(a) There are 8 points: $(0,2), (0,9), (2,0), (4,0), (5,0), (10,3), (10,8), \mathcal{O}$.

X	$x^3 + 5x + 4 \mod 11$	in QR_{11}	у
0	4	✓	(2,9)
1	10	×	
2 3	0	✓	0
3	2	×	
4	0	✓	0
5	0	✓	0
6	8	×	
7	8	×	
8	6	×	
9	8	×	
10	10	✓	(3,8)

Table 1: 8.1.a

(b) What is the order of point P = (10,3)? Order k of point P is $kP = \mathcal{O}$.

- E is non-singular: $-16(4a^3 + 27b^2) = -14912 \neq 0$
- P is on E see a).
- $P \cdot P = (x_3, y_3) = (5, 0)$

$$\lambda = \frac{3x_1^2 + a}{2y_1} \equiv 5 \mod 11$$

$$x_3 = \lambda^2 - x_1 - x_2 \equiv 5 \mod 11$$

$$y_3 = \lambda(x_1 - x_3) - y_1 \equiv 0 \mod 11$$

• $2P + P = (x_3, y_3) = (10, 8)$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} \equiv 5 \mod 11$$

$$x_3 = \lambda^2 - x_1 - x_2 \equiv 10 \mod 11$$

$$y_3 = \lambda(x_1 - x_3) - y_1 \equiv 8 \mod 11$$

•
$$3P + P = (x_3, y_3) = \mathcal{O}$$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 8}{10 - 10}$$

Order of point P = (10, 3) is 4.

- (c) $P + P = \mathcal{O}$. When λ is undefined.
 - $x_1 = x_2$ but $y_1 \neq y_2$
 - $P_1 = P_2$ but $y_1 = 0$

Question 2.

- (a) Factorize 3551, starting with $x_0 = 2$ and using pseudo-random function $x_i + 1 = x_i^2 + 3 \mod 3551$.
 - Pollard's ρ -method version 1. First factor is 53.

i	j	x_i	x_j	$gcd(x_i - x_j, n)$
2	1	52	7	1
3	1	2707	7	1
3	2	2707	52	1
4	1	2139	7	1
4	2	2139	52	1
4	3	2139	2707	1
5	1	1636	7	1
5	2	1636	52	1
5	3	1636	2707	1
5	4	1636	2139	1
6	1	2596	7	1
6	2	2596	52	53

Table 2: 8.2.a Pollard's ρ -method version 1

• Pollard's ρ -method version 2. First factor is 53.

i	x	у	gcd(x-y , 3551)
1	7	52	1
2	52	2139	1
3	2707	2596	1
4	2139	1450	53

Table 3: 8.2.a Pollard's ρ -method version 2

(b) Pollard's p-1 method. Factorize n=178297. B=23, a=2.

$$M = \prod_{\text{primes } q \leq B} q^{\lfloor \log_q B \rfloor} = 2^4 \cdot 3^2 \cdot 5^1 \cdot 7^1 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \mod 178297 = 148267$$

$$\gcd(2^M - 1, 178297) = \gcd(165942, 178297) = 7$$

First factor is 7.

Question 3.

(a) Hash your UCO using a hash function $h(x) = 5^x \mod 1033$ and label the result h.

$$h(x) = 5^{433652} \mod{1033} = 1029 = h$$

(b) EC Elgamal signature scheme. $E: y^2 = x^3 + 3x + 983 \mod 997$. Public points P = (325, 345), Q = xP = (879, 211) and secret key x = 140. Random component r = 339. Note that order of P in E is 1034. Signed message (h, R, s) = (1029, (838, 741), 511).

$$R = r \cdot P = (838, 741)$$

$$s = r^{-1}(h - x \cdot x_R) \mod n = 973(1029 - 140 \cdot 838) \mod 1034 = 511$$

Verification:

$$x_RQ + sR = hP$$
 (815, 880) + (248, 445) = (569, 100) \checkmark

Question 4.

Curve 1: $y^2 = x^3 + 4x$. Has points: ∞ , (0,0), (1,0), (2,1), (2,4), (3,2), (3,3), (4,0). The sorted sequence of point orders is [1,2,2,2,4,4,4,4].

Curve 2: $y^2 = x^3 + 4x + 1$. Has points: ∞ , (0,1), (0,4), (1,1), (1,4), (3,0), (4,1), (4,4). The sorted sequence of point orders is [1,2,4,4,8,8,8,8].

As the sorted sequences of point orders are different, the group structures are different.

8.5 Consider an elliptic curve $E: y^2 = x^3 + 8$ over \mathbb{R} . Show that E does not have multiple roots. Algebraically determine the number of roots E has.

Solution: $0 = x^3 + 8$ is equivalent to $0 = (x + 2)(x^2 - 2x + 4)$, therefore -2 is a root, but not multiple root. Now we calculate discriminant of quadratic equivalence $0 = x^2 - 2x + 4$:

$$D = (-2)^2 - 4 \cdot 1 \cdot 4 = -12.$$

We see that discriminant is < 0, therefore there is no more solution in \mathbb{R} , but E has two more complex (non-real) conjugate solution (this means that it is not multiple solution). Therefore we prove that E does not have multiple root and have **one** root over \mathbb{R} .

Question 6.

- (a) 5 points: It is not possible for an elliptic curve over \mathbb{Z}_{11} to have 5 points, because the lower bound according to Hesse's theorem is $N \geq p 2\sqrt{p} + 1 \geq 11 6 + 1 \geq 6$
- **(b)** 6 points: $y^2 = x^3 + x + 8 \mod 11$ has 6 points: $\{(3, 4), (3, 7), (8, 0), (9, 3), (9, 8), \infty\}$
- (c) 14 points: $y^2 = x^3 + x + 1 \mod 11$ has 14 points: $\{(0, 1), (0, 10), (1, 5), (1, 6), (2, 0), (3, 3), (3, 8), (4, 5), (4, 6), (6, 5), (6, 6), (8, 2), (8, 9), \infty\}$
- (d) 19 points: It is not possible for an elliptic curve over \mathbb{Z}_{11} to have 19 points, because the upper bound according to Hesse's theorem is $N \leq p + 2\sqrt{p} + 1 \leq 11 + 6 + 1 \leq 18$

Solution: We know that $n^7 - n = n(n^3 - 1)(n^3 + 1) = (n - 1)n(n + 1)(n^2 - n + 1)(n^2 + n + 1)$. Now we prove three statements $2 \mid n^7 - n$, $3 \mid n^7 - n$ and $7 \mid n^7 - n$.

- $2 \mid n^7 n$: We know that $\forall n : 2 \mid n(n+1)$, because n and n+1 are consecutive numbers, therefore one of them is even. Therefore $\forall n : 2 \mid (n-1)n(n+1)(n^2-n+1)(n^2+n+1)$.
- $3 \mid n^7 n$: We know that $\forall n : 3 \mid (n-1)n(n+1)$, because n-1, n and n+1 are consecutive numbers, therefore one of them is divisible by 3. Therefore $\forall n : 3 \mid (n-1)n(n+1)(n^2-n+1)(n^2+n+1)$.
- 7 | $n^7 n$: From the Fermat's Little Theorem we know that $n^6 = 1 \mod 7 \Leftrightarrow n^7 = n \mod 7 \Leftrightarrow n^7 n = 0 \mod 7$. Therefore we show that $\forall n : 7 \mid n^7 n$.

Finally we use Chinese Remainder Theorem for these three statements therefore we prove $\forall n: 42 \mid n^7-n$. \Box

8.8 Recall the definition of a Fermat number:

$$F_n = 2^{2^n} + 1$$

where n is a non-negative integer. Prove the following claims:

(a) For
$$n \ge 1$$
, $F_n = F_0 \cdots F_{n-1} + 2$.

Solution: We use mathematical induction:

- Base step: n = 1 We know that $F_0 = 3$ and $F_1 = 5$ and 5 = 3 + 2 therefore we prove that $F_1 = F_0 + 2$.
- Induction step: Let n be an integer ≥ 1 . The statements holds for n $(F_n = F_0 \cdots F_{n-1} + 2)$ and we have to prove it for n+1 $(F_{n+1} = F_0 \cdots F_n + 2)$.

$$F_n = F_0 \cdots F_{n-1} + 2 \Longleftrightarrow F_n - 2 = F_0 \cdots F_{n-1}$$
.

$$F_0 \cdots F_n + 2 = F_0 \cdots F_{n-1} \cdot F_n + 2$$

$$= (F_n - 2)F_n + 2$$

$$= (2^{2^n} - 1)(2^{2^n} + 1) + 2$$

$$= (2^{2^n})^2 - 1 + 2$$

$$= 2^{2^{n+1}} + 1$$

$$= F_{n+1}$$

We prove $F_n = F_0 \cdots F_{n-1} + 2$.

(b) For $n \geq 2$, the last digit of F_n is 7.

Solution: We use mathematical induction:

- Base step: $n = 2 F_2 = 17$ so the statement is true.
- Induction step: Let n be an integer ≥ 2 . The statements holds for n ($F_n \equiv 7 \mod 10$) and we have to prove it for n+1 ($F_{n+1} \equiv 7 \mod 10$).

$$F_n \equiv 7 \mod 10 \iff 2^{2^n} + 1 \equiv 7 \mod 10 \iff 2^{2^n} \equiv 6 \mod 10.$$

$$F_{n+1} = 2^{2^{n+1}} + 1 = \left(2^{2^n}\right)^2 + 1 \equiv 6^2 + 1 \equiv 7 \mod 10.$$

Therefore we prove $F_n \equiv 7 \mod 10$ (last digit is 7).

(c) No Fermat number is a perfect square.

Solution: It is obvious that $F_0 = 3$ and $F_1 = 5$ are not perfect squares.

From part (b) we know that $\forall n \geq 2: F_n \equiv 7 \mod 10$, so if any of Fermat numbers is perfect square (k^2) then $k^2 = F_n \equiv 7 \mod 10$. All digits (we look only on last digit of k) have this last digit for k^2 : 0, 1, 4, 9, 6, 5, 6, 9, 4, 1. Therefore $\forall k: k^2 \not\equiv 7 \mod 10$ therefore we prove that no Fermat number is a perfect square.

(d) Every Fermat number F_n for $n \ge 1$ has the form 6m-1 for an integer m > 0.

Solution: The equivalent definition is $6 \mid F_n + 1$.

- $2 \mid F_n + 1$: $2 \mid 2^{2^n} + 1 + 1$, which is obviously true for all $n \ge 1$.
- 3 | F_n+1 : We want to show that $\forall n\geq 1:2^{2^n}+1+1\equiv 0\mod 3$ which is equivalent to $\forall n\geq 1:2^{2^n}\equiv 1\mod 3$.

$$2^{2^n} = (2^2)^{2^{n-1}} = 4^{2^{n-1}} \equiv 1^{2^{n-1}} \equiv 1 \mod 3$$

Finally we use Chinese Remainder Theorem for them therefore we prove $\forall n \geq 1 : 6 \mid F_n + 1$.

To decrypt, calculate:

$$dR = (c_1, c_2)$$

$$m_1 = y_1 c_1^{-1} \mod p$$

$$m_2 = y_2 c_2^{-1} \mod p$$

Since the encryptor used $(c_1, c_2) = kQ$, and Q = dP, R = kP, it holds $(c_1, c_2) = kQ = kdP = dR$. Thus the (c_1, c_2) obtained during decryption is the same as in encryption, thus we simply reverse the mod-multiplication by mod-multiplying by an inverse. Inverse is calculated easily, as p is a prime.