Exercise 1

(a)
¢ = {00000,11100, 01110, 00111, 10011, 11001}

No, it's not a cyclic code, because it's not a linear code. 11100 4 01110 = 10110 ¢
(b) Cy=CU(1...1+ '), where C' is binary cyclic code and 1...1 is all 1 codeword.

Yes, because it is linear code:

for any ¢, cp € C and ¢, b € (1... 14 C), whereej =¢;+1...1and ¢ =y +1...1
ety =(cr+1... 1)+ (ca+1l...1)=cr+c+2-1...1=c +cyand (e; +cy) € C
e htep = (e +1...1)+er = (e + )+ 1...1 and (¢ + ¢2) € € and therefore

(ep+ept1...1)e(C+1...1)

e +eeC

and becanse operation 41...1 just flips all bits independently on their position, following

holds: o(e) +1...1 =0o(c+1...1)
and therefore if ¢,o(¢) € C then (e +1...1),0(c+1...1) € (C +1...1)

Exercise 2
Let o denote a circular right shift operation. Find all binary words w

(a) of length n such that o(w) = w;
for w = wy ... wy, wywy .. Wy = wWHW .. Wy
therefore w; = w;_1 moed n and that holds only for 0™ and 1"

(b) of length 6 such that e?(w) = w;
for w = wy ... wn, Wy 1WHW] ... Wy—2 = WIWAWS . .. Wy
therefore w; = w;_9 med n and that holds only for 000000, 111111, 010101, 101010

(¢) of length 6 such that ¢*(w) = w. for w = wy...wy, Wi = Wi—3 mod n Must hold and that
holds only for 000000, 001001,010010, 011011, 100100, 101101, 110110,111111



Exercise 3

1. (a)

Exercise 4

This is a straightforward use of the definition from the slides.
Codes from R; have length and since deg(1 + 22 + 2*) = 3, the
dimension of the code is n —3 = 4. We need to write four cyclic
shifts of 1011000 as rows of the matrix:

1011000
G:ﬂlﬂllﬂﬂ
0010110
0001011

According to slides ™ — 1 = (1+ 2%+ %) -h(z) and the dual code
of C is generated by reciprocal h(zx) of h(z). We thus need to
find h(z) first. This is done by polynomial division. We get that
h(z) =14 2% + 2% + ' and thus h(z) = 1 + 2 + 2% + 2. Since
dual of €' has dimension 3. three cyclic shifts of 1110100 are rows

of H. Thus:
11

10100
H={(0 111010
0011101

In order to encode with the use of polynomials we need to make
an identity between the message m = 1010 and a polynomial
message m(x) = 1+ 2%, Now
e(x) =m(z)g(z) mod z’ —1
=1 +z2H)(1+ 22+ 2%
=1+’ +2°+a* +a2' +2°
=1+2*+2'+ a5



3.4 (a) How many binary cyeliec codes of length 9 are there?

Solution: We are in By, First of all we have to factorize 2¥ — 1 = 2" 4 1 into a irreducible polynomials
over Fa,

2 Fl=(r+ (2 —2+1)2" —2"+1)

All binary evelic codes are in form:

(@ + 1) (2 — x4+ 1)%2 (2 — 23 + 1) v € {1,2,38},a: € {0,1)

We have 2% possibilities, therefore there are 8 binary eyelic codes of length 9.

() How many ternary evelic codes of length 9 are there?

Solution: We are in By, First of all we have to factorize 2¥ — 1 = 2" 4 2 into a irreducible polynomials
over Fy,
.I‘” + 2 = (.I‘+ 2}‘.!
All binary eyelic codes are in form:
(x+2)", ay € {0,9}

We have 10 possibilities, therefore there are 10 ternary evelic codes of length 9. O
(¢} How many ternary eyvcelic codes of length 9 have dimension 77
Solution: We have to factorize #” — 1 over Fy. As above we have 2 4+ 2 = (@ +2)". We have |9, 7]-code,

therefore we have to find factors of degree:
deg(f(x))=n—-hk=9-T7=2

Therefore we have only 1 code of degree 2 with generator polynomial (o + 2)%. O

Exercise 5

Let €'y and 'y be cyclic codes with generator polynomials gy (x) and
g2(x). Then 'y C Cy iff go(2) divides g (x)

Since we know from slides that C'" is generated by h(z), we obtain
the proof by setting €y = ' and Cy = C* in the above theorem. The
nice proof is as follows. Essentially we want to prove the following:

(g1) C (g2) < g2lgn

“=" If golg1, there exists h, such that g = hge. Since by definition
Cy = (g2) = {f(x)g2(x) mod z™ — 1|f(x) € R,}, it in particular
contains all elements in (hgo) = {f(x)h(z)g2(x) mod 2™ — 1|f(x) €
R,} = Cp. “=" Since (g1) C (g2), for each f(x) € R, there exists
h(xz), such that fg, = hgo. In particular this holds for f(z) = 1,
meaning there exists i(z) such that g, = hgs, in other words gs|g;.



Proof. €' is self-orthogonal if and only if the reciprocal polynomial A(x) divides g(x).

we know that €' C " <= g(x) is divisible by ¢'(x)
and we know that generator polynomial of C+ is fz(;t:)

therefore we know that C'C O+ <= g(x) is divisible by g* ()

Exercise 6

Let g(x) = ged(gi(z). g2(x)), where ged is the polynomial greatest
(highest degree) common divisor of the two polynomials and let "’
be the code generated by g(z).

First we show that a code generated by g(x) contains C) U Cs: if a
codeword is in this union then clearly it is a multiple of ¢,(z) or g:(x).
Now since g(x) is a divisor of both ¢,(x) and g»(x) the codeword is also
a multiple of g(x) and thus is in a code generated by g(x).

Now we know by definition of ged (using the extended euclidean algo-
rithm) that

9(x) = a(x)1(x) + b(z)gs(z) mod (2" — 1),

for some polynomials a(x), b(x) and where n is the code block length.
Now a(z)g(x) € Cy and b(x)gz(x) € C5. From this we can see that
g(x) is just a sum of two codewords from €', and 5 respectively. Any
cvclic (and thus linear) code containing €'y U Cy (and thus a(z)g, ()
and b(z)go(x)) must also contain this sum of the two code words and
thus must contain g(z) and all its multiples, thus C' C C and with the
previous result we obtain C' = C" and g(x) is our desired polynomial.
(The polynomial ged is unique up to a multiplication by a constant but
this constant doesn’t change the code C".)

Exercise 7
(a) RM(1,3) =

{00000000, 00001111, 00110011, 00111100, 01010101, 01011010, 01100110, 01101001, 10010110,
10011001, 10100101, 10101010, 11000011, 11001100, 11110000, 11111111 }



RM(1,4) =

{0000000000000000, 0000000011111111, 0000111100001111, 0000111111110000, 0011001100110011,
0011001111001100, 0011110000111100, 0011110011000011, 0101010101010101, 0101010110101010,
0101101001011010, 0101101010100101, 0110011001100110, 0110011010011001, 0110100101101001,
0110100110010110, 1001011001101001, 1001011010010110, 1001100101100110, 1001100110011001,
1010010101011010, 1010010110100101, 1010101001010101, 1010101010101010, 1100001100111100,
1100001111000011, 1100110000110011, 1100110011001100, 1111000000001111, 1111000011110000,
1111111100000000, 1111111111111111 }

(b) From the construction, we can see that if we find a base g(‘lu‘mt-iu_g) the (u,u) part of the code,
then we can get (u, u + _1>) with the help of one vector that is (0 .?). where |0 =|1]. So
all we need to solve is the remaining vectors. The idea of the code is repetition, so the new
base words will be repetitions of all the old, this gives us the construct

1 G(l,m—=1) G(1,m—1
G(1,0) = [1] and G(1,n) = ( [1] i ) and G(1,m) = [ ( %; ) G T—I; )

(c) We can show that the parameter with an induction like proof on m.

Base case: R(1,1)[2,2,1] is clearly an [2™,m + 1,2™" 1] code.
Induction hypothesis: We assume that R(1,m — 1) is a [2", m, 2" 2] code.
Induction Step: The repetition always doubles the length so n = 2 x 2m~1 = 2™,
Also we see that repetition itself does not add a new base word, only the "reversed"
repetition needs to be handled, and that is done by one word (0, 1)sok =m +1
For d, we need to check two options:
1. By only repeating, the smallest distance(weight) will double, what gives

2w 2m—2 — 2m—1

2. if we do the "reversed" repetition, (and the base contains x 1-bits) we are adding
2= _ g to the weight, which in total results in

oml oy pp=2m!

And d is the minimum of the two, which is 271,

For the weights, if for the simple repetition case v = (u, u), and u is 0 or _1} than v will also
be 0 or T. Every other word will have 2 x 2™~2 = 2™~! weight(as seen in the induction
above). For the case v = (u, u+ _1}) there are 3 cases:

1. uw= 0, then we get (0, 1) where clearly half of the bits is 1, what gives weight

gm =2 = 2m—l

2. u= 1, the case is the same as in point 1 above, just with (1, 0).
3. For every other u, as showed in the induction step above(point 2}, the weight will be half
of the length, which is 2™,



