Question 1.

(a) There are 8 points: (0,2),(0,9),(2,0),(4,0), (5,0), (10, 3), (10, 8), O.

x |23 +524+4 mod 11 | in QR | v

0 v (2,9)
1 10 %

2 10 v 0

3 2 X

4 0 v 0

5 0 v 0

6 |8 X

7|8 X

8 |6 X

9 |8 X

10| 10 v (3,8)

Table 1: 8.1.a
(b) What is the order of point P = (10,3)? Order k of point P is kP = O.

o [ is non-singular: —16(4a® 4 276%) = 14912 # 0
e Pison F - sce a).
* P-P=(z3,53) = (5,0)

A=

23=MN -2 —2s=5 mod 1l
y3=)\(;(f1—$3)—y1§[] mod 11
o 2P+ P = (23,y3) = (10,8)

A:uES mod 11
To — I

23 =A% — 121 — 22 =10 mod 11

ys=Alr1 —23) —y1 =8 mod 11

3P+P:(m3‘y3):(9
a=to—th _ 3-8
T xe—mx  10-10

Order of point P = (10,3) is 4.



(¢) P+ P =0. When A is undefined.

o 7 =13 but y; # ¥y
e Pr=Pybuty =0

Question 2.

(a) Factorize 3551, starting with zy = 2 and using pseudo-random function z; + 1 = 9312 +3
mod 3551.

e Pollard’s p-method version 1. First factor is 53.

il x; ged(x; — xj,m)
21152 7 1
3|1 2707 |7 1
3122707 | 52 1
4112139 |7 1
4122139 | 52 1
4032139 | 2707 | 1
5011636 | 7 1
521636 | 52 1
53| 1636 | 2707 | 1
5141636 | 2139 | 1
61259 |7 1
6] 2259 | 52 53

Table 2: 8.2.a Pollard’s p-method version 1

e Pollard’s p-method version 2. First factor is 53.

RS y | ged(|z — y,3551)
L. |l 52 1
2| 52 2139 | 1
32707 [ 2596 | 1

4| 2139 | 1450 | 53

Table 3: 8.2.a Pollard’s p-method version 2

(b) Pollard’s p — 1 method. Factorize n — 178297. B — 23, a — 2.

M= [ qls®=2"32.5"7"-11-13-17-19-23 mod 178297 = 148267

primes g<B

ged(2M — 1,178297) = ged(165942, 178297) = 7

First factor is 7.

Question 3.

(a) Hash your UCO using a hash function h(x) = 5% mod 1033 and label the result h.

h{x) = 5*3%2  mod 1033 = 1029 = h

(b) EC Elgamal signature scheme. F : y* = 2% +324+983 mod 997. Public points P = (325,345),
Q = xP = (879,211) and secret key & = 140. Random component r = 339. Note that order
of P in F is 1034. Signed message (h, R, s) = (1029, (838, 741),511).

R=r-P=(838,741)
s=r"'(h—x-2g) modn=0973(1029 — 140 - 838) mod 1034 = 511

Verification:
@+ sl = hP

(815,880) + (248,445) = (569,100)v’



Question 4.

Curve 1: % = 2% + 4a. Has points: oo, (0,0),(1,0),(2,1),(2,4),(3,2), (3,3), (4,0). The sorted
sequence of point orders is [1,2,2,2,4,4,4,4].

Curve 2: y* = o + 4z 4 1. Has points: oo, (0, 1), (0,4), (1,1),(1,4),(3,0), (4,1), (4,4). The sorted
sequence of point orders is [1,2,4,4, 8, 8,8, 8].

As the sorted sequences of point orders are different, the group structures are different.

8.5 Consider an elliptic curve E : y* = 2% 4 8 over R. Show that E does not have multiple roots. Algebraieally
determine the number of roots E has.

Solution: 0 = 2% + 8 is equivalent to 0 = (x + 2)(z* — 2z + 4), therefore —2 is a root, but not multiple root.
Now we calculate discriminant of quadratic equivalence 0 = 2 — 2z + 4:

D=(-2%-4.1.4=-12

We see that discriminant is < 0, therefore there is no more solution in K, but £ has two more complex
(non-real) conjugate solution (this means that it is not multiple solution). Therefore we prove that E does
not have multiple root and have one root over R. [m]

Question 6.

5 points: It is not possible for an elliptic curve over Z;; to have 5 points, because the lower
bound according to Hesse's theorem is N > p — 2\/5 +1>11-64+1>6

(a

—

(b) 6 points: 4> = 2% + = + 8 mod 11 has 6 points: {(3, 4), (3, 7), (8, 0), (9, 3), (9, 8), co}

(c) 14 points: y* = 2 + x + 1 mod 11 has 14 points: {(0, 1), (0, 10), (1, 5), (1, 6), (2, 0), (3, 3),
(3, 8), (4, 5), (4, 6), (6, 3), (6, 6), (8,2), (8 9), c0}

(d) 19 points: It is not possible for an elliptic curve over Zy; to have 19 points, because the upper
bound according to Hesse's theoremis N < p+2,/p+1<11+6+1<18



8.7 Show that 42 | n7 — n for all integers n € N.
Solution: We know that n” —n = n(n? — 1)(n® + 1) = (n— L)n(n +1)(n® —n+1)(n? + n+1). Now we prove
three statements 2 | n” —n. 3 [n" —nand 7| n” — n.

e 2| n” —n: We know that Vn : 2 | n{n+ 1), because n and n + 1 are consecutive numbers, therefore one
of them is even. Therefore ¥n:2 | (n — L)n(n + 1)(n? —n+1)(n? + n+1).

e 3| n”—n: We know that ¥n :3 | (n— D)n(n+ 1), because n — 1, n and n+ 1 are consecutive numbers,
therefore one of them is divisible by 3. Therefore ¥n : 3 | (n — Dn(n 4+ 1)(n% — n + 1)(n? + n + 1).

e 7| n" —n: From the Fermat’s Little Theorem we know that n® = 1 mod 7 < n” = n mod 7 &
n" —n =0 mod 7. Therefore we show that ¥n : 7 | n’ —n.

Finally we use Chinese Remainder Theorem for these three statements therefore we prove ¥n : 42 | n”—n. O

8.8 Recall the definition of a Fermat number:
F, =27 41

where n is a non-negative integer. Prove the following claims:
(a) Forn>1, F,=Fy--F,.1+2

Solution: We use mathematical induction:
e Base step: n = 1~ We know that Fy = 3 and F} = 5 and 5 = 3 + 2 therefore we prove that
F=F+2
e [nduction step: Let n be an integer > 1. The statements holds for n (F,, = Fy--- F,,_; +2) and we
have to prove it for n+ 1 (F = Fy -+ F, + 2).

Fo=F-Fya+2<FH-2=IF,.

Py Fot2=Fyo Fooy - Fy+2
= (F.—2)Fa+2

= (2 -1) (27 +1) +2
- (22")2 —1+42
=92 41
=Inp
We prove F,, = Fy---Fpq + 2. a
(b) For n > 2, the last digit of F,, is 7.

Solution: We use mathematical induction:
e Base step: n =2 — F, = 17 so the statement is true.

o [Induction step: Let n be an integer > 2. The statements holds for n (F, =7 mod 10) and we have
to prove it for n + 1 (F,,4q = 7 mod 10).

Fo=7 mod10 <= 2" +1=7 mod 10 == 2*" =6 mod 10.

n41 " 2
e =277 +1:(2?) +1=6"+1=7 mod 10,

Therefore we prove £, =7 mod 10 (last digit is 7). m]
(¢) No Fermat number is a perfect square.

Solution: It is obvious that Fy = 3 and F; = 5 are not perfect squares.

From part (b) we know that ¥n > 2 : F;, = 7 mod 10, so if any of Fermat numbers is perfect square
(k%) then k* = F, = 7 mod 10. All digits (we look only on last digit of k) have this last digit for k%
0,1,4,9 6,5, 6,9 4, 1. Therefore ¥k : k> Z 7 mod 10 therefore we prove that no Fermat number is
a perfect square. m]

(d) Every Fermat number F), for n = 1 has the form 6m — 1 for an integer m > 0.

Solution: The equivalent definition is 6 | Fj, + 1.
o 2| FE,+1: 2] 22" 41+ 1, which is obviously true for all n > 1.
3 ‘ F,, +1: We want to show that ¥n > 1 : 22" L1+ 1 = 0 mod 3 which is equivalent to
¥n>1:22" =1 mod 3.
" n—1 s n—
2 = (2% =47 =1 =1 mod3

Finally we use Chinese Remainder Theorem for them therefore we prove ¥n > 1:6 | F, + 1. O



Question 9.

To decrypt, calculate:
dR = (¢1,¢)
my = y]c;l mod p
mo = ygcz_l mod p
Since the encryptor used (c1,¢2) = kQ, and Q = dP, R = kP, it holds (c1,¢2) = kQ = kdP = dR.
Thus the (e1,c2) obtained during decryption is the same as in encryption, thus we simply reverse

the mod-multiplication by mod-multiplying by an inverse. Inverse is calculated easily, as p is a
prime.



