- (a) $1000 \in C_1$, but 1000 + 1000 = 0000 and $0000 \notin C_1$. Therefore C_1 is not linear code.
- (b) Let's consider $w_1 = x_1x_2x_3x_4x_5$, $w_2 = y_1y_2y_3y_4y_5 \in C_2$, $w = w_1 + w_2$. Symbol at position i in codeword w can be written as $x_i + y_i$ and number of ones in w can be written as $\sum_{i=1}^5 x_i + y_i$. There can happen two cases when adding x_i and y_i :
 - (a) x_i and y_i are different values. Then there is only one symbol of one among them, which is odd, and result of addition is one, which is also odd.
 - (b) x_i and y_i are same values. Then number of ones among them is even, and result is zero, which is also even.

Because sum of number of ones in w_1 and w_2 is even, the resulting number of ones in w is also even. Therefore $w \in C_2$.

Now, let's consider $g \in C_2$ and $k \in 0, 1$. During $k \cdot g$, two cases can happen:

- (a) k is 1. Then $k \cdot g = g$, which belongs in C_2 .
- (b) k is 0. Then $k \cdot g = 00000$, which belongs in C_2 .

This all means, that $\forall w_1, w_2 \in C_2 : w_1 + w_2 \in C_2$ and $\forall w \in C_2, \forall k \in 0, 1 : k \cdot w \in C_2$. Therefore C_2 is linear code.

(c) $021 \in C_3$, but $2 \cdot 021 = 012$ and $012 \notin C_3$. Therefore C_3 is not linear code.

Question 2.

By the definition of hamming codes the parity check matrix H has to be of size $r \times 2^r - 1$ where columns are all non-zero distinct words from \mathbb{F}_2^r .

(a) First we calculate parity matrix H_1 from generator matrix G_1 .

$$G_1 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} = [\mathbb{I}_k|A]$$

$$H_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} = \begin{bmatrix} -A^\top | \mathbb{I}_{n-k} \end{bmatrix}$$

From there H_1 has r=1 rows. For code generated by generator matrix G_1 to be equivalent with hamming code, matrix H_1 has to have 2^r-1 columns, but $2^1-1\neq 4$ and therefore code generated by G_1 is not equivalent with hamming code.

(b) First we calculate parity matrix H_2 from generator matrix G_2 .

$$G_2 = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} \sim$$

1

IV054 2019

Zoltan Fridrich (445620)

Homework 2

$$\sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} = [\mathbb{I}_k | A]$$

$$H_1 = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} = [-A^\top | \mathbb{I}_{n-k}]$$

 H_2 has r=3 rows and $2^3-1=7$ columns where each column contains non-zero distinct word. Therefore code generated by G_2 is equivalent with hamming code.

Question 3.

By definition, all Hamming codes have minimum distance 3. [n,k]-Hamming code is thus a $(n=\frac{q^k-1}{q-1},M=q^{n-k},3)$ code. We plug this into the Hamming bound equation and get:

$$\begin{split} q^{n-k}\left(\binom{n}{0}+\binom{n}{1}(q-1)\right) &\leq q^n\\ q^{n-k}(1+n(q-1)) &\leq q^n\\ q^{n-k}\left(1+\frac{q^k-1}{q-1}(q-1)\right) &\leq q^n\\ q^{n-k}\left(1+q^k-1\right) &\leq q^n\\ q^{n-k}q^k &\leq q^n\\ q^n &\leq q^n \end{split}$$

Equality holds, so all Hamming codes are perfect.

Question 4.

(a)
$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$H = [A^T | I_3]$$

$$G = [I_2 | A]$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

(b) Let C be a linear code and let weight of C, notation w(C), be the smallest of the weights of non-zero code words of C. Then h(C) = w(C).

$$C = \{00000, 10011, 01101, 11110\}$$

$$h(C) = w(C) = 3$$

coset leaders $(l(z))$	syndromes(z)
00000	000
10000	101
01000	010
00100	<u>100</u>
00010	011
00001	110
11000	111
10100	001
	00000 10000 01000 00100 00010 00001 11000

y = 10111

Step 1: Given y compute $S(y) = yH^T$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Step 2: Locate z = S(y) in the syndrome column

$$l(100) = 00100$$

Step 3: Decode y as y - l(z)

$$y - l(z) = 10111 - 00100 = \underline{10011}$$

Question 5.

Binary code C is self-dual iff $C = C^{\perp}$. $G = [I_k|A] \implies H = [A^T|I_{n-k}]$ (for binary code).

(a)

$$G_1 = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

 \sim (exchanging second and third row)

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

=

$$H_1 = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Definition from lecture 2, slide 32: A parity check matrix H for an [n, k]-code C is any generator matrix of C^{\perp} . We can see that $G_1 = H_1$ and therefore, code generated by G_1 is self-dual.

(b) Matrix G₂ generates a [5, 2]-code. Let's assume it is self-dual. Then, according to the theorem in lecture 2, slide 32, it is a [5, 3]-code. We have reached a contradiction, therefore the initial assumption was false and that means code generated by G₂ is not self-dual.

Question 6.

To prove $(C+D)^{\perp} = C^{\perp} \cap D^{\perp}$ it is necessary to prove $(C+D)^{\perp} \subseteq C^{\perp} \cap D^{\perp}$ and $C^{\perp} \cap D^{\perp} \subseteq (C+D)^{\perp}$

I.
$$(C+D)^{\perp} \subseteq C^{\perp} \cap D^{\perp}$$

Let $x \in (C + D)^{\perp}$ and $x \cdot y = 0$, for all $y \in (C + D)$.

Let $c \in C$ and then for all $c \in C$, $c = c + 0 \in (C + D)$, so $x \cdot c = 0$, which means that $x \in C^{\perp}$. Let $d \in D$ and then $\forall d \in D$, $d = 0 + d \in (C + D)$, so $x \cdot d = 0$, which means that $x \in D^{\perp}$.

II.
$$C^{\perp} \cap D^{\perp} \subseteq (C+D)^{\perp}$$

For all $y \in (\overline{C^{\perp}} \cap D^{\perp})$: $y \cdot c = 0$ and $v \cdot d = 0$, which means that $v \cdot (c + d) = 0$, so $v \in (C + D)^{\perp}$.

Question 7.

Let the code be C an [n,k,d] linear code, then we know $B(n,d)=q^k$. We want to get an [n-1,k*,d] code, what we can achieve with code shortening. If we have a full 0 column(special case, this position is useless), we can shorten the code without loosing any base code words, and we get an [n-1,k,d] code, and the equality clearly holds(this gives the most possible k). More generally(no all 0 column), we can transform the codes generator matrix to have only one 1bit in its last column. With shortening we receive an $[n-1,k-1,\geq d]$ code, which has q^{k-1} code words. Substituting into the non-equivalence we get:

$$B_q(n,d) \le q B_q(n-1,d)$$

$$q^k \le q \cdot q^{k-1}$$

$$q^k \le q^k$$

which is true.