + b = 25
a · 19 + b = 8

Solving the system modulo 26 gives a = 7 and b = 5.

4.7. Frequency analysis shows that F and G are the most frequent letters and that GAF is with 16
occurences the most frequent trigram, followed up with the trigram HQT with 10 occurences. We can
guess that GAF corresponds to the word the and HQT corresponds to and. We can test whether
the Affine cryptosystem was used by determining coefficients from 2 equations corresponding to
proposed letter transformations and testing if these coefficients are valid for the whole text. From
equations t → G and h → A we get a = 7 and b = 3. These coefficients are valid for transformation
e → F (decrypting HQT actually yields ing). The plaintext finally reads:

One of the earliest descriptions of encryption by substitution appears in the Kama-sutra, a text
written in the 4th century AD by the Brahmin scholar Vatsyayana, but based on manuscripts dating
back to the 4th century BC. The Kama-sutra recommends that women should study 64 arts, including
cooking, dressing, massage and the preparation of perfumes. The list also includes some less obvious
arts, including conjuring, chess, bookbinding and carpentry. Number 45 on the list is mlecchita-
vikalpa, the art of secret writing, advocated in order to help women conceal the details of their

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 38

liaisons. One of the recommended techniques involves randomly pairing letters of the alphabet, and
then substituting each letter in the original message with its partner.

4.8.

(a) Let f be a self-inverting permutation over Zn.

Suppose n pairs of letters map to each other and remaining 26− 2n letters stay fixed. These
n pairs can be chosen in the following way. First two letters are chosen in 26×25

2 ways. Next
pair can be chosen from the remaining 24 in 24×23

2 ways and n-th pair can be chosen in
(28−2n)×(27−2n)

2 ways. Multiplying together and cancelling the ordering of n pairs we obtain

P (n) =
26!

(26− 2n)!× 2n × n!
.

The total number of self-inverting functions is then

13∑
i=0

26!

(26− 2n)!× 2n × n!
= 532985208200576

Another approach could be to derive a recursive function φ(n) that returns the number of
self-inverting permutations over a set of cardinality n. There is only one permutation over a
singleton set, the identity, which is self-inverting: φ(1) = 1.
There are two permutations over a two-element set, the identity and the transposition. Both
are self-inverting: φ(2) = 2.
Now, if there are n elements, either f(0) = 0 and then there are φ(n − 1) possibilities how
to permute the rest, or f(0) = i, i ∈ {1, . . . , n − 1}, implying f(i) = 0, and then there are
φ(n− 2) ways one can permute the rest. Together, we obtain the following recurrent formula:

φ(n) = φ(n− 1) + (n− 1)φ(n− 2)

For n = 26, φ(26) = 532985208200576.

(b) The number of substitution ciphers equals the number of permutations. For a set of 26 elements
it is 26!. The proportion is:

φ(26)

26!
= 1.32 · 10−12

(c) From the solution from part (a) one can easily see that picking 13 pairs can be done in

P (13) =
26!

213 × 13!
= 25 · 23 · · · 5 · 3 · 1 = Π13

k=1(2k − 1) = 7905853580625

ways.

4.9.

(a) A single letter plaintext.

(b) For an alphabet of n symbols, it suffices to send a message of length n − 1 which contains
distinct symbols.

(c) Message of the block length which contains each symbol at most once.

(d) Plaintext consisting of two distinct letters. We can easily find the key by solving the system
of linear equations.

(e) Plaintext of the key length.

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 39

4.10.

(a) The keyspace is the set {(a, b) ∈ Z126 × Z126 | gcd(a, 126) = 1}. There are 126 possibilities for
b and ϕ(126) possibilities for a (where ϕ is the Euler totient function).

ϕ(126) = ϕ(2) · ϕ(32) · ϕ(7) = 1 · 3 · 2 · 6 = 36

The number of possible keys is 36 · 126 = 4536.

(b) The corresponding decryption function is

d(y) = 23−1(y − 7) (mod 126).

To find the inverse of 23 we use the Euclidean algorithm:

126 = 5 · 23 + 11

23 = 2 · 11 + 1

1 = 23− 2 · 11 = 23− 2(126− 5 · 23) = 11 · 23− 2 · 126. Because −2 · 126 ≡ 0 (mod 126),
we get 23−1 = 11 (mod 126).

d(y) = 11(y − 7) (mod 126)

d(e(x)) = 11((23x+ 7)− 7) = 11(23x) = x (mod 126)

4.11. We can determine the keylength using the Friedman method:

l =

26∑
i=1

ni(ni − 1)

n(n− 1)
= 0.475883826064,

L =
0.027n

(n− 1)l − 0.038n+ 0.065
= 2.80672431976 = 3.

We can assume that the length of the key is 3, Frequency analysis for each position modulo the key
length gives the following results:

Position 0 Position 1 Position 2

O (29) I (23) C (26)
D (16) X (20) R (26)
S (15) W (16) L (17)

.

The most frequent character in the English text is e, so we will try to substitute it for the most
frequent symbols in the cryptotext.With substitutions O → e, I → e, C → e (which correspond to
the key “KEY”) we get the following plaintext (which is actually the Kerckhoff’s principle):

The system must be practically if not mathematically indecipherable.
It must not be required to be secret and it must be able to fall into the hands of the enemy without
inconvenience.
Its key must be communicable and retainable without the help of written notes and changeable or
modifiable at the will of the correspondents.
It must be applicable to telegraphic correspondence.
It must be portable and its usage and function must not require the concourse of several people.
Finally it is necessary given the circumstances that command its application that the system be easy
to use requiring neither mental strain nor the knowledge of along series of rules to observe.

4.12. Each of the given cryptosystem is an idempotent cryptosystem, i.e. S2 = S.

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 40

(a) Caesar: Composition of two shifts is again a shift. If k1, k2 are the keys then it is equivalent
to use a single shift with the key k = k1 + k2 (mod |P |).

(b) Vigenère: P = C = (Z26)n and K = (Z26)m. Let k1 = (k11 , . . . , k1m), k2 = (k21 , . . . , k2m) be
keys of length m. Then k = (k11 + k21 (mod n), . . . , k1m + k2m (mod n)) ∈ K.

(c) Hill: K is a set of invertible matrices of a degree n. If k1 = M1, k2 = M2 then k = M1·M2 ∈ K.
Invertible matrices with the multiplication operation form a group GL(n).

(d) Affine: K = Z∗n × Zn. If k1 = (a1, b1), k2 = (a2, b2) then k = (a1a2, a1b2 + b1) ∈ K,

4.13. One should first compress and then encrypt. If we first encrypt then the resulting crypto-
text is indistinguishable from random text and compression algorithm fails because it cannot find
compressible patterns to reduce size.

4.14.

(a)
Pr[C = c|P = m]Pr[P = m] = Pr[P = m|C = c]Pr[C = c].

We have (Bayes’ theorem)

Pr[C = c|P = m] =
Pr[P = m|C = c]Pr[C = c]

Pr[P = m]
.

Perfect secrecy gives

Pr[C = c|P = m] =
Pr[P = m]Pr[C = c]

Pr[P = m]
= Pr[C = c].

(b) Let m, m′ ∈ P be arbitrary plaintexts and let c, c′ ∈ C be any cryptotexts. From the
assumption one can derive the following:

Pr[P = m] =
∑
c∈C

Pr[P = m|C = c]Pr[C = c] =

=
∑
c∈C

Pr[P = m′|C = c]Pr[C = c] = Pr[P = m′].

Therefore

Pr[C = c|P = m] =
Pr[P = m|C = c]Pr[C = c]

Pr[P = m]
=

=
Pr[P = m′|C = c]Pr[C = c]

Pr[P = m′]
= Pr[C = c|P = m′].

From both equalities one can derive the following relation:

Pr[C = c] =
1

|P |
|P |Pr[C = c|P = m] = Pr[C = c|P = m]

from which the equality characterizing perfect secrecy can be obtained.

CHAPTER 4. SECRET KEY CRYPTOSYSTEMS 41

4.15.

(a) For c ∈ C, Pr[C = c] =
∑
{k|c∈C(k)} Pr[K = k]Pr[P = dk(c)].

Pr[C = a] = Pr[K = k1]Pr[P = dk1(a)]+Pr[K = k2]Pr[P = dk2(a)]+Pr[K = k3]Pr[P = dk3(a)]

Pr[C = a] = Pr[K = k1]Pr[P = x] + Pr[K = k2]Pr[P = z] + Pr[K = k3]Pr[P = y]

Pr[C = a] =
13

48

Similarly,

Pr[C = b] =
17

48
and Pr[C = c] =

18

48
.

(b) We have

Pr[C = a|P = x] =
∑

{k|x∈dk(c)}

Pr[K = k] = Pr[K = k1] =
1

3

Pr[C = a|P = x] 6= Pr[C = a]

Therefore, C is not perfectly secure (see previous exercise and equivalent definition of perfect
secrecy).

4.16.

(a) A cryptosystem is 2-perfectly secure if for any m, m′ ∈ P and any c, c′ ∈ C

Pr[(P1, P2) = (m,m′)|(C1, C2) = (c, c′)] = Pr](P1, P2) = (m,m′)].

(b) Let |P | = |C| = |K| = n. We have Pr[(P1, P2) = (m,m′)] = 1
n2 . Since cryptotexts c, c′

were produced with the same key, there are only n pairs of plaintexts which can be encrypted
to cryptotexts c and c′. For these plaintext pairs we have Pr[(P1, P2) = (m,m′)|(C1, C2) =
(c, c′)] = 1

n . Therefore one-time pad is not 2-perfect secure.

4.17. One has to found the number of matrices of degree 2 invertible over Zp field. We use the fact
that, over a field , a square matrix is invertible if and only if its columns are linearly independent. We
have to describe how 2 column vectors over Zp can be chosen such that they will form an invertible
matrix. The only restriction on the first vector is that it be nonzero, because this would destroy the
linear independence of the columns. Therefore, there are p2 − 1 possibilities for the first column.
The second column can be chosen in p2 − p ways to avoid linear combinations of the first column.
Thus, there are (p2 − 1)(p2 − p) possible keys.

4.18. (by L. Pekárková)
To tak kdysi šli Bob a Bob́ık spolu na procházku. Do rytmu si zṕıvali ṕısničky a skákali do kaluž́ı.
Hodili pucku do okna a to bylo rozbito. Koukali na to, avšak pro jistotu zdrhli pryč. Jak tak ut́ıkali,
potkali Barboru — kamarádku. Št’astná to d́ıvka Barbora vyzv́ıdala, proč oba ut́ıkaj́ı. Kupodivu s
nimi začala taky ut́ıkat, anǐz by j́ı Bob či Bob́ık vyklopili př́ıhodu s puckou. Tato partička dout́ıkala
až k obchodu s poč́ıtači. Tam si chv́ıli oddychla, aby nabrala śıly. Tady si všimli dvou vystavovaných
kousk̊u. Zaĺıbily si ty kousky natolik, aby si daľśı ráno došli do obchodu a koupili si každý svou mašinku
(za maminčiny prachy :)). Nyńı už mohli hrát svou milou hru i po śıti. Pařba jim imponovala natolik,
aby si podali (zas všichni tři) přihlášku na fakultu informatiky, aby si tam ujasnili znalosti, nabyvš́ı za
dlouhou hráčskou dráhu. Po strastiplných zkouškových obdob́ıch si prokousali sic úzkou uličku k titulu
a začali podnikat v oboru. Z počátku jim obchody vázly, pak však došlo k zlomu. Vymyslili si vlastńı
šifrovaćı programy, což jińı považovali za hloupost. Avšak programy si našly na trhu

”
kamarády“, a

tak firma tř́ı informatik̊u vzr̊ustala. Jak vidno i malá pucka by mohla ovlivnit život i nás ostatńıch
:).

Chapter 5

Public-Key Cryptography, I.

5.1 Introduction

Symmetric cryptography is based on the use of secret keys. This means that massive communication
using symmetric cryptography would require the distribution of large amount of data in some other,
very secure, way, unless we want to compromise the secrecy by reusing the secret key data.

The answer to this problem is the public key cryptography, also known as asymmetric cryptog-
raphy. Public key cryptography uses different keys for encryption and decryption. Every party has
her secret decryption key, while the encryption key is publicly known. This allows anyone to encrypt
messages, while only the one in the possession of decryption key can decrypt them.

The main difficulty of the public-key cryptosystems is to make the decryption impossible for
those without the secret key. To achieve this goal so called trapdoor one-way functions are used for
the encryption. These functions have easy to compute their inverse, but only if we posses a certain
trapdoor information.

5.1.1 Diffie-Hellman protocol

This is the first asymmetric protocol designed to solve the secret-key distribution problem. Using
this protocol two parties, say Alice and Bob, generate and share a pretty random and pretty secret
key. The protocol uses modular exponentiation as the one-way function.

The parties first agree on large primes p and a q < p of large order in Z∗p. The protocol then
proceeds as follows

• Alice randomly chooses a large x < p− 1 and computes X = qx mod p.

• Bob also chooses a large y < p− 1 and computes Y = qy mod p.

• The two parties then exchange X and Y , while keeping x and y secret.

• Alice computes her key Y x mod p and Bob computes Xy mod p and this way they both have
the same key k = qxy mod p.

5.1.2 Knapsack cryptosystem

Knapsack cryptosystem is based on the infeasibility of solving the general kanpsack problem:
Knapsack problem: Given a vector of integers X = (x1, . . . , xn) and an integer c. Determine

a binary vector B = (b1, . . . bn) such that XB> = c.
The knapsack problem is easy if the vector is superincreasing, that is for all i > 1 it holds

xi >
∑i−1

j=1 xj . The knapsack cryptosystem first uses a secret data to change a knapsack problem
with a superincreasing vector to a general, in principle infeasible, knapsack problem.

• Choose a superincreasing vector X = (x1, . . . , xn).

42

CHAPTER 5. PUBLIC-KEY CRYPTOGRAPHY, I. 43

• Choose m and u such that m > 2xn, gcd(m,u) = 1.

• Compute X ′ = (x′1, . . . , x
′
n), x′i = uxi mod m.

X ′ is then the public key while X,u,m is the secret trapdoor information.
Encryption of a word w is done by computing c = X ′w>.
To decrypt ciphertext c we compute u−1 mod m, c′ = u−1c mod m and solve the knapsack

problem with X and c′.

5.1.3 McEliece cryptosystem

Just like in the knapsack cryptosystem, McEliece cryptosytem is based on tranforming an easy to
break cryptosystem into one that is hard to break. The cryptosystem is based on an easy to decode
linear code, that is then transformed to a generally infeasible linear code. The class of starting linear
codes is that of the Goppa codes, [2m, n−mt, 2t+ 1]-codes, where n = 2m.

• Let G be a generating matrix of an [n, k, d] Goppa code C.

• Let S be a k × k binary matrix invertible over Z2.

• Let P be an n× n permutation matrix.

• G′ = SGP .

Public encryption key is G′ and the secret is (G,S, P).
Encryption of a plaintext w ∈ (Z2)k is done by computing eK(w, e) = wG′ + e, where e is each

time a new random binary vector of length n and weight t.
Decryption of a ciphertext c = wG′ + e ∈ (Z2)n is done by first computing c1 = cP−1. Then

decoding c1 to get w1 = wS, and finally computing the plaintext w = w1S
−1.

5.1.4 RSA cryptosystem

RSA is a very important public-key cryptosystem based on the fact that prime multiplication is
very easy while integer factorization seems to be unfeasible.

To set up the cryptosystem we first choose two large (about 1024 bits long) primes p, q and
compute

n = pq, φ(n) = (p− 1)(q − 1).

Then we choose a large d such that gcd(d, φ(n)) = 1 and compute e = d−1 mod φ(n). The public
key is then the modulus n and the encryption exponent e. The trapdoor information is the primes
p, q and the decryption exponent d.

Encryption of a plaintext w is done by computing c = we mod n.
Decryption of a ciphertext c is done by computing w = cd mod n.

5.1.5 Rabin-Miller’s prime recognition

Rabin-Miller’s prime recognition is a simple randomized Monte Carlo algorithm that decides whether
a given integer n is a prime. It is based on the following lemma.

Lemma 5.1.1. Let n ∈ N, n = 2sd+ 1, d is odd. Denote, for 1 ≤ x < n, by C(x) the condition:

xd 6≡ 1 (mod n) and x2rd 6≡ −1 (mod n) for all 1 < r < s.

If C(x) holds for some 1 ≤ x < n, then n is not a prime. If n is not a prime, then C(x) holds for
at least half of x between 1 and n.

The algorithm then chooses random integers x1, . . . , xm such that 1 < xj < n and evaluates
C(xj) for every one of them. If C(xj) holds for some xj then n is not a prime. If it does not hold
for any of the chosen integers n is a prime with probability of error 2−m.

CHAPTER 5. PUBLIC-KEY CRYPTOGRAPHY, I. 44

5.2 Exercises

5.1.

(a) Consider the Diffie-Hellman protocol with q = 3 and p = 353. Alice chooses x = 97 and Bob
chooses y = 233. Compute X, Y and the key.

(b) Design an extension of the Diffie-Hellman protocol that allows three parties Alice, Bob and
Charlie to generate a common secret key.

5.2. Alice and Bob computed a secret key k using Diffie-Hellman protocol with p = 467, q = 4,
x = 400 and y = 134. Later they computed another secret key k′ with the same p, q, y and with
x′ = 167. They were very surprised when they found that k = k′. Determine the value of both keys
and explain why the keys are identical.

5.3. To simplify the implementation of Diffie-Hellman protocol one can replace the multiplicative
group (Zp, ·) by the additive group (Zp,+). How is security affected?

5.4. Consider the Bloom’s key pre-distribution protocol (see the lecture slides) with two parties
Alice and Bob and a trusted authority Trent. Let p = 44887 be the publicly know prime and
rA = 4099 and rB = 31458 be the unique public numbers. Let a = 556, b = 13359 and c = 3398
be the secret random numbers. Use Bloom’s protocol to distribute a secret key between Alice and
Bob.

5.5. Bob sets up the Knapsack cryptosystem with X = (2, 5, 8, 17, 35, 70), m = 191, u = 34 so
that Alice can send him messages.

(a) Find Bob’s public key X ′.

(b) Encode the messages 101010 and 100010.

(c) Perform in details Bob’s decryption of c1 = 370 and c2 = 383.

5.6. Consider the McEliece cryptosystem with

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 , S =


1 1 0 1
1 0 0 1
0 1 1 1
1 1 0 0

 , P =



0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0


(a) Compute the public key G′.

(b) Using the error vector e = 0010000 encode the message w = 1001.

(c) Decode cryptotext c = 0110110.

5.7. Consider the RSA cryptosystem with p = 43, q = 59 and d = 937.

(a) Determine the encryption exponent e.

(b) Encrypt the plaintext and 13487947504.

(c) Decrypt the ciphertext 175807260375 that was sent in subwords of size 4.

CHAPTER 5. PUBLIC-KEY CRYPTOGRAPHY, I. 45

5.8. Consider the RSA cryptosystem with n = 1363. It has been revealed that φ(n) = 1288. Use
this information to factor n.

5.9. Consider the RSA cryptosystem with a public key (n, e). An integer m, m ≤ n− 1, is called
a fixed point if me ≡ m (mod n). Show that if m is a fixed point then n−m is also a fixed point.

5.10. Suppose that Eve receives a cryptotext c = me mod n encrypted using the RSA cryptosys-
tem. Suppose further that she is permitted to request a decryption of a single cryptotext c′ 6= c.
Show how she can find the plaintext m.

5.11. Design of parameters for the RSA cryptosystem starts with choosing two large primes.
Because these primes are part of the private key, they have to be chosen very carefully. More
precisely, they need to be chosen at random by a cryptographically secure random number generator.
Failing to do so can lead to problems. Indeed, consider the following set of RSA moduli, chosen by
an imperfect random number generator, biased towards some numbers (some numbers appear with
larger probability than others). Determine which of these moduli are secure:

{8844679, 11316499, 13490941, 18761893, 21799573, 22862761, 48456493, 43831027, 58354333}.

Do not use brute force factorization.

5.12. Use the Rabin-Miller’s Monte Carlo algorithm for prime recognition to decide whether the
number n = 5417 is a prime and state the accuracy of your outcome. Use the numbers x1 = 58,
x2 = 864 and x3 = 3312 as the random integers in the algorithm.

* 5.13. Both Alice and Bob use the RSA cryptosystem with the same modulus n and encryption
exponents eA and eB such that gcd(eA, eB) = 1. Let a third user Charlie send the same message m
to both Alice and Bob using their individual encryption exponents. Eve intercepts the encrypted
messages cA = meA (mod n) and cB = meB (mod n). She then computes x1 = e−1

A (mod eB) and
x2 = (x1eA − 1)/(eB).

(a) How can Eve compute m using cA, cB, x1 and x2?

(b) Use the proposed method to compute m if n = 18721, eA = 43, eB = 7717, cA = 12677 and
cB = 14702.

* 5.14. Alice, Bob and Eve use the RSA cryptosystem with n = 99443. Let eA = 7883,
eB = 5399 and eE = 1483 be the corresponding public key exponents. Let messages be written in
ASCII, divided into subwords of length 5, each subword being encrypted separately. Imagine that
you are Eve and you have captured the following message intended for Bob which was sent by Alice:

16278490204355400279.

You know your dE = 3931. Decrypt the cryptotext (do not use brute force or factorization).

5.3 Solutions

5.1.

(a) Following the Diffie-Hellman protocol we compute X = qx mod p = 397 mod 353 = 40 and
Y = qy mod p = 3233 mod 353 = 248. The secret key k is then

k = qxy mod p = 397·233 mod 353 = 373 mod 353 = 160.

Note: Euler’s totient theorem was used to simplify the last computation.

CHAPTER 5. PUBLIC-KEY CRYPTOGRAPHY, I. 46

(b) As in the two-party case, the three parties first agree on large primes p and q < p of large order
in Z∗p. Alice, Bob and Charlie then choose large secret random integers x, y and z respectively,
such that 1 ≤ x, y, z < p− 1.

Alice then computes X1 = qx mod p and sends it to Bob, who computes X2 = Xy
1 mod p

and sends X2 to Charlie. Charlie can now get his key kC = Xz
2 mod p.

Bob then continues by computing Y1 = qy mod p and sends it to Charlie, who computes
Y2 = Y z

1 mod p and sends it to Alice. Alice then computes kA = Y x
2 mod p.

This procedure is repeated the third time with Charlie computing Z1 = qz mod p and sending
it to Alice, Alice computing Z2 = Zx1 mod p and sending it to Bob and Bob computing
kB = Zy2 mod p.

It can easily be seen that k = kA = kB = kC = qxyz mod p is the secret key now shared
between all three parties. The public information in this protocol is p, q, qx, qy, qz, qxy, qyz, qxz.
Computing qxyz from this public information is at least as hard as breaking the original
protocol.

5.2. First we compute the secret keys k and k′ individually:

k ≡ qxy ≡ 4400·134 ≡ 2230·466 · 220 ≡ 2φ(p)·230 · 220 ≡ 2020 ≡ 161 (mod 467).

k′ ≡ qx′y ≡ 4167·134 ≡ 296·466 · 220 ≡ 2φ(p)·96 · 220 ≡ 2020 ≡ 161 (mod 467).

Note: Euler’s totient theorem and the fact that φ(p) = p − 1 = 466 was used to simplify the
calculation. This also shows the reason why k = k′. We can see that 2x ≡ 2x′ (mod p− 1), indeed
2 · 400 ≡ 2 · 167 ≡ 334 (mod 467), and so k ≡ 22xy ≡ 22x′y ≡ k′ (mod p) due to the Euler’s totient
theorem.

5.3. By replacing the multiplicative group by the additive group we change the calculation of X
and Y to

X = qx mod p

Y = qy mod p.

But now from X and Y we can easily obtain the secrets x and y by first computing the multiplicative
inverse q−1

q−1 ≡ qp−1q−1 ≡ qp−2 (mod p).

Using this we can then obtain x

x ≡ q−1qx ≡ q−1X (mod p)

and also y in the same way. But if we know both secrets we can now easily compute the secret
key k = xyq mod p. This simplification is therefore not secure as the inverse to multiplication by
known number is easy to compute.

5.4. First Trent calculates aA, aB, bA and bB:

aA = 556 + 13359 · 4099 mod 44887 = 41844, aB = 556 + 13359 · 31458 mod 44887 = 15884,

bA = 13359 + 3398 · 4099 mod 44887 = 26791, bB = 13359 + 3398 · 31458 mod 44887 = 31696.

He then sends aA, bA to Alice and aB, bB to Bob. Alice now computes her key

KAB = aA + bArB mod p = 41844 + 26791 · 31458 mod 44887 = 34810.

And Bob does the same

KBA = aB + bBrA mod p = 15884 + 31696 · 4099 mod 44887 = 34810,

and as expected we have KAB = KBA.

CHAPTER 5. PUBLIC-KEY CRYPTOGRAPHY, I. 47

5.5.

(a) Following the Knapsack protocol we have x′i = uxi mod m and therefore

X ′ = 34 · (2, 5, 8, 17, 35, 70) mod 191 = (68, 170, 81, 5, 44, 88).

(b) Alice encrypts a message w by computing X ′w> so the encryption is

(68, 170, 81, 5, 44, 88)(1, 0, 1, 0, 1, 0)> = 193

(68, 170, 81, 5, 44, 88)(1, 0, 0, 0, 1, 0)> = 112.

(c) Bob first computes u−1 mod m = 118. He then computes the cryptotext for the original
Knapsack problem c′1 = u−1c1 mod m = 118 · 370 mod 191 = 112 and c′2 = u−1c2 mod m =
118 · 383 mod 191 = 118.

Bob now has to solve the knapsack problem with the superincreasing vector X and the cryp-
totexts c′1 and c′2. First we solve the problem for c′1 = 112:

112 > 70 = x6

x6 = 70 > 112− 70 = 42 > 35 = x5

x3 = 8 > 42− 35 = 7 > 5 = x2

7− 5 = 2 = x1.

We have the sixth, fifth, second and first bit equal to 1. Therefore w1 = 110011. For the
second cryptotext c′2 = 118 we get:

118 > 70 = x6

x6 = 70 > 118− 70 = 48 > 35 = x5

x4 = 17 > 48− 35 = 13 > 8 = x3

13− 8 = 5 = x2.

So we have the sixth, fifth, third and second bit equal to 1. Therefore w2 = 011011.

5.6.

(a) According to the protocol G′ is given by G′ = SGP so

G′ =


1 1 0 1
1 0 0 1
0 1 1 1
1 1 0 0

 ·


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 ·


0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0



=


1 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 0 1 1 0 1
0 1 0 1 1 1 0

 .

(b) Encryption of a word w using an error vector e is done by computing

eK(w, e) = wG′ + e = (1001)


1 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 0 1 1 0 1
0 1 0 1 1 1 0

+ (0010000) = (1000110)

CHAPTER 5. PUBLIC-KEY CRYPTOGRAPHY, I. 48

(c) Following the protocol we start the decryption of c by computing c1 = cP−1, but because P
is an orthogonal matrix its inverse is equal to its transpose so

c1 = (0110110)



0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0


= (1000111)

Now we decode c1. The syndrome of c1 is (001) with coset leader (0000001), so the error is
only on the 7th bit. Without the error the code word is 1000110. But that is the first row
of the generating matrix G, so the decoded word is w1 = wS = 1000. Now we just find the
inverse matrix S−1 and compute w1S

−1 to obtain the word w.

S−1 =


1 1 0 1
1 1 0 0
0 1 1 1
1 0 0 1


and w = w1S

−1 = (1101).

5.7.

(a) First we compute the modulus n = pq = 43 · 59 = 2537 and its Euler’s totient function
φ(n) = (p − 1)(q − 1) = 42 · 58 = 2436. Then we find the encryption exponent e = d−1

mod φ(n). To find the inverse we can use the extended Euclidean Algorithm and Bezout’s
identity for d and φ(n):

2436 = 3 · 937− 375

937 = 2 · 375 + 187

375 = 2 · 187 + 1

The Bezout’s identity is then 1 = 375− 2 · 187. Going backwards we obtain

1 = 375− 2 · (937− 2 · 375)

= −2 · 937 + 5 · 375

= −2 · 937 + 5 · (−2436 + 3 · 937)

= −5 · 2436 + 13 · 937,

which gives us 13 · 937 ≡ 1 (mod φ(n)) so e = 13.

(b) Because we can only send messages smaller than n we split the plaintext into four subwords
of size 3: 134 879 475 204. The encryption of a subword w is then done by computing we

mod n:

13413 mod 2537 = 248

87913 mod 2537 = 579

47513 mod 2537 = 1441

20413 mod 2537 = 2232

So the whole encrypted message is 0248057914412232.

CHAPTER 5. PUBLIC-KEY CRYPTOGRAPHY, I. 49

(c) Splitting the message into subwords of size 4 we get: 1758 0726 0375. Decryption of a subword
c is done by computing cd mod n:

1758937 mod 2537 = 397

726937 mod 2537 = 569

375937 mod 2537 = 169

So the whole decrypted message is 397569169.

5.8. We need to solve the following system of two equations with two variables:

1288 = (p− 1)(q − 1)

1363 = pq

We can do this by expressing p from the first equation p = pq−1288− q = 1363−1288− q = 76− q.
Plugging this into to the second equation we get the quadratic equation q2 − 76 + 1363 = 0. The
two possible solutions q1 = 29 and q2 = 47 correspond to the fact that p and q are interchangeable
and so we obtain the unique factorization 1363 = 29 · 47.

5.9. We first show that e has to be odd. That is because at least one of p, q is odd, therefore
φ(n) = (p− 1)(q− 1) is even and because e is coprime to φ(n), it must be odd. Then we notice that
n −m ≡ −m (mod n). Now because e is odd we have (−m)e ≡ −me (mod n). But m is a fixed
point so −me ≡ −m (mod n). That means we have

n−m ≡ −m ≡ (n−m)e (mod n),

in other words n−m is a fixed point.

5.10. Let Eve choose c′ = rec mod n for some r such that c 6= c′ and assume she is also provided
with the decryption m′ = (rec)d mod n. All she now needs to do is compute m′r−1 mod n. Indeed
we can see that

m′r−1 ≡ (rec)dr−1 ≡ rcdr−1 ≡ cd ≡ m (mod n).

5.11. If some primes are more likely to be generated than others, then there is a higher probability
that two of the generated moduli have a common factor and this factor is the greatest common
divisor of these moduli. So for every tuple of the generated moduli we can compute the greatest
common divisor. A generated modulus is then secure if it has no non trivial common divisor with
every other modulus. We don’t need to evaluate all pairs, we only need one nontrivial divisor for
every modulus to factorize it as every modulus has only two prime divisors.

The moduli 13490941 and 48456493 have no nontrivial common divisors with any other modulus
and thus are the only secure of the given set. For every other modulus we have

gcd(8844679, 11316499) = 3169 which gives us a divisor of 88446979 and 11316499.
gcd(18761893, 21799573) = 4219 which gives us a divisor of 18761893 and 21799573.
gcd(22862761, 18761893) = 4219. which gives us a divisor of 22862761.
gcd(43831027, 58354333) = 7057 which gives us a divisor of 43831027 and 58354333.

5.12. First we express n = 23 · 677 + 1, so s = 3 and d = 677. Now we determine whether the
conditions C(x1), C(x2) and C(x3) hold. We begin by computing the first part of the condition xd

mod n for all the integers:

58677 mod 5417 = 368, 864677 mod 5417 = 4438, 3312677 mod 5417 = 1.

Already we can see that C(x3) does not hold. The possible r for the second part of the condition
x2rd mod n are r1 = 1 and r2 = 2 so we compute

5821·677 mod 5417 = 5416, 86421·677 mod 5417 = 5049,

CHAPTER 5. PUBLIC-KEY CRYPTOGRAPHY, I. 50

5822·677 mod 5417 = 1, 86422·677 mod 5417 = 5416.

But 5416 ≡ −1 (mod 5417) so neither C(x1) nor C(x2) holds. Neither of the three conditions hold,
that means 5417 is a prime with probability of error 1

8 .

5.13.

(a) Because the two encryption exponents are coprime the Bezout’s identity for eA and eB has
the form

eAx+ eBy = 1

for some integers x and y. If we know x and y we can compute m using to the following
identity:

m ≡ meAx+eBy ≡ meAx ·meB y ≡ cxA · c
y
B (mod n).

We can find the values of x and y using the extended Euclidean algorithm. Because the
encryption exponents are coprimes, x is the multiplicative inverse of eA (mod eB), that is x1.
From the Bezout’s identity itself we have y = (1− eAx)/eB, but that is −x2. So we get

m = cx1A · c
−x2
B mod n.

(b) First we compute the coefficients x1 = e−1
A (mod eB) = 2692 and x2 = (x1eA − 1)/(eB) = 15.

With this we use the above formula to obtain m:

m = cx1A · c
−x2
B mod n = 77172692 · 12677−15 mod 18721 = 18022.

5.14. Consider the following attack:
We compute f = gcd(eEdE − 1, eB) and m = eEdE−1

f . Since gcd(eB, φ(n)) = 1 we have
gcd(f, φ(n)) = 1 and so m is a multiple of φ(n). The Bezout’s identity for m and eB has the
form

mx+ eBy = 1,

for some integers x, y. Using this identity we have eBy ≡ 1 − mx ≡ 1 (mod φ(n)) and since
eBdB ≡ 1 (mod φ(n)) we can see that (y − dB)eB ≡ 0 (mod φ(n)). But because eB is coprime to
φ(n) we have y ≡ dB (mod φ(n)). This means we can use y instead of Bob’s decryption exponent.
So to decrypt our message we compute

f = gcd(cEdE − 1, eB) = 1

m = (cEdE − 1) = 5829672.

Now we can find y using the extended Euclidean algorithm. We obtain y = 2807399 and decipher
the captured message in subwords of 5:

162782807399 mod 99443 = 73327

490202807399 mod 99443 = 67986

435542807399 mod 99443 = 69328

2792807399 mod 99443 = 97985

The sent message is 73327679866932897985 which using the ASCII table translates to I LOVE YOU.

Chapter 6

Public-Key Cryptography, II.

6.1 Introduction

In this chapter we continue with public-key cryptosystems. This time we focus on systems whose
security depends on the fact that the computation of square roots and discrete logarithms is in
general infeasible in certain groups.

6.1.1 Rabin Cryptosystem

The first such cryptosystem is the Rabin cryptosystem. Its secret key are the Blum primes p, q and
the public key is the modulus n = pq.

Encryption of a plaintext w < n is done by computing c = w2 mod n.
Decryption of a ciphertext c is done by finding the square roots of c modulo n. There are in total

four square roots of c so the decryption process is not deterministic. This does not pose a problem
when decrypting a meaningful text, but in the case of random strings it is impossible to determine
uniquely the right square root.

To calculate square roots modulo n we use its factors p and q and the following result.

Theorem 6.1.1 (Chinese remainder theorem). Let m1, . . . ,mt be integers, gcd(mi,mj) = 1 if i 6= j,
and a1, . . . , at be integers such that 0 < ai < mi, 1 ≤ i ≤ t. Then the system of congruences

x ≡ ai (mod mi), 1 ≤ i ≤ t

has the solution x =
∑t

i=1 aiMiNi, where M =
∏t
i=1mi, Mi = M

mi
, Ni = M−1

i mod mi and the
solution is unique up to the congruence modulo M .

6.1.2 ElGamal cryptosystem

The ElGamal cryptosystem relies on the infeasibility of computing a discrete logarithm logq y in Z∗p.
It has nondeterministic encryption due to using randomness.

Let p be a large prime and q, x two random integers such that 1 ≤ q, x ≤ p and q is a primitive
element of Z∗p. Let y = qx mod p. Then p, q, y is the public key of the cryptosystem and x is its
trapdoor information.

Encryption of a plaintext w consists of choosing a random r and computing a = qr mod p and
b = yrw mod p. The ciphertext is then c = (a, b).

To decrypt a ciphertext c = (a, b) we use x to calculate w = b
ax mod p = ba−x mod p.

6.1.3 Shanks’ algorithm for discrete logarithm

Shanks’ algorithm, called also Baby-step giant-step, is an algorithm for computing the discrete
logarithm logq y in Z∗p, which provides an improvement over the naive brute force method.

Let m = d
√
p− 1e. The algorithm proceeds as follows

51

CHAPTER 6. PUBLIC-KEY CRYPTOGRAPHY, II. 52

• Compute qmj mod p, for all 0 ≤ j ≤ m− 1.

• Create the list L1 of m pairs (j, qmj mod p), 0 ≤ j ≤ m− 1, sorted by the second item.

• Compute yq−i mod p, for all 0 ≤ i ≤ m− 1.

• Create the list L2 of m pairs (i, yq−i mod p), 0 ≤ j ≤ m− 1, sorted by the second item.

• Find two pairs, one (j, z) ∈ L1 and (i, z) ∈ L2 with the identical second element.

If such a search is successful, then qmj+i ≡ y (mod p), so the solution to the discrete logarithm is
logq y = mj + i.

6.1.4 Perfect security of cryptosystems

When designing secure cryptosystems we not only require that it is impossible to obtain the corre-
sponding plaintext from a ciphertext. We require that absolutely no information about the plaintext,
such as some of its bits or parity, can be obtained.

One of the conditions for perfectly secure cryptosystems is the use of randomized encryptions.
Otherwise possible attacker can guess the plaintext, compute its deterministic encryption and com-
pare it to intercepted ciphertext.

To properly define perfect security we need the concept of a negligible function

Definition 6.1.2. A function f : N→ R is a negligible function if for any polynomial p(n) and for
almost all n it holds f(n) ≤ 1

p(n) .

6.1.5 Blum-Goldwasser cryptosystem

Blum-Goldwasser cryptosystem is a public-key cryptosystem with randomized encryptions. Its
security relies solely on the infeasibility of integer factorization. The private key are two Blum
primes p and q, such that p ≡ q ≡ 3 (mod 4), and the public key is the modulus n = pq.

Encryption of a plaintext x ∈ {0, 1}m

• Randomly choose s0 ∈ {0, 1, . . . , n}

• For i = 1, 2, . . . ,m+ 1 compute si = s2
i−1 mod n and σi, the least significant bit of si.

The ciphertext is then (sm+1, y), where y = x⊕ σ1σ2 . . . σm.
Decryption of the ciphertext (r, y)

• Compute rp = r((p+1)/4)m mod p and rq = r((q+1)/4)m mod q

• Let s1 = q(q−1 mod p)rp + p(p−1 mod q)rq mod n.

• For i = 1, . . . ,m, compute σi and si+1 = s2
i mod n.

The plaintext is then y ⊕ σ1σ2 . . . σm.

6.1.6 Hash functions

Hash functions are functions that map arbitrarily huge data to small fixed size output. Required
properties for good cryptographic hash function f are

Definition 6.1.3 (Pre-image resistance). Given hash h it should be infeasible to find message m
such that h = f(m). In such a case we say that f has one-wayness property.

Definition 6.1.4 (Second pre-image resistance). Given a message m1 it should be infeasible to find
another message m2 such that f(m1) = f(m2). In such a case we say f is weakly collision resistant.

Definition 6.1.5 (Collision resistance). It should be infeasible to find two messages m1 and m2

such that f(m1) = f(m2). In such a case we say that f is strongly collision resistant.

CHAPTER 6. PUBLIC-KEY CRYPTOGRAPHY, II. 53

6.2 Exercises

6.1. Let c = 56 and n = 143. Using the Chinese remainder theorem, determine in detail all
square roots of c modulo n.

6.2. Show that Rabin cryptosystem is vulnerable to a chosen-ciphertext attack.

6.3. Consider the ElGamal cryptosystems with a public key (p, q, y) and a private key x.

(a) Encrypt the message w = 15131 using parameters p = 199999, q = 23793, x = 894 and
r = 723.

(b) Decrypt the ciphertext c = (299, 457) using parameters p = 503, q = 2, x = 42.

6.4. Consider the ElGamal cryptosystem with a public key (p, q, y) and a private key x.

(a) Let c = (a, b) be a ciphertext. Suppose that Eve can obtain the decryption of any chosen
cryptotext c′ 6= c. Show that this enables her to decrypt c.

(b) Let c1 = (a1, b1), c2 = (a2, b2) be the two ciphertexts of the messages m1 and m2, m1 6= m2,
respectively, using the same public key. Encrypt some other message m′.

6.5. Consider the congruence
5x ≡ 112 (mod 131).

Calculate x using Shanks’ algorithm. Show all steps of the calculation.

6.6. Consider the subset of all negligible functions defined as follows:

G = {ρ | ρ is a negligile function with Im(ρ) ⊆ N}.

Which of the following is (G, ◦), where ◦ is the operation of function composition, if any:

• semigroup,

• monoid,

• group,

• Abelian group.

How would the previous answer change if the previous definition of G is modified as follows:

(a) G = {ρ | ρ is a negligile function with Im(ρ) ⊆ N, ρ is a strictly increasing function},

(b) G = {ρ | ρ is a negligile function with Im(ρ) ⊆ N, ρ is a strictly decreasing function}.

6.7. Consider the Blum-Goldwasser cryptosystem with parameters p = 43 and q = 59.

(a) Encode the message x = 0110 with s0 = 1337.

(b) Decode the message (2218, 1001).

6.8. Suppose h : {0, 1}2m → {0, 1}m is a strongly collision-free hash function. Let h′ : {0, 1}4m →
{0, 1}m be defined as

h′(x) = h(h(x1)‖h(x2)),

where x1 is the first half of x and x2 is t he second half of x. Prove that h′ is strongly collision-free
hash function.

CHAPTER 6. PUBLIC-KEY CRYPTOGRAPHY, II. 54

* 6.9. Consider a large prime p and a primitive root a modulo p. Suppose that an encryption
scheme encodes an integer x ∈ Z∗p as follows

c = ax mod p.

Show that given c, an enemy can find (in polynomial time) the value of the least significant bit of x.

6.10. Consider the uniform distribution of birthdays in a 365-day year. What is the probability
that two people in a group have a birthday on the same day if the group consists of

(a) 2 people,

(b) 23 people,

(c) 97 people.

* 6.11. Consider the following modification of the ElGamal cryptosystem. Let G be a group with
q elements, where q is a large prime, g is its generator and h = gx for some x < q. Suppose that
multiplication and exponentiation in G can be done efficiently while computing discrete logarithms
is hard. Let message m ∈ {0, 1, . . . , b}, where b is small, be encrypted using a public key (G, g, h)
as c = (gr, gmhr), where r is chosen uniformly and randomly from {0, 1, . . . , q − 1}.

(a) Describe how to recover the message m.

(b) Let m1, m2 and c1, c2 be two messages and their corresponding cryptotexts, respectively.
Show that there is an algorithm which from a public key (G, g, h) and the cryptotexts c1, c2

determines a cryptotext c encrypting the message m1 +m2. Cryptotext c should be randomly
distributed as if it was encrypted with a fresh randomly chosen r. The algorithm is expected
to have no information about neither m1 nor m2.

(c) Suppose that n > 2 people would like to compute their average salary but they would be very
displeased if any information about their individual salaries was revealed. Let xi be a salary
of the person i, where i ∈ {1, 2, . . . , n}. Suppose that the sum of all the salaries is at most b.
Show how to compute the average a = x1+x2+···+xn

n without revealing any other information
about any xi. Observe that a might not be an integer.

* 6.12. Which of the following functions f : N→ N are negligible? Prove your answer.

(a) 2−
√

logn

(b) n− log logn

6.3 Solutions

6.1. Factors of n = 143 are m1 = 11 and m2 = 13. Therefore we can express c as the tuple

(c mod m1, c mod m2) = (1, 4).

Since for all square roots s of c modulo n it must hold s2 ≡ 1 (mod 11) and s2 ≡ 4 (mod 13). That
gives us four conditions for the square root s:

s ≡ ±1 (mod 11), s ≡ ±2 (mod 13)

CHAPTER 6. PUBLIC-KEY CRYPTOGRAPHY, II. 55

Using the Chinese remainder theorem we can now compute all four solutions for s. The solutions
have the form

s = a1M1N1 + a2M2N2 mod n,

where
M1 =

n

m1
= 13, M2 =

n

m2
= 11,

N1 = M−1
1 mod m1 = 6, N2 = M−1

2 mod m2 = 6,

a1 = s mod 11, a2 = s mod 13.

The last two equations give us a1 ∈ {1, 10} and a2 ∈ {2, 11} and we can see why the number of
square roots is four. All the possible combinations of a1 and a2 and the resulting square root s can
now be seen in the table bellow

a1 a2 s

1 2 67
10 2 54
1 11 89
10 11 76

So the square roots of 56 modulo 143 are 67, 54, 89 and 76.

6.2. Let n = pq be the public modulus of the Rabin cryptosystem, where p and q are primes. We
will show how we can find the factorization of n using the chosen-ciphertext attack. This would
allow us to decrypt any encrypted message.

Let us chose a random x and ask for the decryption of c = x2 mod n. We receive one of the
four square roots y of c. With probability 1

2 it holds y 6= ±x. In such case it holds

0 6= (x− y)(x+ y) = cn = cpq

because x2 − y2 ≡ 0 (mod n). So if we now compute gcd(x+ y, n) and gcd(x− y, n) we can obtain

p or q. The probability of success can be amplified to (1− 1
2

k
) by asking for k plaintexts.

6.3.

(a) Following the protocol of ElGamal we first compute

y = qx mod p = 23793723 mod 199999 = 137565.

Then we compute the two components of the ciphertext, namely a and b

a = qr mod p = 23793723 mod 199999 = 89804

b = yrw mod p = 137565723 · 15131 mod 199999 = 7512.

The encrypted message is then c = (a, b) = (89804, 7512).

(b) Let (299, 457) = (a, b), the decryption is done by computing w = b(ax)−1 mod p so

w = 457 · (29942)−1 mod 503 = 457 · 393 mod 503 = 30.

The plaintext is therefore w = 30.

CHAPTER 6. PUBLIC-KEY CRYPTOGRAPHY, II. 56

6.4.

(a) We know that c = (a, b) = (qr, yrm), where r is some random number and m is the given
original message. Consider the cryptotext c′ = (a, 2b) = (qr, 2yrm). Clearly c 6= c′. The
decryption of c′ is then

2ba−x = 2yrmq−xr = 2qxrmq−xr = 2m.

Now because 2 is coprime to p it is invertible modulo p. That means we can just divide the
obtained plaintext by 2 and obtain the original message m.

(b) Let c1 = (a1, b1) = (qr1 , yr1m1) and c2 = (a2, b2) = (qr2 , yr2m2), for some random r1 and r2.
Consider the cryptotext c′ = (a1a2, nb1b2) = (qr1qr2 , nyr1yr2m1m2), n ∈ Z∗p. Decrypting c′ we
get

nb1b2(a1a2)−x = nyr1yr2m1m2(qr1qr2)−x = nqx(r1+r2)m1m2q
−x(r1+r2) = nm1m2.

So c′ is the correct encryption of the message nm1m2 for any n ∈ Z∗p.

6.5. We use the Shanks’ algorithm to calculate the discrete logarithm logq y in Z∗p. In our case we
have q = 5, p = 131 and y = 112.

First we determine the parameter m = d
√
p− 1e = d

√
130e = 12. Now we create the list L1 of

m tuples (j, qmj mod p), for 0 ≤ j ≤ m− 1. The list L1 is shown in the following table.

j 0 1 2 3 4 5 6 7 8 9 10 11

qmj mod p 1 117 65 7 33 62 49 100 41 81 45 25

Next we create the list L2 of m tuples (i, yq−i mod p), for 0 ≤ i ≤ m− 1. The list L2 is shown in
the table below.

i 0 1 2 3 4 5 6 7 8 9 10 11

yq−i mod p 112 101 125 25 5 1 105 21 109 48 62 91

We can now see that there are three pairs of tuples with equal second item

(5, 62) (10, 62),

(11, 25) (3, 25),

(0, 1) (5, 1).

This gives us three solutions to the discrete logarithm in the form logq y = mj + i. The first pair
gives us

log5 112 = (12 · 5 + 10) mod 130 = 70.

The second
log5 112 = (12 · 11 + 3) mod 130 = 5.

And the third pair gives the same solution as the second one

log5 112 = (12 · 0 + 5) mod 130 = 5.

So using Shanks’ algorithm we have found two solutions to the original congruence, namely x1 = 70
and x2 = 5. Indeed we can check that

570 ≡ 112 (mod 131), 55 ≡ 112 (mod 131).

CHAPTER 6. PUBLIC-KEY CRYPTOGRAPHY, II. 57

6.6. Because for every ρ, ρ′ ∈ G it holds Im ρ, Im ρ ⊆ N it also holds Im(ρ ◦ ρ′) ⊆ N. At the same
time there is nρρ′ such that for all n > nρρ′ it holds ρ(ρ′(n)) ≤ ρ′(n) so the composition is still
negligible. That means the composition operation ◦ is well defined on G.

Now we look at the associative property of the composition. Let f, g, h ∈ G, then we have for
every n ∈ N

((f ◦ g) ◦ h) (n) = (f ◦ g)(h(n)) = f(g(h(n)))

(f ◦ (g ◦ h)) (n) = f ((g ◦ h)(n)) = f(g(h(n)))

We can see that the composition is indeed associative and therefore (G, ◦) is a semigroup. The
identity element for the composition ◦ is the identity function. But the identity function is clearly
not negligible as n ≤ 1

n holds for only one n ∈ N. So G is neither monoid nor group nor Abelian
group.

Now let us look at the modified G. We will show by contradiction that both sets are empty and
so they are only semigroups.

(a) Let ρ ∈ G. ρ is strictly increasing and so ρ(n) ≥ n for all n ∈ N. That means ρ is greater or
equal to the identity function and we already know the identity is not negligible, so ρ 6∈ G, a
contradiction.

(b) Let ρ ∈ G and let x, y ∈ N such that ρ(x) = y. Then from the strictly decreasing property we
get ρ(x+ y) ≤ 0. But that means ρ(x+ y + 1) < 0 which is a contradiction as Im ρ ⊆ N.

6.7.

(a) The public key is n = pq = 43 · 59 = 2537. We need to calculate si for i ∈ {1, 2, . . . , 5} using
the formula si = s2

i−1 mod n.

s1 = 13372 mod 2537 = 1521

s2 = 15212 mod 2537 = 2234

s3 = 22342 mod 2537 = 477

s4 = 4772 mod 2537 = 1736

s5 = 17362 mod 2537 = 2277.

Now we look at σi, the least significant bit of si, i ∈ {1, 2, 3, 4}. We have σ1σ2σ3σ4 = 1010.
So the ciphertext of x is

c = (s5, x⊕ σ1σ2σ3σ4) = (2277, 1100).

(b) Let (r, y) = (2218, 1001). We have m = 4 and we compute

rp = r((p+1)/4)m mod p = 2218(114) mod 43 = 13

rq = r((q+1)/4)m mod q = 2218(154) mod 59 = 46.

Now we obtain s1 by computing

s1 = q(q−1 mod p)rp+p(p−1 mod q)rq mod n = 59 ·35 ·43+43 ·11 ·21 mod 2537 = 400.

We continue by calculating si+1 = s2
i for i ∈ {1, 2, 3}.

s2 = 4002 mod 2537 = 169

s3 = 1692 mod 2537 = 654

s4 = 6542 mod 2537 = 1500

CHAPTER 6. PUBLIC-KEY CRYPTOGRAPHY, II. 58

Finally, we look at the least significant bits of si. They are σ1σ2σ3σ4 = 0100. This is all we
need to obtain the plaintext as

m = y ⊕ σ1σ2σ3σ4 = 1001⊕ 0100 = 1101.

6.8. We prove the strongly collision-free property by a contradiction. Suppose that h is a strongly
collision-free hash function, but that h′ is not.

Because h′ is not strongly collision-free, it is feasible to find words w, w′ such that h′(w) = h′(w′)
and w 6= w′. Let w1 and w2 be the first and second half of w respectively. And let w′1 and w′2 be
the first and second half of w′, respectively. Then

h(h(w1)‖h(w2)) = h(h(w′1)‖h(w′2)).

But h is strongly collision-free so it has to hold

h(w1)‖h(w2) = h(w′1)‖h(w′2),

otherwise the two words h(w1)‖h(w2) and h(w′1)‖h(w′2) would break the strongly collision-free prop-
erty. That means h(w1) = h(w′1) and h(w2) = h(w′2). But using the strongly collision-free property
of h again we get

w1 = w′1

w2 = w′2,

which is a contradiction as it gives us w = w′. So h′ is a strongly collision-free hash function.

6.9. We will use Euler’s criterion to find the least significant bit of x. First we calculate c
p−1
2

mod p and distinguish two following cases

(a) c
p−1
2 ≡ 1 (mod p)

As c is clearly coprime to p this means that c is a quadratic residue modulo p. So we can write
c = a2k mod p for some k, because a is a primitive root modulo p. This allows us to write

ax ≡ a2k ≡ c (mod p).

So we have that x and 2k have the same parity and because 2k is even so is x. Therefore the
least significant bit of x is 0.

(b) c
p−1
2 6≡ 1 (mod p)

In this case c is not a quadratic residue modulo p and we can write c = a2k+1 for some k. And
again we have

ax ≡ a2k+1 ≡ c (mod p).

So in this case we get that x has to be even, therefore the least significant bit of x is 1.

So all we need to do to get the least significant bit of x is to compute c
p−1
2 , which we can do in

polynomial time.

6.10. The probability p(n) that all n ≤ 365 people in a room have their birthday in different days
is

p(n) =
365!

365n(365− n)!
.

The probability that there are two people in a group of size n that have a birthday on the same day
is 1− p(n). So we plug in the numbers for the three groups

CHAPTER 6. PUBLIC-KEY CRYPTOGRAPHY, II. 59

(a) If n = 2, then the probability is 1− p(2) = 1− 365!
3652(365−2)!

≈ 3 · 10−3

(b) If n = 23,then the probability is 1− p(23) = 1− 365!
36523(365−23)!

≈ 0.507

(c) If n = 97, then the probability is 1− p(97) = 1− 365!
36597(365−97)!

≈ 0.9999992

We can see that while it is very improbable for two people to have birthday on the same day, for
only 23 people we have over 50% chance that there are two people with birthday on the same day.
For 97 people it is almost certain there will be such a pair.

6.11.

(a) Let c = (y, z) be the ciphertext. First we compute yx = grx = hr and z(yx)−1 = gmhrh−r =
gm. Because b is small we can just try every possible m′ ∈ {0, 1, . . . , b} and compare qm = qm

′

to obtain m.

(b) Let c1 = (gr1 , gm1hr1) and c2 = (gr2 , gm2hr2). Let c3 = (y, z), where

y = gr1gr2gr3 = gr1+r2+r3

z = gm1hr1gm2hr2hr3 = gm1+m2hr1+r2+r3 ,

for a randomly and uniformly chosen r3. It can be easily seen that c3 is now the encryption
of m1 +m2 using r = r1 + r2 + r3. Because r3 is chosen uniformly and independently of both
r1 and r2, the sum r1 + r2 + r3 is also distributed uniformly.

(c) Let the first person, i = 1, set up the modified ElGamal cryptosystem with public key (G, g, h)
and decryption exponent x. He then sends the ciphertext c1 = (gr1, g

x1hr1) to the second
person, i = 2. Now we define the protocol inductively: when a person i receives the ciphertext
ci−1 = (gri−1, g

mi−1hri−1) he sends, over a secure channel (using another encryption), the

ciphertext ci = (gri−1+r′i , hri−1+r′igmi−1+xi) to the person i + 1 mod n, where r′i is chosen
randomly and uniformly.

Generalizing the reasoning of (b), it can be easily seen that the ciphertext ci−1 is the proper
ciphertext for the sum of the first i − 1 salaries that only the fist person can decrypt. But
because the communication is done over secure channels he gets only the first and last cipher-
text. He gains no information from the first and gets only the whole sum from the last. He
can now compute the average salary and announce it to everyone or the procedure can be
repeated n-times with new person setting up the cryptosystem every time, making him the
one who obtains the whole sum.

6.12.

(a) Consider the polynomial p(n) = n2. Let’s now try to solve the inequality f(n) > 1
p(n) :

1

2
√

logn
>

1

n2

n2 > 2
√

logn

2
√

log n > 1

It is easy to see that the inequality holds for any n > 2 . This means it certainly cannot hold
that f(n) ≤ 1

p(n) for almost all n and therefore the function 2−
√

logn is not negligible.

(b) Consider any polynomial p(m) = amn
m + · · · + a0, am, . . . , a0,m ∈ N. Now consider the

function rp : N→ N, rp(n) = (
∑m

i=0 |ai|)nm. It is easy to see that rp(n) ≥ p(n) for all n ∈ N.
Therefore if f(n) ≤ 1

rp(n) it holds f(n) ≤ 1
p(n) .

CHAPTER 6. PUBLIC-KEY CRYPTOGRAPHY, II. 60

Let us now try to find the solutions to the inequality n− log logn ≤ 1
rp(n) :

1

nlog logn
≤ 1

rp(n)

rp(n) ≤ nlog logn(
m∑
i=0

|ai|

)
nm ≤ nlog logn

log

[(
m∑
i=0

|ai|

)
nm

]
≤ log(nlog logn)

log

(
m∑
i=0

|ai|

)
+m log n ≤ (log log n) log n

m ≤ log logn−
log (

∑m
i=0 |ai|)

log n

We now take the limit of the right hand side

lim
n→∞

log logn−
log (

∑m
i=0 |ai|)

log n
=∞.

From the definition of the limit we know that for every k ∈ N, there is an nk ∈ N such that for
all n > nk it holds that the right hand side is greater than k. And since this holds for every k
it must also hold for m. Therefore the inequality n− log logn ≤ 1

rp(n) must hold for all n > nm

for some nm ∈ N. In short it holds for almost all n and thus even the inequality f(n) ≤ 1
p(n)

holds for almost all n. But this means the function n− log logn is negligible.

Chapter 7

Digital Signatures

7.1 Introduction

Digital signatures are electronic analogues to handwritten signatures. Signature is an integral part
of the person’s identity. It is intended to be unique for any individual and serves as a way to
identify and authorize. When electronic information is considered, the concept of signature has to
be adapted, because it cannot be something independent of the message signed. A digital signature
is something, e.g. a number, which depends both on the secret known only by the signer and on the
message to be signed. It should be verifiable without an access to signer’s secrets. Only the hash of
the original message is usually signed.

7.1.1 Signature schemes – basic ideas and goals

A signature scheme consists of two algorithms: a signing algorithm and a verification algorithm. A
message m is signed by Alice using the signing algorithm that produces a signature sig(m). If the
public verification algorithm is applied to a signature, then it returns true if and only if sig(m) is a
signature created by Alice for the message m, i.e. if the signature is authentic.
These algorithms work with two keys: the secret key used for signing and the public key which
serves for verification. The sets of potential messages, signatures and keys are finite.

Security requirements and objectives, which should be satisfied by any signature scheme, are the
following ones.

• It should be infeasible to forge Alice’s signature for any message. Only Alice should be able
to produce her valid signatures – this is so-called authenticity requirement.

• Because the messages and their signatures have to be inseparably tied, any change either in the
created signature or in the message to be signed should result in the rejection of the signature
– this is so-called data integrity requirement.

• Another basic requirement is the impossibility of revocation of a valid signature in some later
time – that is so-called non-repudiation requirement.

• Finally, from a technical point of view, signing and verification algorithms should be sufficiently
fast.

7.1.2 Digital signature scheme – definition

A digital signature allows any signer S to sign any message m in such a way that no one can forge
S’s signature but anyone familiar with the system can verify that a signature claimed to be from S
is indeed from S and has not been changed during transmission.
A digital signature scheme (M,S,Ks,Kv) is given by (1) by a set M of messages that may need to
be signed, a set S of potential signatures, a set Ks of so-called private keys (used at signings) and

61

CHAPTER 7. DIGITAL SIGNATURES 62

a set Kv of so-called public/verification keys used for verification of signatures.
(2) for each key k ∈ Ks is given a single and easy to perform signing mapping sigk : {0, 1}∗×M → S,
and for each key kv ∈ Kv, there exists a single and easy to compute verification mapping verkv :
M × S → {true, false} such that the following two conditions are satisfied:

Correctness: For any message m ∈ M and any public key k ∈ Kv, and s ∈ S it holds that
verk(m, s) = true if there is an r ∈ {0, 1}∗ such that s = sigl(r,m) for a private key l ∈ Ks

corresponding to the public key k.

Security: For any m ∈M and kv ∈ Kv, it is computationally infeasible, without the knowledge of
the private key corresponding to k, to find a signature s ∈ S such that verkv(m, s) = true.

7.1.3 Attacks

The following describes the basic attack models and levels of breaking a digital signature scheme.

Key-only attack: The attacker is only given the public verification key.
Known signatures attack: The attacker is given valid signatures for several messages not chosen
by her.
Chosen signatures attack: The attacker is given valid signatures for several messages of her
choice.
Adaptive chosen signatures attack: The attacker is given valid signatures for several messages
chosen by the attacker where messages chosen may depend on previous signatures given for chosen
messages.

Total break: The adversary manages to recover secret key.
Universal forgery: The adversary can derive an algorithm which allows him to forge signature of
any message.
Selective forgery: The adversary can derive a method to forge signatures of selected messages
(where the selection was made prior the knowledge of the public key).
Existential forgery: The adversary is able to create a valid signature of some message m (but has
no control for which m).

The strongest notion of security is security against existential forgery under an adaptive chosen
signatures attack.

7.1.4 Examples

RSA signatures
Consider the RSA cryptosystem with encryption and decryption exponents e and d and modulus n.
The signature of a message m is s = sig(m) = md mod n. The signature s for the message m is
valid if se mod n = m.

ElGamal signature scheme
The public key for the ElGamal signature scheme is K = (p, q, y), where p is a prime, q is a primitive
element of Z∗p and y = qx mod p, where 1 < x < p is the secret key.
To create the signature s of a message m we need to choose a random integer r ∈ Z∗p−1 and calculate

s = sig(m, r) = (a, b), where a = qr mod p and b = (m − ax)r−1 mod p − 1. The signature
s = (a, b) for the message m is valid if yaab ≡ qm mod p.

DSA signature scheme
A variant of the ElGamal system later adopted as a standard is the Digital Signature Algorithm
(DSA). The key for the DSA is K = (p, q, r, x, y), where p is a large prime, q is a prime dividing

p− 1, r > 1 is a qth root of 1 in Zp, (r = h
p−1
q mod p, where h is a primitive element in Zp), x is a

random integer such that 0 < x < q and y = rx mod p. The values p, q, y and r are made public,
x is kept secret.

CHAPTER 7. DIGITAL SIGNATURES 63

To sign a message m we need to choose a random integer k such that 0 < k < q and therefore
gcd(k, q) = 1. The signature of message m is s = sig(m, k) = (a, b), where a = (rk mod p) mod q
and b = k−1(m + xa) mod q, where kk−1 = 1 mod q. The signature s = (a, b) is valid if (ru1yu2

mod p) mod q = a, where u1 = mz mod q, u2 = az mod q and z = b−1 mod q.

Lamport one-time signatures
A Lamport signature scheme is method for constructing a digital signature from a one-way function.
Only one message can be signed with such a scheme, therefore the term “one-time”.
Suppose that k-bit messages are to be signed. Let f : Y → Z be a one-way function. For randomly
chosen yi,j ∈ Y calculate zi,j = f(yi,j), i ∈ {1, . . . , k}, j ∈ {0, 1}.
The parameter i refers to the position of the bit in a message being signed and the parameter j
refers to its value. The z’s are made public together with f , y’s are kept secret.
To sign a k-bit message x = (x1, . . . , xk), the corresponding y’s are made public: sig(x1, . . . , xk) =
(y1,x1 , . . . , yk,xk)
To verify a signature (s1, . . . , sk) for the message x, one needs to verify that f(si) = zi,xi for all
i ∈ {1, . . . , k}.

Fiat-Shamir signature scheme
An example of an identification scheme that can be converted into a signature scheme is the Fiat-
Shamir scheme. Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk

and compute, as a secret key, s1, . . . , sk, si =
√
v−1
i mod n. To sign a message w, Alice first chooses

as a security parameter an integer t, random integers 1 ≤ r1, . . . , rt < n, and computes xi = r2
i

mod n, for 1 ≤ i ≤ t. Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt)
and then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows. Alice computes

yi = ri
∏k
j=1 s

bij
j mod n and sends w, all bij , all yi and h to Bob. Bob finally computes z1, . . . , zk,

where zi = y2
i

∏k
j=1 v

bij mod n = xi and verifies that the first kt bits of h(wx1x2 . . . xt) are the bij
values that Alice has sent to him.

Blind signatures
A blind signature is a form of signature in which the content of a message is blinded before it is
signed. Applications are in electronic voting and digital cash systems.
RSA blinding signature scheme with keys (n, e, d) works as follows. In order to make Bob to produce,
blindly, sigB(m) of the message m, Alice chooses a random r and asks Bob to sign m′ = mre mod n
and to send her back his signature sigB(m′). Alice then gets easily sigB(m) = r−1sigB(m′).

Subliminal channels
A subliminal channel is a covert channel that allows to communicate secretly in a normally look-
ing communication. Several signature schemes contain subliminal channels, for example the Ong-
Schnorr-Shamir channel.

7.2 Exercises

7.1. Alice and Bob are using the RSA signature scheme. Alice’s public key is (n, e) = (899, 17). Ma-
licious Eve captured two signed messages which Alice sent (m1, sig(m1)) = (13, 644) and (m2, sig(m2)) =
(15, 213). Is Eve able to forge signatures of messages ma = 195 and mb = 627 without using brute-
force? Try to calculate this signatures and verify.

7.2. Let m be a message which the adversary Eve intends to sign using the RSA signature scheme
with a public key (n, e) and a private key d. Suppose that Eve can obtain a signature of any message
m′ 6= m. Show that this enables her to sign m.

CHAPTER 7. DIGITAL SIGNATURES 64

7.3. Consider the following version of the Rabin signature scheme:
Let n = pq where p and q are primes. n is made public, p and q are kept secret. To sign a message
m, solve the equation s2 ≡ m (mod n) (assume that m ∈ QR(n)). The value s is the signature for
the message m. To verify a given message-signature pair (m, s), check whether s2 ≡ m (mod n).

(a) Show that the proposed scheme is vulnerable to an existential forgery with a key-only attack.

(b) Show that the scheme can be totally broken with chosen signatures attack.

7.4. Show that you can totally break the DSA signature scheme if you are given a signature (a, 0)
for a message w.

7.5. Consider the following modification of the ElGamal signature scheme in which x ∈ Z∗p−1 and
b is computed as

b = (w − ra)x−1 (mod p− 1).

Describe how verification of a signature (a, b) on a message x would proceed.

7.6. A lazy signer who uses the ElGamal signature algorithm has precomputed one pair (k, a)
satisfying a = qk mod p which he always uses for generating a signature. Given two message-
signature pairs, recover his secret key.

* 7.7. How would the security of the ElGamal signature scheme be affected if one would accept
signatures (a, b) with a larger than p?

7.8. Consider the Fiat-Shamir signature scheme. What happens if an adversary is able to find the
random integers r1, . . . , rt?

7.9. Let us consider Chaum’s blind signatures RSA scheme with n = pq, p = 101, q = 97, e = 59.
Only Bob knows d and uses it to sign documents. Alice wants him to sign message m = 4242
without him knowing m. Perform steps of the protocol in detail. Random k is k = 142.

7.10. Let f be a one-way permutation. Let us define a one-way signature scheme in the following
way. The public key is an l-tuple (y1, y2, . . . , yl). The secret key is an l-tuple (x1, x2, . . . , xl) such
that f(xi) = yi for each i ∈ {1, 2, . . . , l}. The signature of a message m1m2 · · ·ml ∈ {0, 1}l consists
of all xi such that mi = 1.

(a) Show that this one-time signature scheme is not secure.

(b) Describe all the message pairs (m1,m2) such that m1 6= m2 and the adversary can produce a
valid signature for m2 using a valid signature for m1.

7.11. Consider the Lamport one-time signature scheme. A signer has signed m (2 ≤ m ≤ 2k − 1)
different k-bit messages (instead of only one message he was allowed to sign). How many new
messages an adversary would be able to forge?

7.12. Consider the following one-time signature scheme used for signing of N -bit messages. Let
H be a cryptographically secure hash function. Let Hk(x) denote k successive applications of the
hash function H to x – so-called hash chain, e.g. H4(x) = H(H(H(H(x)))).

• (Initial phase) Alice chooses two random numbers x1 and x2 and computes y1 = HM (x1) and
y2 = HM (x2) where M = 2N . Alice publishes y1 and y2.

• (Signing) Alice computes s1 = Hn(x1) and s2 = HM−n−1(x2), where 0 ≤ n ≤ 2N − 1 is the
value of an N -bit message to be signed.

CHAPTER 7. DIGITAL SIGNATURES 65

• (Verification) To verify a signature, Bob checks validity of the following equations: y1 =
HM−n(s1) and y2 = Hn+1(s2).

(a) Demonstrate usage of the proposed scheme on signing of 2-bit message 11.

(b) Explain why it is insufficient to compute only a value of s1.

* 7.13. Propose a subliminal channel in the DSA signature scheme. Assume that the receiver of
a subliminal message shares the secret key x with the sender.

* 7.14. Consider the following signature scheme for a group of two users. Each of the users i has
his own RSA signature scheme with public key (ni, ei) and secret key di, i ∈ {1, 2}. Their respective
trapdoor one way permutation is fi(x) = xei (mod ni).

For the smallest b such that 2b > max(n1, n2) we define new trapdoor one way permutations gi
in the following way. For b-bit input x define integers qi and ri such that x = qini + ri, 0 ≤ ri < ni
(we know ri, qi are unique). Then

gi(x) =

{
qini + fi(ri) if (qi + 1)ni ≤ 2b

x otherwise

Let h be a public collision-resistant hash function that maps messages to b-bit strings.
Now the user i signs any message m as follows:

1. Computes the key k = h(m)

2. Chooses random b-bit xj , j 6= i.

3. Computes yj = gj(xj) using nj , ej .

4. Finds yi such that yi ⊕ yj = k.

5. Using di finds xi = g−1(yi).

6. Outputs the signature ((e1, n1), (e2, n2), x1, x2).

(a) Find the verification of the signature.

(b) Given a message and its signature, can you discover which user signed the message?

7.3 Solutions

7.1. We know that for the RSA signature scheme it holds: if s1 and s2 are signatures of messages m1

and m2, we can easily compute the signature of the message m = m1m2 mod n as s = s1s2 mod n.
This is the first case and the signature of ma = 195 = 13×15 is sa = sig(m1)×sig(m2) mod n = 524.
Verification: (sa)

e mod n = 52417 mod 899 = 195 which is equal to ma.
The message mb is equal to m−1

a modulo n (which is easy to verify: mamb ≡ 1 (mod n).) We
know that for the RSA signature scheme the following holds: if s is a signature of a message
m then s−1 mod n is the signature of the message m−1 mod n. Using the Extended Euclidean
Algorithm we get 1 = −362 × 524 + 211 × 899. Hence sb = −362 mod n = 537. Verification:
(sb)

e mod n = 53717 mod 899 = 627 = mb.

CHAPTER 7. DIGITAL SIGNATURES 66

7.2. Eve first chooses r that has inverse modulo n and later she asks for the signature for the
message m′ = m · re which is

s′ ≡ (m′)d ≡ md · red ≡ md · r (mod n).

Now she can multiply s′ with r−1 to obtain the valid signature for the message m.

7.3.

(a) Choose a signature s and square it to produce a corresponding message m. This yields a valid
message-signature pair.

(b) If we can find two distinct square roots of a message, we can consequently factor the modulus
n. We can again choose a value s and compute m = s2. The next step is submitting m to the
black box. There is a one in two chance that it will produce the same signature s. In such
case, repeat this process. If not, we have both square roots of m and can recover the factors
of n.

7.4. Since the signature is (a, 0), we have 0 = b ≡ k−1(w + xa) (mod q). We know k−1 6= 0
therefore w + xa ≡ 0 (mod q) and since q is prime a−1 exists. Together x ≡ −wa−1 (mod q).
Values w and a are known, so one can easily calculate the secret key x and hence totally break the
DSA scheme.

7.5. A signature (a, b) is valid if
aayb ≡ qw (mod p).

Recall that y = qx mod p and a = qr mod p. Now we prove correctness of the proposed verification
method:

aayb ≡ yaryb ≡ yar+w−ar+k(p−1) ≡ qw (mod p).

7.6. If the signer signs two messages w1 and w2 he obtains signatures (a, b1) and (a, b2) where
b1 = k−1(w1−xa) mod p−1 and b2 = k−1(w2−xa) mod p−1. We have xa = w1−kb1 = w2−kb2
and k = (w1−w2)(b1− b2)−1 mod p− 1. Now we can calculate the secret key as x = (w1−kb1)a−1

mod p − 1. There are d = gcd(a, p − 1) solutions for x. The forger can compute qx for all the x’s
found until she finds y and therefore the proper x.

7.7. If one would accept signatures (a, b) with a > p, an adversary would be able to forge the valid
signature for any message w2 after having intercepted the valid signature (a1, b1) of w1:
The adversary computes c = w2w

−1
1 mod p− 1. It holds that

qw2 ≡ qcw1 ≡ ya1cab1c1 (mod p)

Since we have x ≡ y (mod p − 1) ⇒ zx ≡ zy (mod p), the adversary can find such a2, b2 that the
following equations hold:

b2 ≡ b1c (mod p− 1)

a2 ≡ a1c (mod p− 1)

a2 ≡ a1 (mod p)

To determine b2 the adversary computes b2 = b1c mod p− 1.
To determine a2 the adversary uses the Chinese remainder theorem. The result will be modulo
p(p− 1), that is why a2 > p. Now it is easy to see that

qw2 ≡ ya2ab2 (mod p)

and (a2, b2) is the valid signature of w2.

CHAPTER 7. DIGITAL SIGNATURES 67

7.8. If an adversary finds the random integers r1, . . . , rt and intercepts the message w together
with bij and yi, she can construct the following system of congruences:

y1 ≡ r1s
b1,1
1 s

b1,2
2 . . . s

b1,k
k (mod n)

y2 ≡ r2s
b2,1
1 s

b2,2
2 . . . s

b2,k
k (mod n)

. . .

yt ≡ rts
bt,1
1 s

bt,2
2 . . . s

bt,k
k (mod n)

Now it depends on k, t and bi,j what the adversary could do. For example if k ≤ t and bi,j = 1 for
all 1 ≤ i ≤ t, 1 ≤ j ≤ k, then she is able to compute all sj and thus the private key.
In other cases, she might be able to compute only some of the sj , which would enable her to sign
some messages (those with bi,j = 0 for 1 ≤ i ≤ t and j such that sj is unknown).
In other cases, this would not allow the adversary to find any part of the private key.

7.9. To perform computation, we need to find d. It holds d = e−1 mod φ(n), thus d = 59−1 mod
9600 = 1139.

• Alice computes m′ = mke mod n = 4242 · 14259 mod 9797 = 808 and sends it to Bob.

• Bob computes s′ = (m′)d mod n = 8081139 mod 9797 = 6565 and sends it to Alice.

• Alice now computes signature s of message m, s = k−1s′ mod n = 69 · 6565 mod 9797 = 2323.

Message can be verified as m = se mod n.

7.10. Only bits with the value 1 are signed, 0-valued bits are not included therefore one can forge
signatures for any message which has 0 where the original message had 0 and which has 0 or 1 on
the remaining positions. For example given the signed message 1l an adversary would be able to
sign any message of length l.

7.11. Let us assume that the signer has signed two messages that are bit inverses of each other.
This way the signer made public his whole private key and the adversary can forge any k-bit message.

We analyze the case in which the signer has signed 2 ≤ m ≤ 2k − 1 different messages in such a
way that he made public the least possible number of y’s.
Signing the first message a half of y’s is made public. A second message must differ in at least one
position, say i1, so the yi1j are known for both j = 0, 1.Three or four messages must differ in at
least 2 positions, allowing the adversary to sign 2 new messages. Finally, m messages have to differ
in at least l positions where 2l−1 + 1 ≤ m ≤ 2l, so l = dlog2me.The adversary is therefore able to
forge at least 2dlog2me −m new messages.

7.12.

(a) (Initial phase)
N = 2, M = 2N = 4,

y1 = HM (x1) = H4(x1),

y2 = HM (x2) = H4(x2)

(Signing)
n = 3,

s1 = Hn(x1) = H3(x1),

s2 = HM−n−1(x2) = H0(x2) = x2

(Verification)
y1 = HM−n(s1) = H(s1) = H(H3(x1)) = H4(x1),

y2 = Hn+1(s2) = H4(s2) = H4(x2)

CHAPTER 7. DIGITAL SIGNATURES 68

(b) Given a value of s1 = Hn(x1), one could easily sign messages m where 2N − 1 ≥ m ≥ n.

7.13. Knowing the private key x, the only unknown value is k.

s = k−1(h− xr) mod q

sk = h− xr mod q

k = s−1(h− xr) mod q

To embed a subliminal message, it suffices to set k to a specific value.

7.14.

(a) To verify the signature we first find k = h(m), then we calculate both yi = gi(xi) using the
(ni, ei) and verify that y1⊕ y2 = k. Indeed, if both xi were created by the signature procedure
it must hold that y1 ⊕ y2 = k.

(b) If x1 is chosen randomly and x2 = a is computed by the signature procedure we get the same
tuple (x1, x2) as if x2 = a was chosen randomly and x1 was computed. Indeed, in both cases
it must hold x1 = g−1

1 (g2(x2)⊕ k) and as both gi are permutations we can obtain any xi from
some xj . So for the same x2 we get the same x1 (and vice versa). So given the signature
((e1, n1), (e2, n2), x1, x2) we cannot find which xi was chosen randomly and which computed
as both cases might have happened and thus we cannot discover who signed the message.

Chapter 8

Elliptic Curve Cryptography

8.1 Introduction

Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic
structure of elliptic curves over finite fields. There are several advantages over the classical public-
key cryptography – shorter keys can be used which results in savings in hardware implementation
and attacks that are based on factorization or finding discrete logarithms so far do not work for
ECC.
Elliptic curves are also employed in Lenstra’s algorithm for integer factorization.

8.1.1 Elliptic curves

Elliptic curve E is a plane curve defined by the equation

E : y = x3 + ax+ b,

where a and b are real numbers such that the curve has no self-intersections or isolated points. It
means the curve has no multiple roots,i.e. it is non-singular. The curve is non-singular if and only
if 4a3 − 27b2 6= 0.

8.1.2 Group structure and addition law

On an elliptic curve, it is possible to define addition of points in such a way that the points of the
elliptic curve together with the addition operation form an Abelian group. This requires the curve
to be extended with the so-called “point at infinity”, denoted with O, which serves as the neutral
element of the group.
Addition of points P1 = (x1, y1) and P2 = (x2, y2) is calculated as P3 = P1 + P2 = (x3, y3), where
x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1 and

λ =

{
y2−y1
x2−x1 if P1 6= P2
3x21+a

2y1
otherwise

If λ is not defined, then P3 = O.

Elliptic curves over a finite field and Hasse’s theorem
The addition of points on an elliptic curve over a finite field is done the same way as described above,
with division understood as the multiplication with an inverse element. The number of points on
an elliptic curve over a finite field with q elements is limited by the Hasse’s theorem:

If an elliptic curve E (mod n) has N points, then |N − (q + 1)| ≤ 2
√
q.

69

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 70

8.1.3 Elliptic curve cryptography

Elliptic curve discrete logarithm problem
Elliptic curve cryptosystems are based on the intractability of computing discrete logarithms. Dis-
crete logarithm problem for elliptic curves is stated as follows. Let E be an elliptic curve and P , Q
be points on the elliptic curve such that Q = kP for some integer k, where

kP =

k−times︷ ︸︸ ︷
P + P + · · ·+ P .

The task is to calculate k given P , Q and E.

Converting classical systems into elliptic curve counterparts
Cryptosystems or protocols based on discrete logarithm problem can be converted easily into cryp-
tosystems or protocols based on elliptic curves. The conversion goes as follows:

• Assign a point on an elliptic curve to the plaintext message.

• Change modular multiplications into additions of points and exponentiations into multiplying
a point on an elliptic curve by an integer.

• Assign a cryptotext message to the point of an elliptic curve that results from the modified
cryptosystem.

8.1.4 Factorization

Factorization is a process, in which a composite number is decomposed into a product of its prime
factors. For each number there is a unique decomposition. When the number is very large, there is
no efficient factorization algorithm known. The hardest problem is to find factors of n = pq, where
p and q are distinct primes of the same size but with a great distance.

Pollard ρ-method
This method is based on the birthday paradox – when we keep choosing pseudorandom integers,
there must be a pair a, b such that a ≡ b (mod p) and a 6≡ b (mod n), where p is a prime factor
of n, the number we want to factor. First, choose some pseudorandom function f : Zn → Zn and
an integer x0 ∈ Zn. Then keep computing xi+1 = f(xi) for i = 0, 1, 2, . . . and gcd(|xj − xk|, n),
for each k < j. If gcd(|xj − xk|, n) = d > 1 then we have found a factor d of n.There are several
modifications that differ in frequency of calculation of greatest common divisors.

Pollard (p− 1)-method
This method is based on Fermat’s Little Theorem and discovers a prime factor p of an integer
n whenever p − 1 has only small prime factors. To factor n, first fix an integer B, compute
M =

∏
primes q≤B q

blogqBc. Choose an integer a and compute d = gcd(aM − 1, n). If 1 < d < n, we
have a factor d of n.

Factorization with elliptic curves
To factorize an integer n we choose in many elliptic curve E over Zn points P ∈ E and compute
either points iP for i = 2, 3, 4, . . . or points 2jP for j = 1, 2, 3, When calculating these points we
need to evaluate gcd(xA − xB, n) for various points A, B when computing λ. If one of these values
is between 1 and n, we have a factor of n.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 71

8.2 Exercises

8.1. Consider the elliptic curve E : y2 = x3 + 568x + 1350 (mod 1723) and the point P =
(524, 1413). Compute the point 144P with as few point operations as possible.

8.2. Let E : y2 = x3 + 9x + 17 be the elliptic curve over the field F23. What is the discrete
logarithm k of Q = (4, 5) to the base P = (16, 5)?

8.3. Consider the elliptic curve E : y2 = x3 + 6x2 + 14x+ 16 over Z29. Transform E to the form
y2 = x3 + ax+ b where a, b ∈ Z29.

8.4. Decide whether the points of the following elliptic curves define a group over Zp where p is
a prime? If yes, find an isomorphism between points of the elliptic curve and the additive group of
integers (Zp,+).

(a) E : y2 = x3 + 10x+ 5 (mod 17)

(b) E : y2 = x3 + 4x+ 1 (mod 7)

8.5. Is there a (non-singular) elliptic curve E defined over Z5 such that

(a) E contains exactly 11 points (including the point at infinity O);

(b) E contains exactly 10 points (including the point at infinity O)?

If the answer is positive, find such a curve and list all of its points, If it is negative, prove it.

8.6. Let E : y2 = x3 + ax + b with a, b ∈ Q be an elliptic curve. Show that there is another
equation Y 2 = X3 + AX + B with A,B ∈ Z whose solutions are in bijection with the solutions to
y2 = x3 + ax+ b.

* 8.7. We call a nonzero rational number n a congruent number if ±n is the area of a right-angled
triangle with rational side lengths or, equivalently, n is a congruent number if the system of two
equations:

a2 + b2 = c2

1

2
ab = n

has a solution with a, b, c ∈ Q.
The relation between congruent numbers and elliptic curves is described with the following

theorem:
Let n be a rational number. There is a bijection between A = {(a, b, c) ∈ Q3 | 1

2ab = n, a2 + b2 = c2}
and B = {(x, y) ∈ Q2 | y2 = x3 − n2x with y 6= 0} given by the map g : B → A defined as

g(x, y) =

(
n2 − x2

y
,−2xn

y
,
n2 + x2

y

)
.

Using the previous theorem show that the numbers 5 and 6 are congruent numbers and give the
corresponding values of a, b and c.

* 8.8.

(a) How many points P such that 2P = O can be found on non-singular elliptic curves? Does
there always exist at least one? Consider curves over R and over Zp where p is a prime.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 72

(b) Prove that on a non-singular elliptic curve over Zp, where p is a prime, for any two different
points P1, P2, there exists exactly one point P3 such that P1 + P2 + P3 = O (You are not
allowed to use addition formulas).

(c) Prove or disprove that for P3 as described in (b): P1 6= P3 ∧ P2 6= P3.

8.9. Consider the elliptic curve variant of the Diffie-Hellman key exchange protocol. Let E :
x3 + 4x+ 20 (mod 29) and P = (1, 5). Suppose Alice chooses her secret exponent na = 11 and Bob
chooses his secret exponent nb = 7.

(a) Show in detail all steps of the key exchange protocol.

(b) Suggest a more efficient way to exchange the computed points.

8.10. Consider the following elliptic curve cryptosystem.
Let E be an elliptic curve over the field Zp and let G ∈ E be a generator point of order n. E and
G are public.
Each user U chooses a private key, an integer sU < n, and computes the corresponding public key,
PU = sUG.
To encrypt a message M for U , one chooses a random integer k and computes the ciphertext
C = [(kG), (M + kPU)].

(a) Show how the user U decrypts C to obtain M .

(b) Let E : y2 = x3 + x + 6 (mod 11), G = (2, 7) and sA = 7. Recover the plaintext M from
C = [(8, 3), (10, 2)].

8.11. Decide whether n3 + (n+ 1)3 + (n+ 2)3 ≡ 0 (mod 9) for any nonnegative integer.

8.12. Suppose n = pq where p, q are primes. Let integers i, j, k and L with k 6= 0 satisfy

L = i(p− 1), L = j(q − 1) + k and ak 6≡ 1 (mod q).

Let a be a randomly chosen integer satisfying p - a and q - a. Prove that

gcd(aL − 1, n) = p.

8.13. Prove that all Carmichael numbers are odd.
(A Carmichael number is a composite number n such that bn−1 ≡ 1 (mod n) for all integers 1 ≤
b < n which are relatively prime to n.)

8.14. Prove or disprove the following claims:

(a) If n is even and n > 2, then 2n − 1 is composite.

(b) If 3 | n and n > 3, then 2n − 1 is composite.

(c) If 2n − 1 is prime, then n is prime.

8.15. Prove or disprove the following claim: An integer n > 1 is a prime if and only if n divides
2n − 2.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 73

* 8.16.

(a) Let n be an integer and p be the smallest prime factor of n. Prove that
(
n
p

)
is not divisible by

n.

(b) Let n > 0 be an integer. Show that n is a prime if and only if
(
n
k

)
is divisible by n for all

k ∈ {1, 2, . . . , n− 1}.

(c) Let n > 1 be an integer. Let a be an integer coprime to n. Then n is prime if and only if

(x+ a)n = xn + a (mod n)

in polynomial ring Zn[x].

8.17.

(a) Using the Pollard’s ρ-method with f(x) = x2 + 1 and x0 = 2 find a factor of 229 − 1.

(b) Using the Pollard’s (p− 1)-method with B = 5 and a = 2 find a factor of 23729.

8.18. Using the elliptic curve E : y2 = x3 + 4x + 4 and its point P = (0, 2) try to factorize the
number 551.

8.19. Consider the Pollard’s ρ-method with a pseudo-random function f(x) = x2 +c mod n with
a randomly chosen c, 0 ≤ c < n. Why should be the values c = 0 and c = n− 2 avoided?

* 8.20. For a modulus n, an exponent e is called a universal exponent if xe ≡ 1 (mod n) for all x
with gcd(x, n) = 1.
Universal Exponent Factorization Method
Let e be a universal exponent for n and set e = 2bm where b ≥ 0 and m is odd. Execute the
following steps.

(i) Choose a random a such that 1 < a < n− 1. If gcd(a, n) > 1, then we have a factor of n, and
we terminate the algorithm. Otherwise go to step (ii).

(ii) Let x0 ≡ am (mod n). If x0 ≡ 1 (mod n), then go to step (i). Otherwise, compute xj ≡ x2
j−1

(mod n) for all j = 1, . . . , b.

• If xj ≡ −1 (mod n), then go to step (i).

• If xj ≡ 1 (mod n), but xj−1 6≡ 1 (mod n), then gcd(xj−1 − 1, n) is a nontrivial factor of n so
we can terminate the algorithm.

(a) Use the algorithm above to factor n = 76859539 with the universal exponent e = 12807000.

(b) Find a universal exponent for n = 2a+2. Justify your answer.

8.3 Solutions

8.1. Since 144 = 128 + 16 = 27 + 24, we can calculate 144P in 8 additions as follows. We compute
points 2P , 4P = 2P + 2P , 8P = 4P + 4P , 16P = 8P + 8P , 32P = 16P + 16P , 64P = 32P + 32P ,
128P = 64P + 64P , 144P = 128P + 16P = (1694, 125).

8.2. We are looking for k such that Q = kP . We compute kP , k > 1, until we find Q.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 74

k kP

2 (20, 20)
3 (14, 14)
4 (19, 20)
5 (13, 10)
6 (7, 3)
7 (8, 7)
8 (12, 17)
9 (4, 5)

Therefore, k = 9.

8.3. We know that elliptic curve given in the following form y2 + uxy + vy = x3 + ax2 + bx + c
can be transformed into the form y2 = x3 + dx2 + ex+ f (if p 6= 2) and consequently into the form
y2 = x3 + gx+ h (if p 6= 3). In this case we can immediately apply the second transformation using
the substitution:

x→ x− d

3

For E we have x→ x− 6
3 = x− 2 (3−1 ≡ 10 mod 29) and y2 = (x− 2)3 + 6(x− 2)2 + 14(x− 1) + 16

yields
y2 = x3 + 2x+ 4

8.4.

(a) The curve is singular: 4a3 − 27b2 ≡ 0 (mod 17), therefore it has multiple roots: y2 = x3 +
10x+ 5 = (x+ 5)2(x+ 7) (mod 17). Therefore the points of the curve does not form a group.

(b) Four points together with the point at infinity form a group. The addition table is explicitly
given as follows:

O (0, 1) (4, 5) (4, 2) (0, 6)

O O (0, 1) (4, 5) (4, 2) (0, 6)
(0, 1) (0, 1) (4, 5) (4, 2) (0, 6) O
(4, 5) (4, 5) (4, 2) (0, 6) O (0, 1)
(4, 2) (4, 2) (0, 6) O (0, 1) (4, 5)
(0, 6) (0, 6) O (0, 1) (4, 5) (4, 2)

The isomorphism between (E,+) and (Z5,+) is given as O ↔ 0, (0, 1) ↔ 1, (4, 5) ↔ 2,
(4, 2)↔ 3 and (0, 6)↔ 4.

8.5.

(a) Let |E| denote the order of the group of points on E. By Hasse’s theorem, we have ||E|− 6| <
2
√

5, which implies |E| < 6 + 2
√

5 < 11. Thus such an elliptic curve does not exist.

(b) Yes, for example the elliptic curve E given by the equation y2 = x3 + 3x (whose discriminant
−16(4 · 33 + 27 · 02) = −26 · 33 is nonzero) contains ten points: (0, 0), (1, 2), (1, 3), (2, 2), (2, 3),
(3, 1), (3, 4), (4, 1), (4, 4) and O.

8.6. Let a = p
q and b = r

s , where a, b are rational numbers and p, q, r, s are integers. Multiplying

the equation given by E with q6s6 yields

q6s6y2 = q6s6x3 + pq5s6x+ rq6s5

Let X = q2s2x and Y = q3s3y. Now the equation can be rewritten as

Y 2 = X3 + pq3s4X + rq6s5,

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 75

thus A = pq3s4 and B = rq6s5.

8.7. Using the previous theorem it suffices to find a point on E : y2 = x3 − 25x such that its
y-coordinate is nonzero. The point (−4,−6) lies on the elliptic curve E. Using the transformation
g we obtain the triple

g(x, y) = g(−4,−6) =

(
−3

2
,−20

3
,−41

6

)
.

We can multiple the triple with −1 to obtain sizes of the right-angled triangle whose area is equal
to 5.
Similarly, we can prove that 6 is the congruent number using the elliptic curve E : y2 = x3 − 36x
and its point (−2, 8) yielding the sizes 3, 4 and 5.

8.8.

(a) Obviously, 2O = O, since O is the identity element. Let P 6= O. Rearranging the equation
2P = O, we have P = −P . Following the definition of addition of points of an elliptic curve,
the inverse of P corresponds to the pair (x,−y), where P = (x, y). Thus, y = −y and therefore
y = 0.
The collection of points such that y = 0 is characterized by the solutions of the equation

x3 + ax+ b = y2 = 0,

which depends on how many roots the cubic polynomial has. Certainly, the cubic has at
least one real root. The other two roots are either two real numbers or complex conjugates.
Therefore, curves over R have either two such points (one being a root of the cubic equation
plus O) or four such points (three roots plus O). Note that there can be no multiple roots as
the elliptic curve is assumed to be non-singular. Considering solutions over Zp where p is a
prime, the cubic modular equation has either 0, 1 or 3 roots.Therefore, there can be 1, 2, or
4 points such that 2P = O over Zp.

(b) Let P1 and P2 be points of a non-singular elliptic curve E over Zp where p is a prime such
that P1 6= P2. Then P1 + P2 must be a necessarily a point of E, since points of E with
the addition operation form a group. Let Q = P1 + P2. Then Q has necessarily a unique
inverse −Q, since once again (E,+) is a group. Setting P3 = −Q gives the desired result as
P1 + P2 + P3 = (P1 + P2) + P3 = Q+ (−Q) = O, and P3 must be exactly one.

(c) The proposition P1 6= P3 ∧ P2 6= P3 does not hold in general. A counterexample can be given
when the elliptic curve has at least two points P such that 2P = O, i.e. P = −P . Let Q 6= O
be one such point.
Now observe that if P1 = O and P2 = Q, then P1 + P2 = P2 = Q but the only possibility for
P3 to make the equation P1 + P2 + P3 = O hold, is P3 = −Q = Q = P2, which disproves the
proposition.

8.9.

(a) (1) Alice computes naP = (10, 25).

(2) Bob computes nbP = (24, 22).

(3) Alice and Bob interchange values naP and nbP .

(4) Alice computes na(nbP) = (20, 3).

(5) Bob computes nb(naP) = (20, 3).

(b) We need not send the y-coordinate of a point (x, y). The value of ±y can be determined by
computing the square root of x. Therefore, to send a point (x, y) it suffices to send x together
with one bit to determine the sign of y. This idea is known as point compression.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 76

8.10.

(a) The user U computes (M + kPU)− sU (kG) = M + kPU − k(sUG) = M + kPU − kPU = M .

(b) sA(kG) = 7(8, 3) = (3, 5), M = (M + kPA) − sA(kG) = (10, 2) − (3, 5) = (10, 2) + (3,−5) =
(10, 9).

8.11. We have n3 +(n+1)3 +(n+2)3 = 3n3 +9n2 +15n+9 ≡ 3n3 +6n (mod 9). Now we prove by
induction that 3n3 + 6n ≡ 0 (mod 9). For n = 0, the equation holds. Assume the equation holds n.
For n+1, we have 3(n+1)3 +6(n+1) = 3n3 +9n2 +9n+3+6n+6 = (3n3 +6n)+9(n2 +n+1) ≡ 0
(mod 9).

8.12. Applying Fermat’s little theorem we have

aL − 1 ≡ ai(p−1) − 1 ≡ (ap−1)i − 1 ≡ 0 (mod p),

aL − 1 ≡ aj(q−1)+k − 1 ≡ (aq−1)jak − 1 ≡ ak − 1 (mod q).

Therefore aL − 1 = mp for some integer m and since q - aL − 1 and p, q are primes, it holds that

gcd(aL − 1, n) = gcd(mp, pq) = p.

8.13. A Carmichael number is a composite number n which satisfies the equation bn−1 ≡ 1 (mod n)
for all 1 ≤ b < n with gcd(b, n) = 1. Consider n being an even number, then (n−1)n−1 ≡ (−1)n−1 ≡
−1 (mod n) which contradicts the definition of Carmichael numbers.

8.14.

(a) If n = 2k, then 2n − 1 = 22k − 1 = (2k − 1)(2k + 1) is composite, since n > 2 ⇒ k > 1 ⇒
2k − 1 > 1.

(b) If n = 3k, then 2n− 1 = 23k − 1 = (2k − 1)(22k + 2k + 1) is composite, since n > 3⇒ k > 1⇒
2k − 1 > 1.

(c) We prove the contraposition of (c): If n is composite, then 2n−1 is composite. Assume n = kl
for some k, l > 1. Then, 2kl − 1 = (2k − 1)(2l(k−1) + 2l(k−2) + . . . + 1). Therefore, 2n − 1 is
composite.

8.15. The condition n divides 2n − 2 can be rewritten as 2n ≡ 2 (mod n).
⇒:
This is true: Directly from Fermat’s little theorem because n is prime.
⇐:
This is not true: 2n − 2 ≡ 2 (mod n) for composite numbers n = 341 or n = 561 and others.

8.16.

(a) Let n = pkq, where q is not divisible by p and k ≥ 1. We have
(
n
p

)
= n!

(n−p)!p! = n(n−1)(n−2)...(n−p+1)
p! =

pkq(n−1)(n−2)...(n−p+1)
p! = pk−1q(n−1)(n−2)...(n−p+1)

(p−1)! . Since p is a prime and p divides n, p does not
divide any number between n and n − p and it does not divide the product of these num-
bers. Therefore (n− 1)(n− 2) . . . (n− p+ 1) is not divisible by p, q is not divisible by p and(
n
p

)
= pk−1q(n−1)(n−2)...(n−p+1)

(p−1)! is not divisible by pk which gives that
(
n
p

)
is not divisible by n.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 77

(b) ⇒:

We have
(
n
k

)
= n!

(n−k)!k! = n(n−1)...(n−k+1)
k! and since n is a prime and k < n, k, k − 1, . . . , 1 are

coprime to n and therefore gcd(k!, n) = 1. Since
(
n
k

)
is an integer, k! | (n− 1) . . . (n− k + 1).

Let (n−1)...(n−k+1)
k! = m. Then

(
n
k

)
= mn and n |

(
n
k

)
.

⇐:
We use obversion: If n is not a prime, then there exists k ∈ {1, 2, . . . , n− 1} such that n - nk .
Let p be the smallest prime factor of n. Obviously 1 < p < n−1 and using the theorem proved
in (a),

(
n
p

)
is not divisible by n.

(c) ⇒:
Given equation can be rewritten using binomial coefficients as

(x+ a)n =
n∑
i=0

(
n

i

)
xn−iai = xn + an +

n−1∑
i=1

(
n

i

)
xn−iai.

Let n be a prime. Using the theorem proved in (b),
(
n
k

)
is divisible by n for all 1 ≤ k ≤ n− 1.

Terms
(
n
1

)
=
(
n
n−1

)
= n are divisible by n as well. Together,

∑n−1
i=1

(
n
i

)
xn−iai ≡ 0 (mod n).

From Fermat’s little theorem, an ≡ a (mod n) because gcd(a, n) = 1. Therefore (x + a)n =
xn + a (mod n).
⇐:
Let n be a composite number. Let p be the smallest prime factor of n. Using the theorem
proved in (a),

(
n
p

)
is not divisible by n. Since gcd(a, n) = 1, ap is coprime to n as well.

Therefore
(
n
p

)
ap is not divisible by n which means the coefficient corresponding to xn−p is not

congruent to zero modulo n and (x+ a)n 6= xn + a (mod n).

8.17.

(a) This algorithm proceeds with evaluating x0, x1, . . . and for every xi it computes gcd(xi −
x0, n), gcd(xi − x1, n), . . . gcd(xi − xi−1, n) until some gcd is greater than 1.
In this case, computing gcd(x14 − x12, 2

29 − 1) = gcd(334654399 − 210447727, 229 − 1) = 233
yields a factor of n.

(b) We have M = 22 · 3 · 5 and gcd(aM − 1, n) = gcd(260 − 1, 23729) = gcd(16226, 23729) = 61.

8.18. We subsequently calculate points kP for k > 2.

kP = (xk, yk)

P = (0, 2)
2P = (1, 548)
3P = (24, 118)
4P = (382, 172)
5P = (136, 275)
6P = (507, 297)
7P = (260, 539)
8P = (516, 314)
9P = (477, 94)
10P = (214, 547)
11P = (495, 326)
12P = (171, 397)

When computing 13P we try to compute λ = (y2− y1)/(x2− x1), but fail because (x12− x1) = 171
and gcd(171, 551) = 19.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 78

8.19. If c = 0, it can happen that the sequence x0, x1 = f(x0), x2 = f(x1) . . . contains some xk ≡ 1
(mod n). In such case xl ≡ 1 (mod n) for all l > k.
Similarly, if c = n − 2 then c ≡ −2 (mod n) and if xk ≡ −1 (mod n), then xl ≡ (−1)2 − 2 ≡ −1
(mod n). In both cases the sequence contains a cycle which makes the algorithm useless.

8.20.

(a) We have that e = 23 · 1600875 and we select a = 2 as the base. All congruences are modulo
n in the following. Since x0 ≡ 21600875 ≡ 76859538 ≡ −1, we have to choose a new base.
Let a = 3, then x0 ≡ 31600875 ≡ 44940756, x1 ≡ x2

0 ≡ 9649071, x2 ≡ x2
1 ≡ 1. Since x1 6≡ 1,

gcd(x1 − 1, n) = 8539 and n = 8539 · 9001.

(b) We will show that 2a is the universal exponent for n = 2a+2. We use induction on a to prove
that x2a ≡ 1 (mod 2a+2) for odd x. If a = 1 then it is easy to see that x2 ≡ 1 (mod 8). Now
assume that x2a−1 ≡ 1 (mod 2a+1). Therefore, x2a = (1+2a+1t)2 for some t ∈ Z, thus x2a ≡ 1
(mod 2a+2).

Chapter 9

Identification, Authentication and
Secret Sharing

9.1 Introduction

More applications of cryptography ask for identification of communicating parties and for data
integrity and authentication rather than for secret data. A practically very important problem is
how to protect data and communication against an active attacker.

9.1.1 User identification

User identification is a process in which one party (called the prover) convinces another party (called
the verifier) of prover’s identity and that the prover is actually participating in the identification
process. The purpose of any identification process is to preclude impersonation (pretending to be
another person). User identification has to satisfy the following conditions:

• The verifier has to accept prover’s identity if both parties are honest.

• The verifier cannot later, after successful identification, pose as a prover and identify himself
(as the prover) to another verifier.

• A dishonest party that claims to be the other party has only negligible chance to identify
himself successfully.

Every user identification protocol has to satisfy the following two security conditions:

• If one party (verifier) gets a message from the other party (prover), then the verifier is able to
verify that the sender is indeed the prover.

• There is no way to pretend for an adversary when communicating with Bob that he is Alice,
without Bob having a large chance to find that out.

Static means like passwords or fingerprints can be used, or identification can be implemented
by dynamic means, with challenge and response protocols. In a challenge-response identification
protocol Alice proves her identity to Bob by demonstrating knowledge of a secret known to be
associated with Alice only, without revealing the secret itself to Bob. Structure of challenge-response
protocols is as follows:

1. Alice sends a commitment (some random element) to Bob.

2. Bob sends a challenge to Alice.

3. Alice sends the response that depends on the challenge received and her commitment to Bob.

4. Bob verifies the response.

79

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 80

Simplified Fiat-Shamir identification scheme

Let p,q be large random primes, n = pq, v ∈ QR(n) be a quadratic residue and s such that
s2 ≡ v (mod n). Alice is given as her private key s, while v is made public.

1. Alice chooses a random r < n, computes x = r2 mod n and sends x to Bob.

2. Bob sends to Alice a random bit b as a challenge.

3. Alice sends Bob as the response y = rsb mod n.

4. Bob identifies the sender as Alice if and only if y2 = xvb mod n.

Alice and Bob repeat this protocol several times, until Bob is convinced that Alice knows s. If Alice
does not know s, she can choose r such that she can give the correct response to Bob if he sends her
the challenge 0, or she can choose r such that she can give the correct response to Bob if he sends
her the challenge 1, but she cannot do both. The probability of her giving the correct response to
Bob t times is 1

2t .

Schnorr identification scheme

Setup phase: Trusted authority (TA) involved chooses a large prime p, a large prime q dividing
p−1, an α ∈ Z∗p of order q and a security parameter t such that 2t < q. These parameters p, q, α, t are
made public. TA also establishes a secure digital signature scheme with a secret signing algorithm
sigTA and a public verification algorithm verTA.
Certificate issuing: TA verifies Alice’s identity by conventional means and forms a string ID(Alice)
which contains her identification information.
Alice chooses a secret random 1 ≤ a ≤ q − 1 and computes v = α−a (mod p) and sends v to the
TA. TA generates signature s = sigTA(ID(Alice), v) and sends C(Alice) = (ID(Alice), v, s) back
to Alice as her certificate.
Identification protocol:

1. Alice chooses a random commitment 0 ≤ k < q and computes γ = αk (mod p).

2. Alice sends to Bob γ and her certificate C(Alice) = (ID(Alice), v, s).

3. Bob verifies the signature of TA.

4. Bob chooses a random challenge 1 ≤ r ≤ 2t and sends it to Alice.

5. Alice computes the response y = (k + ar) (mod q) and sends it to Bob.

6. Bob verifies that γ ≡ αyvr (mod p).

9.1.2 Message authentication

The goal of the data authentication protocols is to handle the case that data are sent through
insecure channels. By creating so-called Message Authentication Code (MAC) and sending this
MAC together with the message through an insecure channel, the receiver can verify whether data
were not changed in the channel. The price to pay is that the communicating parties need to share a
secret random key that needs to be transmitted through a very secure channel. The basic difference
between MACs and digital signatures is that MACs are symmetric. Anyone who is able to verify
MAC of a message is also able to generate the same MAC and vice versa. A scheme (M,T,K)
for data authentication is given by a set of possible messages (M), a set of possible MACs (T)
and a set of possible keys (K). It is required that to each key k ∈ K there is a single and easy
to compute authentication mapping authk : {0, 1}∗ ×M → T and a single and easy to compute
verification mapping verk : M × T → {true, false}. An authentication scheme should also satisfy

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 81

the condition of correctness: For each m ∈ M and k ∈ K it holds verk(m, c) = true if there exists
an r from {0, 1}∗ such that c = authk(r,m); and the condition of security: For any m ∈ M and
k ∈ K it is computationally unfeasible (without the knowledge of k) to find c from T such that
verk(m, c) = true.

9.1.3 Secret sharing

A secret sharing scheme is a method to distribute a secret among several users in such a way that
only predefined sets of users (so called access structure) can recover the secret. In particular, an
(n, t)-threshold scheme, where n and t < n are integers, is a method of sharing a secret S among a
set P of n participants, P = {Pi | 1 ≤ i ≤ n}, in such a way that any t, or more, participants can
compute the value S, but no group of t− 1, or less, can compute S. Secret S is chosen by a dealer
D 6∈ P . It is assumed that the dealer distributes the secret to participants secretly and in such a
way that no participant knows shares of other participants.

Shamir’s (n, t)-threshold scheme

The essential idea of Shamir’s threshold scheme is that t points define a polynomial of degree t− 1
(2 points are sufficient to define a line, 3 points are sufficient to define a parabola, and so on).
Initiation phase: Dealer D chooses a prime p > n, n distinct xi, 1 ≤ i ≤ n, and D gives the value
xi to the user Pi. The values xi are made public.
Share distribution phase: Suppose D wants to share a secret S ∈ Zp among the users. D
randomly chooses and keeps secret t− 1 elements from Zp: a1, . . . at−1. For 1 ≤ i ≤ n, D computes
the shares yi = f(xi), where

f(x) = S +
t−1∑
j=1

ajx
j (mod p).

D gives the computed share yi to the participant Pi.
Secret cumulation phase: Suppose participants Pi1 , . . . , Pit want to determine s shared secret S.
Since f(x) has degree t − 1, f(x) has the form f(x) = f0 + a1x + · · · + at−1x

t−1, and coefficients
can be determined from t equations f(xij) = yij , where all arithmetics is done modulo p. It can
be shown that equations obtained this way are linearly independent and the system has only one
solution. In such a case we get S = a0.
More technically, using so called Lagrange formula, any group J of t or more parties can reconstruct
the secret S using the following equalities:

S = a0 = f(0) =
∑
i∈J

fi
∏

j∈J, j 6=i

j

j − i
.

Access structures

A more general structure of participants that are allowed to reconstruct a secret may be required.
An authorized set of parties A ⊆ P is a set of parties who should be able, when cooperating, to
construct the secret. An unauthorized set of parties U ⊆ P is a set of parties who alone should not
be able to learn anything about the secret. Let P be a set of parties. The access structure Γ ⊆ 2P

is a set such that A ∈ Γ for all authorized sets A and U ⊆ 2P − Γ for all unauthorized sets U .

Orthogonal arrays

An orthogonal array OA(n, k, λ) is a λn2 × k array of n symbols, such that in any two columns of
the array every one of the possible n2 pairs of symbols occurs in exactly λ rows. The following holds
for orthogonal arrays:

• If p is a prime, then OA(p, p, 1) exists.

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 82

• If p is a prime and d ≥ 2 is an integer then there exists an orthogonal array OA(p, p
d−1
p−1 , p

d−2).

Example of OA(3, 3, 1) :



0 0 0
1 1 1
2 2 2
0 1 2
1 2 0
2 0 1
0 2 1
1 0 2
2 1 0


There is the following relation between orthogonal arrays and authentication matrices. If there is an
orthogonal array OA(n, k, λ), then there is an authentication code with |M | = k, |T | = n, |K| = λn2

and PI = PS = 1
n where PI (PS) is the probability of impersonation (substitution). Rows of an

orthogonal array are used as authentication rules with each row chosen with equal probability 1
λn2 ,

columns correspond to messages and symbols correspond to authentication tags.

9.2 Exercises

9.1. Alice and Bob share a bit string k. Alice identifies herself to Bob using the following protocol:

(a) Bob randomly chooses a bit string r and sends it to Alice.

(b) Alice computes r ⊕ k and sends it to Bob.

(c) Bob accepts if and only if k = r ⊕ c where c is the received bit string.

Is this protocol secure?

9.2. Consider the following identification protocol. Let KXY denote a secret key shared between
parties X and Y . Let NX denote a random integer generated by X and {m}K denote a message
m encrypted (using a given encryption system) with the key K. To authenticate herself to Bob
(denoted as B), Alice (denoted as A) performs, with the help of an authentication server (denoted
as S), the following steps:

(i) A→ B : “Alice”

(ii) B → A : NB

(iii) A→ B : {NB}KAS

(iv) B → S : “Bob”, {“Alice”, {NB}KAS
}KBS

(v) S → B : {NB}KBS

(vi) verify NB

(a) Show that a malicious user Mallot can impersonate Alice to Bob.

(b) Propose a modification of the above protocol to prevent an attack from (a).

9.3. Let G be a cyclic group of the prime order p and g be its generator. Alice chooses as her
private key x ∈ Zp, the corresponding public key will be X = gx (mod p). Consider the following
user identification scheme:

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 83

(1) Alice randomly chooses r ∈ Zp, and sends R = gr (mod p) and S = gx−r (mod p) to Bob.

(2) Bob responds by sending a randomly chosen bit b.

(3) If b = 0, Alice sends z = r to Bob, otherwise she sends z = x− r.

(a) Find and explain the acceptance condition.

(b) Show that the adversary Eve is able to impersonate Alice with probability 1
2 .

(c) Propose a change which makes the protocol more secure.

* 9.4. Consider the Schnorr identification scheme.

(a) Why is it important that the steps 1, 2 and 4 in the scheme are in this order? Would it affect
security of the protocol if Bob chooses and sends the r first?

(b) Let, when following the protocol, Bob realize that Alice is using the same γ that she used
previously when she was identifying herself to him. Let Bob save logfiles of that communication
with Alice. Can he abuse this?

9.5. Let Alice and Bob use the Fiat-Shamir identification scheme. Let, for some reason, Bob
needs to convince Charles that he communicated with Alice recently. In order to do that, he shows
Charles what he claims to be a transcript of a recent execution of the Fiat-Shamir scheme in which
he accepted Alice’s identity. Should Charles be convinced after seeing the transcript? Explain your
reasoning.

9.6. Consider the following protocol for mutual identification between Alice (denoted as A) and
Bob (denoted as B). Let KAB denote a secret key shared between parties A and B. Let NX denote a
random integer generated by X and {m}K denote a message m encrypted (using a given encryption
system) with the key K.

(i) A→ B : “Alice”, NA

(ii) B → A : {NA}KAB
, NB

(iii) A→ B : {NB}KAB

Show that the proposed protocol is not secure and propose a secure variant.

9.7. Alice and Bob share a secret random key k and let they intend to use it to authenticate
their two bit messages with single bit tags as follows. The protocol consists of picking one of the
functions from H, where H is a set of hash functions, according to the key k. Alice’s message is
then (m,hk(m)), where hk is the hash function chosen according to the key k. Bob, after receiving
(possibly modified) message (m′, t′) computes hk(m

′) and verifies if t′ = hk(m
′).

(a) Consider H given by the following table, where rows are labeled by hash functions and columns
by their arguments. Is the above protocol secure?

h
m

00 01 10 11

h1 1 1 0 0

h2 0 0 1 1

h3 1 0 0 1

h4 0 1 1 0

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 84

(b) Can you find a set of hash functions that provides secure authentication?

9.8. Eleven scientists are working on a secret project. They wish to lock up the documents in a
cabinet so that the cabinet can be opened if and only if six or more of the scientists are present.

(a) What is the smallest number of locks needed?

(b) What is the smallest number of keys to the locks each scientist must carry?

(c) Generalize the result for n scientists of which m have to be present to be able to open the
cabinet.

9.9. Show how you could extend Shamir’s (n, t)-threshold scheme to a (n + 1, t)-scheme that
includes an additional user without changing the existing shares.

* 9.10. Consider the modification of the Shamir’s (n, t)-threshold scheme where calculations are
over all integers and not over a finite field. Show that this modification is not perfectly secure, i.e.
knowledge of less than t shares gives some information about the secret.

9.11. There are four people in a room and exactly one of them is a spy. The other three people
share a secret using the Shamir’s (3, 2)-threshold scheme over Z11. The foreign spy has randomly
chosen his share. The four pairs are P1 = (1, 7), P2 = (3, 0), P3 = (5, 10) and P4 = (7, 9). Find out
which pair was created by the foreign spy.

* 9.12. Consider the following (n, t)-secret sharing scheme. Let a1, a2, . . . an be an increasing
sequence of pairwise co-prime integers such that the product of the smallest t of them is greater
than the product of the t− 1 largest ones, i.e.

∏t
i=1 ai >

∏t−1
i=1 an−i+1. Choose a secret s from the

interval (
∏t−1
i=1 an−i+1,

∏t
i=1 ai) and compute the corresponding shares si = s (mod ai) for 1 ≤ i ≤ n.

Show that t participants can reconstruct the secret s.

9.13. Consider the Shamir’s (10, 3)-threshold scheme over Zp, where p is a large prime. Suppose
an adversary corrupts one of the share holders and this share holder intends to give a bad share in
the secret cumulation phase. The problem is that nobody knows which share holder is corrupted.

(a) Describe a method how to reconstruct s given all 10 shares and explain why it works.

(b) Determine the smallest number x of shares that are sufficient to reconstruct s. Explain.

(c) Is it true that no collection of fewer than x share holders can obtain some information about
s? Explain.

9.14. A military office consists of one General, two Colonels and five Majors. They have control
of a powerful missile, but they do not want to launch it unless the General decides to launch it, or
two Colonels decide to launch it, or five Majors decide to launch it, or one Colonel together with
three Majors decide to launch it. How they would do that with a secret sharing scheme.

9.15. Secret sharing schemes for general access structures can be constructed by using several
independent instances of a (n, t)-threshold scheme.

(a) Design a secret sharing scheme for five participants {A,B,C,D,E} and access structure
{{A,B}, {B,C,D}, {A,D,E}} with the use of as few instances of a threshold scheme as pos-
sible.

(b) Which subset of participants can we add to the access structure given in (a) to make it
implementable by a single threshold scheme?

9.16. Find an example of an orthogonal array OA(3, 4, 1) or at least prove that such exists.

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 85

9.3 Solutions

9.1. The protocol is not secure because an eavesdropper can intercept r and r ⊕ k and easily
compute k = r ⊕ c for later impersonation.

9.2.

(a) Mallot (denoted as M) may proceed as follows:

(i) He establishes two connections with B simultaneously. In the first connection, M is
acting as himself, in the second connection M is pretending to be A.

(ii) B sends him random integers NB1 designated for M and NB2 designated for A.

(iii) M throws away NB1 and in both sessions he sends {NB2}KMS
to B.

(iv) B sends “Bob”, {“Alice”, {NB2}KMS
}KBS

and “Bob”, {“Mallot”, {NB2}KMS
}KBS

to S.

(v) S successfully restores NB2 from {“Mallot”, {NB2}KMS
}KBS

and restores some garbage
G from {“Alice”, {NB2}KMS

}KBS
.

(vi) S sends {NB2}KBS
and {G}KBS

to B.

(vii) B successfully restores NB2 (B is thinking that A authenticated herself successfully to
B), and restores some garbage G (B is thinking that M did not authenticate himself to
B).

(viii) M can now impersonate A.

(b) The protocol can be corrected by enforcing the server S to include in step (v) information
about the user who wants to authenticate, i.e. that A wants to authenticate herself to B. The
server S therefore sends {“Alice”, NB}KBS

to B.

9.3.

(a) Bob accepts if and only if R · S ≡ X (mod p) and either b = 0 and R = gz (mod p) or b = 1
and S = gz (mod p).

(b) Eve can always send R = 0, S = X and z = 0. If b = 0, Bob will accept and Eve successfully
impersonates Alice, In case b = 1, Bob will reject. Probability of impersonation is 1

2 .

(c) The presented scheme can be modified as follows (resulting eventually in the Schnorr identifi-
cation scheme):

(i) Alice chooses a random r ∈ Zp and sends R = gr (mod p) to Bob.

(ii) Bob sends a random challenge b ∈ Zp to Alice.

(iii) Alice sends z = r + bx (mod p) to Bob.

Bob accepts if and only if R ·Xb ≡ gz (mod p).

9.4.

(a) It is necessary that Alice makes commitment first, before Bob picks and sends his challenge r.
Suppose to the contrary that Bob sends r first. In order to impersonate Alice, an adversary
Eve can use Alice’s public certificate, stored for example during his communication with Alice
in the past. Eve can choose an arbitrary y and sends to Bob

γ ≡ αyvr (mod p).

In such case, Bob will successfully verify the received γ without Eve proving the knowledge of
the secret key a.

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 86

(b) After receiving γ2 = γ1, Bob could realize that using of the same γ’s implies that Alice used
the same k’s as well, because 0 ≤ k < q and q is the order of α in Z∗p. In such a situation he
avoids using the same r1 as before, i.e. he sends r2 such that r2 6= r1, so that y2 6= y1. After
receiving y2, he obtains the following two equations:

y1 ≡ k1 + ar1 (mod q) and y2 ≡ k2 + ar2 (mod q)

Now, the equations can be combined to obtain:

y1 − y2 ≡ k1 − k2 + ar1 − ar2 (mod q).

Since k1 ≡ k2 but y1 6≡ y2:
y1 − y2 ≡ ar1 − ar2 (mod q)

y1 − y2 ≡ a(r1 − r2) (mod q)

All of the values y1, y2, r1, r2 are known to Bob and so he is able to compute a and he can
later easily impersonate Alice.

9.5. Charles should not get convinced because Bob can easily forge communication as follows: Bob
randomly chooses his challenge b that he will use in the transcript.
For the challenge b = 0, Bob can choose a random r, compute x = r2 (mod n) and write to the
transcript that he received x as the commitment from Alice. Then he pretends that he sent the
challenge b = 0 to Alice and that he received y = r. According to the protocol, everything seems
OK, because y2 ≡ xv0 (mod n) → r2 ≡ r2 (mod n).
For the challenge b = 1, Bob can choose a random r, compute x = r2v−1 (mod n) and write
to the transcript that he received x as the commitment. He can pretend to have sent challenge
b = 1 to Alice and received r. According to the protocol, everything seems OK, because y2 ≡ xv1

(mod n) → r2 ≡ r2v−1v (mod n) → r2 ≡ r2.
He could have written to the transcript as many repetitions of the protocol as he wants (randomly
choosing between b = 0 and b = 1) and this way there would be no difference between the forged
transcript and the genuine one.

9.6. The proposed protocol is vulnerable to the so-called reflection attack (the adversary Mallot is
denoted as M).

(i) M → B : “Alice”, NE

(ii) B →M : {NM}KAB
, NB

(iii) M → B : “Alice”, NB (Mallot initiates a new round)

(iv) B →M : {N ′B}KAB

(v) M → B : {NB}KAB

To prevent this attack the protocol can be augmented as follows:

(i) A→ B : “Alice”, NA

(ii) B → A : {“Alice”, NA}KAB
, NB

(iii) A→ B : {“Bob”, NB}KAB

With this modification there is still a problem: Bob encrypts a message chosen by Alice making the
protocol vulnerable to a chosen-plaintext attack. This problem can be eliminated as follows

(i) A→ B : A,NA

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 87

(ii) B → A : {“Alice”, NA, NB}KAB

(iii) A→ B : {NB, NA}KAB

9.7.

(a) The messages 00 and 10 have opposite values of authentication tags, therefore whenever an
adversary can see the message-tag pair (00, 1) she knows that the message-tag pair (10, 1) is
valid as well.

(b) The set H can be given as follows:

h
m

00 01 10 11

h1 1 0 0 0

h2 1 0 1 1

h3 1 1 0 1

h4 1 1 1 0

h5 0 0 0 0

h6 0 0 1 1

h7 0 1 0 1

h8 0 1 1 0

9.8.

(a) For each group of five scientists, there must be at least one lock for which they do not have
the key, but for which every other scientist does have the key. There are

(
11
5

)
= 462 groups of

five scientists, therefore there must be at least 462 locks.

(b) Similarly, each scientist must hold at least one key for every group of five scientists of which
s(he) is not a member, and there are

(
10
5

)
= 252 such groups.

(c) We generalize the previous results. For each group of m− 1 scientists, there must be at least
one lock for which they do not have the key, but for which every other scientist does have the
key. There are

(
n

m−1

)
such groups.

Each scientist must hold at least one key for every group of m− 1 scientists of which he or she
is not a member, and there are

(
n−1
m−1

)
such groups.

9.9. When t is kept fixed, shares can be dynamically added, or deleted, without affecting the other
shares. The dealer simply evaluates the secret polynomial f in a new point x ∈ Zp and shares
(x, f(x)) with the new user.

9.10. Let f be a linear polynomial with f(0) = s and f(1) = a1. We have

f(x) = (a1 − s)x+ s.

Assume you are given the share f(2). We can see that f(2) = 2a1 − s. Since a1 and s are integers,
given this single share f(2), one can learn parity of s. Because 2a1 is always even and if f(2) is
even, the secret s has to be even. Similarly, when f(2) is odd, then s has to be odd.

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 88

9.11. The given shares correspond to the following equations:

7 ≡ a+ b (mod 11)

0 ≡ 3a+ b (mod 11)

10 ≡ 5a+ b (mod 11)

9 ≡ 7a+ b (mod 11)

From the first two equations we have a = 2 and b = 5, but this solution is not valid for the third
and fourth equation. Therefore, the foreign spy has to be either the person with P1 or P2. From
the first and third equation we have a = 9 and b = 9. Since this solution is not valid for the fourth
equation, the foreign spy is the person with the share P1.

9.12. Given t distinct shares Ii1 , . . . , Iit , the secret s is recovered using the Chinese Remainder
Theorem, as the unique integer solution of the system of modular equations

x ≡ Ii1 (mod ai1)

. . .

x ≡ Iit (mod ait).

Moreover, s lies in Zai1 ···ait because s <
∏t
i=1 ai.

On the other hand, having only t − 1 distinct shares Ii1 , . . . , Iit−1 , we obtain only that s ≡ x0

(mod ai1 · · · ait−1) , where x0 is the unique solution modulo ai1 · ai2 · . . . · ait−1 of the resulted system

(S >
∏t−1
i=1 an−i+1 ≥ ai1 · ai2 · . . . · ait−1 > x0).

9.13.

(a) Given all 10 shares we can reconstruct s as follows. We divide 10 shares into 4 groups: three
groups containing 3 shares and one group containing 1 share. The bad share could be in at
most one group containing 3 shares, therefore the same secret will be computed from at least
two groups containing 3 shares and that will be equal to s.

(b) We show that 4 shareholders are not enough to recover the secret reliably. In case there is
a corrupted share among 4 shares, four different values will be recovered and we cannot tell
which one is correct.
Let us consider the case of 5 shareholders with a corrupted share. We can compute secrets for
all possible triples. There are

(
4
3

)
= 4 triples from which the correct secret s will be recovered

and
(

4
2

)
= 6 triples resulting in incorrect secrets - these will be pairwise different or do not

exist - therefore it is possible to reliably recover the secret s given 5 shares.

(c) This is not true. From (b) we can see that 4 shareholders compute in the worst case 4 different
secrets and the correct one has to be between them.

9.14. Suppose the knowledge of a secret s is needed to launch the missile. We can realize the
desired access structure with the (20, 10)-threshold scheme in which each Colonel is given five shares
and each Major is given two shares. The General is given the secret s directly. Then, two Colonels
or five Majors have together 10 shares and one Colonel with three Majors have 11 shares.

9.15.

(a) The simplest, but not optimal, solution is to have (2, 2)-threshold scheme for {A,B} and other
two (3, 3)-schemes for {B,C,D} and {A,D,E}. The solution that is using two instances can
be as follows: a (3, 3) scheme for {A,D,E} and a (7, 5)-scheme for {A,B,C,D} in which A
obtains two shares, B obtains three shares and both C and D obtain one share.

CHAPTER 9. IDENTIFICATION, AUTHENTICATION AND SECRET SHARING 89

(b) We can add {B,D,E} and use a (15, 9)-scheme in which A is given four shares, B is given
five shares, C is given one share, D is given three shares and E is given two shares.

9.16. We know that if p is a prime and d ≤ 2 is an integer then there exists an orthogonal array

OA

(
p,
pd − 1

p− 1
, pd−2

)
.

For p = 3 and d = 2 we have that OA(3, 4, 1) exists. To construct such array we can extend the
OA(3, 3, 1) with the fourth column as follows:

0 0 0 0
1 1 1 0
2 2 2 0
0 1 2 1
1 2 0 1
2 0 1 1
0 2 1 2
1 0 2 2
2 1 0 2



Chapter 10

Coin Tossing, Bit commitment,
Oblivious Transfer, Zero-knowledge
Proofs and Other Crypto-protocols

10.1 Introduction

Cryptographic protocols are specifications of how two parties, usually called Alice and Bob, should
prepare themselves for their communication and how they should behave during their communication
in order to achieve their goal and be protected against an adversary.
Cryptographic protocols can be very complex. However, they are often composed of several, very
simple, though special, protocols. These protocols are called cryptographic primitives – coin-flipping
protocols, commitment protocols or oblivious transfers.

10.1.1 Coin-flipping protocols

In coin-flipping (or coin-tossing) protocols, Alice and Bob can flip a coin over a distance in such a
way that neither of them can determine the outcome of the flip, but both can agree on the outcome
in spite of the fact that they do not trust each other. Both outcomes – head or tail – should have
the same probability and both parties should influence the outcome.

10.1.2 Bit commitment protocols

In bit commitment protocols, Alice can choose a bit and get committed to its value such that Bob
has no way of learning Alice’s commitment (without Alice’s help) and Alice has no way of changing
her commitment.
A commit function is a mapping commit : {0, 1} × X → Y where X, Y are finite sets. Each bit
commitment scheme consists of two phases:

Commitment phase: Alice sends a bit b she wants to commit to, in an encrypted form, to Bob.
Opening phase If required, Alice sends to Bob some information that enables him to recover b.

Each bit commitment scheme should satisfy the following properties:

Hiding (or privacy): Bob cannot determine the value of b, he cannot distinguish a commitment
to 0 and a commitment to 1. More formally, for no b ∈ {0, 1} and no x ∈ X, it is feasible for Bob
to determine the value b from the commitment B = commit(b, x).
Binding: Alice cannot later, after the commitment phase, change her mind. Alice can open her
commitment, by revealing b and x such that B = commit(b, x), but she cannot open her commitment
as both 0 and 1.
Correctness (or viability): If both Alice and Bob follow the protocol, Bob will always recover
the committed value b.

90

CHAPTER 10. COIN TOSSING, BIT COMMITMENT, OBLIVIOUS TRANSFER, . . . 91

Hiding can be
unconditional: A commitment to b reveals no information to a infinitely powerful Bob. Distributions
of commit(0, r) and commit(1, r) are indistinguishable.
computational: Bob will not be able to tell efficiently which of the two given values is in a commit-
ment, with probability larger than just guessing at random.

Binding can be
unconditional: Alice, even with infinite computing power, cannot change her mind after committing.
computational: Unless Alice has unrealistically large computing resources, her chances of being able
to change her mind are very small.

10.1.3 Oblivious transfers

The standard oblivious transfer is a protocol in which Alice transmits a message to Bob in such a
way that Bob receives the message with probability 1

2 and some garbage otherwise. Moreover, Bob
knows whether he has received the message or garbage. However, Alice will not know which one he
has received.
In the 1-out-of-2 oblivious transfer, Alice transmits two messages to Bob. Bob can choose whether
to receive the first or the second message, but he cannot receive both. Again, Alice has no idea
which of them Bob has received (1-out-of-k oblivious transfer is a generalization to k messages).

10.1.4 Interactive and zero-knowledge proofs

In an interactive proof system, there are two parties: a prover, often called Peggy, and a verifier,
often called Victor. The prover knows some secret or a fact about a specific object, and wishes to
convince the verifier, through a communication with him, that he has this knowledge.

The interactive proof system consists of several rounds. In each round the prover and the
verifier alternatively do the following: receive a message from the other party, perform a private
computation and send a message to the other party. The communication starts usually by a challenge
of the verifier and a response of the prover. At the end, the verifier either accepts or rejects the
prover’s attempts to convince him.

A zero-knowledge proof of a theorem T is an interactive two party protocol, in which the prover is
able to convince the verifier who follows the same protocol, by the overwhelming statistical evidence,
that T is true, if T is indeed true (completeness), but no prover is able to convince the verifier that
T is true, if this is not so (soundness). In addition, during interactions, the prover does not reveal
during their communication to the verifier any other information, except whether T is true or not
(zero-knowledge). Therefore, the verifier who got convinced about the correctness of the statement
gets from their communication not enough knowledge to convince a third person about that.

Zero-knowledge proof of the graph isomorphism

Example of a zero-knowledge proof for proving that two graphs are isomorphic is as follows:

Given are: Peggy and Victor know two graphs G1 and G2 with a set of nodes V = {1, . . . , }. The
following steps are then repeated t times (where t is a chosen security parameter).

(1) Peggy chooses a random permutation π of V = {1, . . . , n} and computes H to be the image
of G1 under the permutation π, and sends H to Victor.

(2) Victor randomly chooses i ∈ {1, 2} and sends it to Peggy. This way Victor asks for an
isomorphism between H and Gi.

(3) Peggy creates a permutation ρ of V = {1, . . . , n} such that ρ specifies the isomorphism between
H and Gi and sends ρ to Victor.
If i = 1, Peggy takes ρ = π; if i = 2, Peggy takes ρ = σ ◦ π, where σ is a fixed isomorphic
mapping of nodes of G2 to G1.

CHAPTER 10. COIN TOSSING, BIT COMMITMENT, OBLIVIOUS TRANSFER, . . . 92

(4) Victor checks whether H provides the isomorphism between Gi and H. Victor accepts Peggy’s
proof if H is the image of Gi in each of the t rounds.

If G1 and G2 are isomorphic then Victor accepts with probability 1 (completeness). If graphs G1

and G2 are not isomorphic, then Peggy can deceive Victor only if she is able to guess in each round
the value i that Victor has chosen and then she sends as H the graph Gi. However, the probability
that this happens, in each of t rounds, is 2−t (soundness).

10.2 Exercises

10.1. Suppose you can predict results of coin flips. At least how many coin flips would you need to
prove this to your friend without revealing your secret so that he would be at least n% sure about
it?

* 10.2. Consider the following coin-flipping protocol:

(1) Alice generates a Blum integer, n, a random x relatively prime to n, x0 = x2 mod n, and
x1 = x2

0 mod n. She sends n and x1 to Bob.

(2) Bob guesses the parity of x0.

(3) Alice sends x and x0 to Bob.

(4) Bob checks that n is a Blum integer (Alice would have to give Bob the factors of n and proofs
of their primality, or execute some zero-knowledge protocol to convince him that n is a Blum
integer), and he verifies that x0 = x2 mod n and x1 = x2

0 mod n. If all checks are alright,
Bob wins the flip if he guessed correctly.

Would this protocol be secure if we omit the requirement that n be a Blum integer?

10.3. Let p be a large prime. Let g < p be an integer such that g is a generator of the group Z∗p.
Discuss security of the following commitment scheme for numbers from {0, 1, . . . , p− 1}.

Commitment phase:
To commit to m ∈ {0, 1, . . . , p− 1}, Alice randomly chooses r ∈ {0, 1, . . . , p− 1} and sends
c = grm (mod p) to Bob.
Opening phase:
To open her commitment, Alice sends r and m to Bob.

* 10.4. Is it possible to build a bit commitment scheme which is both unconditionally hiding and
binding (in case both party sees everything the other party sends)?

10.5. Show how to construct a bit commitment scheme from a cryptographically secure pseudo-
random generator G. Discuss the binding and hiding properties of your resulting bit commitment
scheme.

10.6. Let n = pq be a modulus and let y ∈ QNR(n). Consider the following bit commitment
scheme with commit(b, r) = ybr2 (mod n) where r ∈ Z∗n and b ∈ {0, 1}. Is the proposed scheme

(1) binding (computationally or unconditionally)?

(2) hiding (computationally or unconditionally)?

10.7. Show how to utilize 1-out-of-2 oblivious transfer to implement a bit commitment protocol in
which both parties can cheat only with probability lower than 2−64.

CHAPTER 10. COIN TOSSING, BIT COMMITMENT, OBLIVIOUS TRANSFER, . . . 93

10.8.

(a) Show how to implement the standard oblivious transfer using a 1-out-of-2 oblivious transfer.

(b) Show how to implement a 1-out-of-k oblivious transfer using multiple instances of a 1-out-of-2
oblivious transfer.

* 10.9. Suppose Alice and Bob are separated and cannot communicate. Let them play the
following game. Both of them receive a single bit input x and y respectively. Alice does not know
Bob’s input and Bob does not know Alice’s input. Their goal is to produce single bit answers a and
b respectively. They win the game if a⊕ b = x · y.

(a) Show that if they use deterministic strategies (i.e. Alice chooses a based only on x and Bob
chooses b based only on y), they cannot win the game with probability 1.

(b) Random Access Code is the following protocol. Let Alice own a random binary string (a1, a2, . . . , an),
ai ∈ {0, 1} of length n. She is allowed to send to Bob a single bit message m. Bob randomly
generates a number j ∈ {1, . . . , n}. Then he applies a corresponding decoding function Dj to
the received bit m. The protocol is successful if Dj(m) = aj for every j ∈ {1, . . . , n}. Show
that if Alice and Bob own a hypothetical device that allows them to win the game introduced
above with probability 1, they can construct Random Access Code for n = 2.

10.10. Let Peggy and Victor play the following game. They have a very large paper full of small,
randomly placed, letters digits and other symbols but there is only one digit 7. The goal is to find
the number 7 sooner than the other player. After some time Peggy found 7 but Victor does not
believe her. How can Peggy prove to Victor that she knows the position of the number 7 without
revealing it. A non-cryptographic solution is acceptable.

* 10.11. Let Peggy and Victor share an n×n Sudoku puzzle. How can Peggy prove to Victor that
she has a solution to this puzzle while not giving away any information about the solution itself. A
non-cryptographic solution is acceptable.

10.12. Does the 3-SAT problem have a zero-knowledge proof?

10.13. Let n = pq, where p ≡ q ≡ 3 (mod 4) are large primes. Peggy needs to prove to Victor
that she knows factors of n without revealing any information about the factors. She has developed
the following protocol:

• Peggy and Victor perform the following actions 20 times.

(1) Victor randomly chooses an integer x < n, computes y = x2 mod n and sends y to
Peggy.

(2) Peggy computes all four square roots of y mod n, randomly chooses one of them, let us
denote it r, and sends r to Victor.

(3) Victor verifies whether r2 ≡ y (mod n).

• Victor accepts if and only if all verifications have been successful.

Find out whether the protocol is a zero-knowledge proof.

* 10.14.
For given two non-isomorphic graphs G1, G2 of n vertices, Peggy tries to convince Victor that

G1 � G2. Suppose she has an efficient way of distinguishing non-isomorphic graphs and she does
not want to reveal him any other information beyond the fact that graphs are not isomorphic.

CHAPTER 10. COIN TOSSING, BIT COMMITMENT, OBLIVIOUS TRANSFER, . . . 94

Is the following protocol zero-knowledge if both verifier and prover are honest - that is they fully
follow the protocol? Does an unhonest verifier have a chance to get some additional knowledge? If
he does, how to modify the protocol that this is not possible?

(a) Victor chooses randomly an integer i ∈ {1, 2} and a permutation π of {1, . . . , n}. Victor then
computes the image H of Gi under the permutation π and sends H to Peggy.

(b) Peggy determines the value j such that Gj is isomorphic to H, and sends j to Victor.

(c) Victor checks to see if i = j.

(d) The steps (a)–(c) are repeated until Victor is convinced.

* 10.15. Suppose that a group of n participants wants anonymously, to find out whether they
all agree with a given specific statement. If all participants agree, the result will be seen as ”yes”.
If any participant disagrees, the result will be seen as ”no”. Consider the following protocol that
solves the problem stated above.
Let G be a finite cyclic group of prime order q in which finding discrete logarithms is intractable. Let
g be the generator of G. Let us have n participants, and they all agree on (G, g). Each participant
Pi selects a random secret value xi ∈ Zq.

(1) Each participant Pi broadcasts gxi and gives a zero-knowledge proof to all other participants
for xi (i.e. provides a zero-knowledge proof that Pi really knows the discrete logarithm of gxi

modulo q).

(2) Each participant Pi computes
i−1∏
j=1

gxj

/
n∏

j=i+1

gxj .

The above value is gyi for some yi.

(3) Each participant Pi makes public gcixi where ci = xi if Pi wants to send 0 and ci is a random
value if Pi wants to send 1. Pi provides a zero-knowledge proof to all other participants for
the exponent ci.

(a) Prove that
∑

i xiyi = 0.

(b) Show how the result – ”yes” or ”no” – can be recovered.

(c) Show how the dining cryptographers problem can be solved with the above protocol.
(Three cryptographers gather around a table for dinner. The waiter informs them that the
meal has been paid by someone, who could be one of the cryptographers or the National
Security Agency (NSA). The cryptographers respect each other’s right to make an anonymous
payment, but want to find out whether the NSA paid dinner.)

10.3 Solutions

10.1. The probability of correctly predicting k coin flips is given as 2−k. The probability of making a
mistake when predicting is hence p = 1−2−k. If someone wants to be n% sure about your predicting
ability, you have to perform at least k flips so that n

100 = 1− 2−k holds. Expressing this equation in
terms of k and performing ceiling (so that number of flips is integer) we get k = d−log2(1− n

100)e.

CHAPTER 10. COIN TOSSING, BIT COMMITMENT, OBLIVIOUS TRANSFER, . . . 95

10.2. First recall that a Blum integer is of form n = pq, where p and q are Blum primes (i.e.
p ≡ q ≡ 3 mod 4). Blum integers have a special property – if a is a quadratic residue modulo n
(where n is a Blum integer), it has exactly four square roots, out of which exactly one is a quadratic
residue modulo n and three are quadratic non-residues.

In this light it is easy to see that in the protocol the requirement of n being a Blum integer is
crucial. Otherwise, x1 might have two square roots which are also quadratic residues, resulting in
two different numbers x and y, such that x4 ≡ y4 ≡ x1 mod n. If y0 ≡ y2 mod n has different
parity than x0, Alice could cheat.

10.3. The commitment scheme is not secure because it is not binding. Indeed, once Alice has
committed to m, it is possible for her to change her choice by replacing the value m with some
m′ without being detected by Bob. Recall that g is a generator of the group Z∗p and so m′ ≡ gi

(mod p), for some i ∈ {0, 1, . . . , p− 1}, and also

c ≡ grm ≡ gj ≡ gr′gi ≡ gr′m′ (mod p)

for appropriate j, r′ ∈ {0, 1, . . . , p − 1}, j ≡ r′ + i (mod p − 1). When the opening of commitment
is required, Alice can simply send r′ and m′ instead of her previously chosen r and m, which shows
that the commitment scheme is not binding.

10.4. No, it is not possible. Suppose such a bit commitment scheme exists. Then, when Alice
sends a commitment to 0 as B = commit(0, x) for some x ∈ X, there must exist an x′, such that
B = commit(1, x′). If not, Bob could easily conclude that the committed value could not be 1,
violating the unconditional hiding property. But then, if Alice has unlimited computing power, she
can find x′ and change her mind from 0 to 1, violating the unconditional binding property.

10.5. Suppose that G produces for any n bit pseudorandom seed a pseudorandom 3n-bit long
output. We can design the following bit commitment scheme in which Alice commits herself to a
bit b:

(1) Bob sends to Alice a random binary vector v of length 3n.

(2) Alice chooses a random binary vector u of length n and computes G(u).

(3) If b = 0, Alice sends G(u) to Bob. If b = 1, Alice sends G(u)⊕ v to Bob.

(4) In the opening phase Alice sends u to Bob.

(5) Bob can then compute G(u) and check whether he received G(u) or G(u) ⊕ v during the
commitment phase.

The protocol is statistically binding – Alice cannot cheat with probability higher than 1
2n because

in order to cheat she would have to find such u′ that G(u′) = G(u) ⊕ v. However G(u) and G(u′)
each produces 2n values (together 22n) but v is picked from 23n possible values which are not chosen

by Alice. Therefore there is only 22n

23n
= 2−n probability that Alice finds u′ satisfying the required

relation.
Protocol is hiding as Bob is unable to distinguish between outcomes of G and true randomness as
G is cryptographically secure.

10.6.

(a) The proposed scheme is unconditionally binding because y is a quadratic non-residue modulo
n, therefore there does not exist r′ such that yr′2 = r2 (mod n).

(b) The proposed scheme is computationally hiding because in order to retrieve b from commit(b, r)
one would need to compute quadratic residues which is believed to be computationally infea-
sible. With unlimited computational power, it would be easy to check whether commit(b, r) is

CHAPTER 10. COIN TOSSING, BIT COMMITMENT, OBLIVIOUS TRANSFER, . . . 96

a quadratic residue (then b = 0) or not (then b = 1). Therefore, the proposed scheme cannot
be unconditionally binding.

10.7.
Commitment phase:

(i) Alice chooses her commitment bit b and 64 random bits r1, . . . , r64.

(ii) Bob chooses 64 random bits c1, . . . , c64.

(iii) For i ∈ {1, . . . , 64} the following steps are done:

(1) Alice gives yi,0 = ri and yi,1 = ri ⊕ b as the inputs into the oblivious transfer.

(2) Bob gives ci as the input into the oblivious transfer and receives xi = yi,ci .

Opening phase:
Alice sends b and r1, . . . , r64 to Bob.
Bob checks if xi = ri ⊕ bci for every i ∈ {1, . . . , 64}.

Would Alice want to change her commitment to ¬b, she would have to find such r′i that r′i⊕¬bci =
ri ⊕ bci. This implies r′i = ri ⊕ ci. This means that r′i cannot be computed without knowledge of
ci. In order to cheat successfully, Alice would have to guess ci for every i, which can happen with
probability (1

2)64 = 2−64.
Bob’s only way to cheat is to reveal b prematurely, but he cannot do that without knowing r1, . . . , r64.

10.8.

(a) Given is a 1-out-of-2 oblivious transfer. Let x0 and x1 be Alice’s input messages, c be Bob’s
input bit and xc be Bob’s output. The standard oblivious transfer can be implemented as
follows. Let m be Alice’s message and g a garbage message.

(1) Alice randomly chooses a bit b.

(2) If b = 0, Alice inputs x0 = m and x1 = g. If b = 1, Alice inputs x0 = g and x1 = m.

(3) Bob chooses a bit c and uses it as his input.

(4) Alice sends b to Bob.

(5) Bob obtains m if b = c.

If b = c, xc = xb = m, otherwise xc = x¬b = g. Bob does not know which c he should use to
get m, hence he obtains m with probability 1

2 . Alice has no idea whether Bob gets m or g.

(b) We can assume without loss of generality that k = 2n for some n ∈ N (if not, we can add
garbage messages xk+1, xk+2, . . . , x2n to the original messages x1, . . . , xk. Alice uses an instance
of 1-out-of-2 oblivious transfer on each pair of messages (x1, x2), (x3, x4), . . . , (x2n−1 , x2n), thus
receiving 2n−1 messages x1,1, x2,1, . . . , x2n−1,1. Then in every other step, she will use the 2l

current messages (x1,n−l, x2,n−l, . . . , (x2l−1,n−l, x2l,n−l) as inputs for another 2l−1 instances of

1-out-2 oblivious transfer, thus receiving 2l−1 new messages. She repeats this process until
l = 0 and she has only one message left. She sends this final message to Bob, who will receive
exactly one of the messages x1,n, x2,n, but Alice will not know which one. But that message
itself provides Bob with another choice of one message out of two, and so on, until he will
finally receives one of the original messages xj .

CHAPTER 10. COIN TOSSING, BIT COMMITMENT, OBLIVIOUS TRANSFER, . . . 97

10.9.

(a) Let ax and by be answers of Alice and Bob respectively, when the inputs are x and y. Then
we require

a0 ⊕ b0 = 0

a0 ⊕ b1 = 0

a1 ⊕ b0 = 0

a1 ⊕ b1 = 1

Summing them together we get 0 = 1 which is clearly a contradiction.

(b) Alice inputs a0 ⊕ a1 into the proposed device (usually called a nonlocal or PR-box), receives
A and sends m = A⊕ a0. Suppose Bob inputs j into the device and he obtains B. We show
that the correct answer is B ⊕m = B ⊕A⊕ a0.
If Bob wants to recover a0, his input into the device is 0. Since A⊕B = (a0⊕ a1) · 0, we have
that A⊕B = 0 and therefore B ⊕m = a0 as required.
If Bob wants to recover a1, he inputs 1 into the device. Then we have A⊕B = (a0⊕ a1) · 1 =
a0 ⊕ a1 and B ⊕m = a0 ⊕ a1 ⊕ a0 = a1 as required.
Actually, 1-out-of-2 oblivious transfer is realized with such device. Difference between random
access codes and oblivious transfers is that in the latter is required that Bob cannot learn
anything about other input bits whereas the former does not have this requirement.

10.10. Non-cryptographic solution goes as follows. Peggy covers the whole paper with even larger
piece of paper which is at least double in the width and the height of the original paper, with the
small hole in the middle. This hole is only as large as the digit 7. To prove she knows the position of
the 7, Peggy moves the cover paper so that the hole is revealing only the number 7 and nothing else
is visible from the underlying paper. After that Victor is convinced that Peggy knows the position
but he himself has no information about this position.

10.11.Non-cryptographic solution using paper and scissors goes as follows.

(1) Peggy has a sheet of paper on which the puzzle is printed. She then writes down, for every cell
with a filled-in value, this filled-in value on the back side of the cell, right behind the printed
filled-in value. (The result is that filled-in cells, and only them, have their values written on
both sides of the page. Without this step, Peggy can cheat and send the solution to different
puzzle.)

(2) Peggy writes down the solution to the puzzle on the printed puzzle keeping this side of the
page hidden from Victor.

(3) Victor checks that Peggy wrote the right values on the back of the puzzle.

(4) Victor chooses one out of the following options: rows/columns/subgrids.

(5) Suppose that Victor choice is “rows”. Peggy then cuts the puzzle and separates it into n rows.
If his choice is “columns”, Peggy separates the columns from each other, similarly for subgrids.
Peggy then cuts each row/column/subgrid (according to Victor’s choice) to separate it into n
cells. Peggy shuffles the cells of each row/column/subgrid (separately from the cells of other
rows/columns/subgrids) and then hands them to Victor.

(6) Victor checks that

(i) each row contains all n values,

CHAPTER 10. COIN TOSSING, BIT COMMITMENT, OBLIVIOUS TRANSFER, . . . 98

(ii) in each row the cells whose value is written on both sides agree with the filled-in values
of that row in the puzzle, and

(iii) these cells have the same value written on both their sides.

Cryptographic solution:

(1) Peggy chooses a random permutation σ : {1, . . . , n} 7→ {1, . . . , n}.

(2) For each cell (i, j) with the value v, Peggy sends to Victor a commitment for the value σ(v).

(3) Victor chooses at random one of the following 3n+1 possibilities: a row, column or subgrid (3n
possibilities), or “filled-in cells”, and asks the prover to open the corresponding commitments.
After the prover responds, in case the verifier chose a row, column or subgrid, the verifier
checks that all values are indeed different. In case the verifier chose the filled-in cells option,
it checks that cells that originally had the same value still have the same value (although the
original value may be different than the committed one), and that cells with different values
are still different, i.e. that σ is indeed a permutation over the values in the filled-in cells.

10.12. Under the assumption that there exists a statistically binding and computationally hiding
bit commitment scheme, there exists a zero-knowledge proof for any NP language (Goldreich, Micali,
Wigderson, 1991). As 3-SAT∈ NP, there exists a zero-knowledge proof for 3-SAT.

10.13. No, the proposed protocol is not zero-knowledge.
Indeed, if the congruence r2 ≡ y (mod n) in the step (iii) holds, but r is not congruent to ±x, then
Victor knows that x and r are two different square roots of y. With this knowledge, he can factor
n to reveal p and q.
If r 6≡ ±x (mod n), Victor can get factors of n because the following holds:

r2 ≡ x2 (mod n)⇒ r2 − x2 ≡ 0 (mod n)⇒ (r − x)(r + x) ≡ 0 (mod n)

By computing gcd(r − x, n) a factor of n is obtained.
There are four square roots of y and two of them are different from x and −x. This means the
probability of factoring is 1

2 in each iteration, so Victor can reveal p and q with probability 1−(1
2)20 =

99.9999% after 20 rounds.

10.14. This is not a zero knowledge protocol. Suppose Victor has a graph H and wants to know
that they if H ∼= G1 or H ∼= G2. Using the proposed protocol, Victor simply sends H to Peggy
and from the answer Victor will learn that H ∼= Gj , or that H is isomorphic to neither G1 or G2 (if
Peggy happens to abort). The problem with this is to ensure that the verifier does indeed know in
advance what the prover will say. To do it in a correct way Peggy have to ask Victor to prove that
H is indeed isomorphic to either G1 or G2.

10.15. The presented scheme is so-called anonymous veto network (Hao, Piotr Zieliński, 2006).

(a) We have yi =
∑

j<i xj −
∑

j>i xj .∑
i

xiyi =
∑
i

∑
j<i

xixj −
∑
i

∑
j>i

xixj =
∑∑
j<i

xixj −
∑∑
i<j

xixj

=
∑∑
j<i

xixj −
∑∑
j<i

xjxi = 0

(b) Each participant computes
∏
i g
ciyi . If all participants sent ”yes”, each of them computes∏

i g
ciyi =

∏
i g
xiyi = 1 because

∑
i xiyi = 0,

∏
i g
xiyi = g

∑
i xiyi = 1. If one or more sent ”no”,∏

i g
ciyi 6= 1.

(c) Cryptographers who did not pay for the dinner send the “yes” message, the cryptographer
who paid the dinner, if there is one, sends the “no” message.

Appendix A

A.1 Introduction

In this appendix some needed notations, concepts and results from the discrete mathematics, algebra
and number theory, as well as from the probability are briefly introduced.

A.2 Notation

1. Logarithms.

• logb a - logarithm of a at the base b.

• log n - logarithm at the base 10 – decimal logarithm.

• lg n - logarithm at the base 2 – binary logarithm

• lnn - logarithm at the base e – natural logarithm

A.3 Central concepts and principles of modern cryptography

1. Efficiency and feasibility.

• Efficient (feasible) computation is usually modeled by computations that are polynomial-
time in an input (security) parameter.

• Efficient (computational) indistinguishability. We say that probability ensembles X =
{Xα}α∈S and Y = {Yα}α∈S are computationally indistinguishable if for every family of
polynomial-size circuits {Dn}, every polynomial p, all sufficiently large n and every α ∈
{0, 1}n ∩ S,

|Pr[Dn(Xα) = 1]− Pr[Dn(Yα) = 1]| < 1

p(n)

where the probabilities are taken over the relevant distribution (ie., either Xn or Yn).

2. Principles.

• Kerkhoffs principle: The security of a cryptosystem must not depend on keeping secret the
encryption algorthm. The security should depend only on keeping secret the key.

• Murphys laws: If there is a single security hole in a cryptosystem, the exposure of a cryp-
tosystem will make sure that someone will eventually find it. Even if this person is honest the
discovery may ultimately leak to malicious parties.

99

APPENDIX A. 100

A.4 Groups

A Group is a set of elements and an operation, denote it ◦, with the following properties:

• G is closed under the operation ◦; that is if a, b ∈ G, so is a ◦ b.

• The operation ◦ is associative; that is a ◦ (b ◦ c) = (a ◦ b) ◦ c, for any a, b, c ∈ G.

• G has an identity element e such that e ◦ a = a ◦ e = a for any a ∈ G.

• Every element a ∈ G has an inverse element a−1 ∈ G, so that a ◦ a−1 = a−1 ◦ a = e.

A group G is said to be an Abelian group if the operation ◦ is commutative (that is a ◦ b = b ◦ a for
any a, b ∈ G).

A.4.1 Groups Zn and Z∗n
Two integers a, b are congruent modulo n if a mod n = b mod n. Notation: a ≡ b(modn)

Let +n,×n denote addition and multiplication modulo n, that is a +n b = (a + b) mod n and
a×n b = (ab) mod n.
Zn = {0, 1, . . . , n−1} is a group under the operation +n. Z∗n is a multiplicative group (mod n),

ie. the set of all elements invertible under the operation ×n, together with operation ×n. Note that
if n is a prime Z∗n contains all elements 1 ≤ i ≤ n, and set {0, 1, . . . , n − 1} is a field under the
operations +n,×n.

For any n in the group Z∗n computation of any inverse and also exponentiation can be done in
polynomial time.

A.4.2 Order of the group

• If a is an element of a finite group G, then its order is the smallest integer k such that ak = e.

• Order of each element of a group G is a divisor of the number of elements of G. This implies
that every element a ∈ Z∗p, where p is a prime, has order dividing p− 1 and it holds ap−1 ≡ 1
(mod p).

A.4.3 Properties of the group Z∗n
The group (G, ◦) is called cyclic if it contains an element g, called the generator, such that the order
of g = |G|.

Theorem. If the multiplicative group (Z∗n,×n) is cyclic, then it is isomorphic to the additive
group (ZΦ(n),+Φ(n)). (However, no effective way is known, given n, to create such an isomorphism!)

Theorem. The mutliplicative group (Z∗n,×n) is cyclic iff n is either 1, 2, 4, pk or 2pk for some
k ∈ N+ and an odd prime p > 2.

Theorem. Let p be a prime. Given the prime factorization of p − 1 a generator for group
(Z∗p,×p) can be found in polynomial time by a randomized algorithm.

APPENDIX A. 101

A.5 Rings and fields

A ring R is a set with two operations + (addition) and ◦ (multiplication), satisfying the following
properties:

• R is closed under + and ◦.

• R is an Abelian group under + (with the unity element for addition called zero).

• The associative law for multiplication holds.

• R has an identity element 1 for multiplication

• The distributive law holds (a ◦ (b+ c) = a ◦ b+ a ◦ c for all a, b, c ∈ R.

A ring is said to be a commutative ring if multiplication is commutative

A field F is a set with two operations + (addition) and ◦ (multiplication), with the following
properties:

• F is a commutative ring.

• Non-zero elements of F form an Abelian group with respect to multiplication.

A non-zero element g is a primitive element of a field F if all non-zero elements of F are
powers of g.

A.5.1 Finite fields

Finite field are very well understood.

Theorem. If p is a prime, then the the set of all integers smaller than p, GF (p), constitute a
field. Every finite field F contains a subfield that is GF (p), up to relabeling, for some prime p and
p · α = 0 for every α ∈ F .

If a field F contains a prime field GF (p), then p is called the em characteristic of F .

Theorem.
(1) Every finite field F has pm elements for some prime p and some m.
(2) For any prime p and any integer m there is a unique (up to isomorphism) field of pm elements

GF (pm).
(3) If f(x) is an irreducible polynomial of degree m in Fp[x], then the set of polynomials in Fp[x]

with additions and multiplications modulo f(x) is a field with pm elements.

A.6 Arithmetics

A.6.1 Ceiling and floor functions

Floor bxc – the largest integer ≤ x
Ceiling dxe – the smallest integer ≥ x

Example b3.14c = 3 = b3.75c, b−3.14c = −4 = b−3.75c;
d3.14e = 4 = d3.75e, d−3.14e = −3 = d−3.75e

APPENDIX A. 102

A.6.2 Modulo operations

The remainder of n when divided by m is defined by

n mod m =

{
n−m

⌊
n
m

⌋
m 6= 0

0 m = 0

Example: 7 mod 5 = 2 122 mod 11 = 1
Identities: • (a+ b) mod n = ((a mod n) + (b mod n)) mod n

• (a · b) mod n = ((a mod n) · (b mod n)) mod n
• ab mod n = ((a mod n)b) mod n.

A.6.3 Exponentiation

Exponentiation (modular) plays the key role in many cryptosystems. If

n =

k−1∑
i=0

bi2
i, bi ∈ {0, 1}

then

e = an = a
∑k−1

i=0 bi2
i

=
k−1∏
i=0

abi2
i

=
k−1∏
i=0

(a2i)bi

The above decomposition of n induces the following Algorithm for exponentiation

begin e← 1; p← a;
for i← 0 to k − 1

do if bi = 1 then e← e · p;
p← p · p

od
end

Modular exponentiation: an mod m = ((a mod m)n) mod m

Modular multiplication: ab mod n = ((a mod n)(b mod n) mod n)

Examples: 31000 mod 19 = 16; 310000 mod 13 = 3; 3340 mod 11 = 1 - 3100 mod 79 = 51

A.6.4 Euclid algorithm for GCD - I.

This is algorithm to compute greatest common divisor (gcd) of two integers, in short

to compute gcd(m,n), 0 ≤ m < n

Euclid algorithm

gcd(0, n) = n (A.1)

gcd(m,n) = gcd(n mod m,m) for m > 0 (A.2)

Example gcd(296, 555) = gcd(259, 296) = gcd(37, 259) = gcd(0, 37) = 37
Theorem T (n) = O(log n) for the number of steps of Euclid’s algorithm to compute gcd(m,n)

for 0 ≤ m ≤ n.

APPENDIX A. 103

A.6.5 Extended Euclid algorithm

Theorem For all 0 < m < n there exist integers x and y (that can be computed in polynomial
time) such that

gcd(m,n) = xm+ yn.

this means that if gcd(m,n)=1, then x = m−1 mod n.
An extention of Euclid’s algorithm, which computes x and y together with gcd(m,n) is sometimes

referred to as extended Euclid algorithm.

A.7 Basics of the number theory

The number theory concepts, methods and results introduced in the following play an important
role in modern considerations concerning cryptography, cryptographic protocols and randomness.

The key concepts are that of primality and randomness.

A.7.1 Primes

Primes play key role in the modern cryptography.
A positive integer p > 1 is called prime if it has just two divisors: 1 and p.

Fundamental theorem of arithmetic: Each integer n has a unique decomposition

n =
k∏
i=1

peii

where pi < pi+1 are primes and ei are integers.

Basic question no. 1 How many primes Π(n) are there among the first n integers?

Prime number theorem.

Π(n) =
n

lnn
+

n

(lnn)2
+

2!n

(lnn)3
+

3!n

(lnn)4
+ Θ

(
n

(lnn)6

)
Gauss estimation: Π(n)=̇ n

lnn .
Basic question no. 2 How (difficult is it) to determine whether a given integer is a prime?

• Only in 2002 it has been shown that there is a (O(m12)) deterministic algorithm to recognize
whether an m bit integer is a prime.

• There are (very) simple randomized algorithm to decide fast and with large probability cor-
rectly whether a given integer is a prime.

A.7.2 Chinese remainder theorem

Theorem Let m1, . . . ,mt be integers, gcd(mi,mj) = 1 if i 6= j and a1, . . . , at be integers, 0 < ai <
mi, 1 ≤ i ≤ t. Then the system of congruences

x ≡ ai (mod mi), 1 ≤ i ≤ t

has the solution

x =

t∑
i=1

aiMiNi (∗)

APPENDIX A. 104

where

M =

t∏
i=1

mi,Mi =
M

mi
, Ni = M−1

i mod mi

and the solution (∗) is unique up to the congruence modulo M .

Comment: Each integer 0 < x < M is uniquelly represented by t-tuple: x mod m1, . . . , x mod
mt. For example, if m1 = 2,m2 = 3,m3 = 5, then (1, 0, 2) represents 27. Advantage: With such
a modular representation addition, substraction and multiplication can be done componentwise in
parallel time.

A.7.3 Euler totient function

Φ(n) = |Z∗n| = |{m|1 ≤ m ≤ n, gcd(m,n) = 1}|

has the following properties:
• Φ(1) = 1
• Φ(p) = p− 1, if p is a prime;
• Φ(pk) = pk−1(p− 1), if p is prime, k > 0;
• Φ(nm) = Φ(n)Φ(m), if gcd(m,n) = 1;

Theorem Computation of Φ(n) and factorization of n are computationally polynomially related
problems.

A.7.4 Euler and Fermat theorems

Theorem (Euler’s Totient Theorem)

nΦ(m) ≡ 1 (modm)

if n < m, gcd(m,n) = 1
Corollary n−1 ≡ nΦ(m)−1 (mod m) if n < m, gcd(m,n) = 1

Theorem (Fermat’s Little Theorem)

ap ≡ a (modp)

if p is prime.

A.7.5 Discrete logarithms and square roots

Three problems are related with the equation y = xa (modn).
Exponentiation problem: Given x, a, n, compute y. The problem is easy: it can be computed

in polynomial time, even its modular version

Discrete logarithm problem: Given x, y, n, compute a. the problem is computationally very
hard. Indeed, it is believed that the discrete logarithm problem is NP-hard even in the average
case. (A formal proof of it would imply that exponentiation is a one-way function.)

Root finding problem: Given y, a, n, compute x. It is also very hard, even in in the following
spcial case:

Square root finding problem Given y, a = 2, n, compute x: This problem is in general as
hard as factorization.

APPENDIX A. 105

However, the square root finding can be done by a randomized polynomial time algorithm if n
is a prime or the prime decomposition of n is know.

Examples
{x |
√
x (mod 15) = 1} = {1, 4, 11, 14}

{x |
√
x (mod 15) = 3} = ∅

{x |
√
x (mod 15) = 4} = {2, 7, 8, 13}

One of basic questions: How many square roots exist?

Theorem
(1) If p > 2 is a prime, k ≥ 1, then any quadratic residue modulo pk has exactly two distinct

square roots x,−x = pk − x

(2) If p = 2, k ≥ 1, then any quadratic residue modulo 2k has
• 1 square root if k = 1;
• 2 square root if k = 2;
• 4 square root if k > 2.

Theorem If an odd number n has exactly t distinct factors, then any quadratic residue a modulo
n has exactly 2t distinct square roots.

A.7.6 Quadratic residues and non-residues

An integer x ∈ Z∗m is called a quadratic residue modulo m if

x ≡ y2(mod m)

for some y ∈ Z∗m, otherwise x is a quadratic non-residue.

Notation:

• QRm denotes the set of all quadratic residues modulo m. QRm is therefore subgroup of squares
in Zm.

• QNRm denotes the set of all quadratic non-residues modulo m.

One of basic questions concerning quadratic residues: How to decide whether an x is a
quadratic residue?

Theorem. If p > 2 is a prime and g is a generator of Z∗p, then gk is a quadratic residue iff k is
even.

Theorem If p is a prime, then a ∈ Z∗p is a quadratic residue iff

a
p−1
2 ≡ 1 (mod p).

For any prime p the set QRp has p−1
2 elements.

Theorem – Euler criterion Let p > 2 be a prime. Then x is a quadratic residue modulo p if
and only if

x(p−1)/2 ≡ 1 (mod p).

APPENDIX A. 106

A.7.7 Blum integers

If p, q are primes such that p ≡ 3 (mod 4), q ≡ 3 (mod 4) then the integer n = pq is called Blum
integer. Blum integers n have the following important properties.

• If x ∈ QRn, then x has exactly four square roots and exactly one of them is in QRn – this
square root is called primitive square root of x modulo n.

• Function f : QRn → QRn defined by f(x) = x2 is a permutation on QRn.

• The inverse function is f−1(x) = x((p−1)(q−1)+4)/8 mod n

Bibliography

[1] Jozef Gruska. Lecture notes for IV054: Coding, Cryptography and Cryptographic Protocols.

[2] Raymond Hill. A First Course in Coding Theory. Oxford Applied Linguistics. Clarendon Press,
1986.

[3] Vera Pless. Introduction to the Theory of Error-correcting Codes. A Wiley-Interscience publi-
cation. John Wiley, 1998.

[4] Jozef Gruska. Foundations of Computing. International Thomson Computer Press, Boston,
MA, USA, 1997.

[5] Jozef Gruska. Quantum Computing. Advanced topics in computer science series. McGraw-Hill,
1999.

[6] Arto Salomaa. Public-Key Cryptography. Texts in Theoretical Computer Science. An EATCS
Series. Springer Berlin Heidelberg, 1996.

[7] Douglas R. Stinson. Cryptography Theory and Practice. CRC Press, Inc., 1995.

[8] Wade Trappe and Lawrence C. Washington. Introduction to Cryptography with Coding Theory.
Pearson Educational international, Prentice Hall, 2006.

[9] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., 2 edition, 1996.

[10] Serge Vaudenay. A Classical Introduction to Cryptography: Applications for Communications
Security. Springer US, 2005.

[11] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, Inc., 1997.

[12] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, New
York, NY, USA, 2000.

[13] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs That Yield Nothing but Their
Validity or All Languages in Np Have Zero-knowledge Proof Systems. ACM, 38(3):690–728,
July 1991.

[14] Feng Hao and Piotr Zieliński. A 2-round Anonymous Veto Protocol. In the 14th International
Workshop on Security Protocols, 2006.

[15] Zuzana Kuklová. Coding Theory, Cryptography and Cryptographic Protocols - Exercises with
Solutions (Bachelor Thesis), 2007.

[16] Lukáš Boháč. Quantum Authentication and Signature Protocols (Master Thesis), 2004.

107

