Tutorial III group 2

03 October 2019 15:58

CYCLIC (ODE)

_o definition of (Godes

-D polynomials over Finite fields

-D Full characterization of C. Godes

C ≤ {0,..., 9-1} is a cyclic code

if following holds:

linear code

I. try EC, xty EC

 $\mathbb{I}. \forall x \in \mathbb{C}$

+, · mod q

 \mathbb{T}_{\circ} , $\mathcal{X}_{\times} \in (\times_{\circ} \cdots \times_{n-1}) \in \mathbb{C}$

 $(x_{n-1}, x_{n-2}) \in C$

[Ex3.1] Decide whether given codes are cyclic $(2) = \{0000, 1212, 2121\} \subseteq (\mathbb{F}_3)^4 + (10) \mod 3$

I. (2121) + (1212) = (3333) = (0000)

T. 2.(1212) = (2424) = (2121)

Cryptography 2019 Page 2

a Z +; = a.0 =

III addition is commutative

$$(a_{0},\ldots,a_{n-1}) \in \mathbb{F}_{q}^{n}$$

Set of all polynamials

a + ax + ax + + ... + anx m

ET [x] A over a finite field of

A

9; € 50, ..., 9-13 (for 9 prine)

[Rings] (S= {0,..,n-1},+, •)

1) (S,+) is a communitative group

-Daddition is associative (a+b)+c=a+(b+c)

-Daddition is commutative a+6 = 6+a

-s there is a newtral element of s.t. a+0= a

-D for each element a there is an additive inverse -a $S.t. \quad \alpha + (-\alpha) = 0.$

2,) (S,) is 'mousid

-o multiplication is lassociative (a. b) o (= a. (b.c)

-D there is a hentral element (1)

3 (a) is distributive towards (1) $a \circ (b+c) = ab+ac$ $(b+c) \cdot a = ba+ca$

Field axism

-> for each non-zero element a there is a multiplicative inverse (a", s.t. a.a"=1

90,1,2,33 (+,0) mod 4

2 does not exist (division by 2 is not defined)

1133 1123

{0,2,0,2}

{\langle \langle \l

Finite fields exist for n= p where p is aprime

POLYNOMIALS OVER FINITE FIELDS

F[x] - a set of all polynomials over a finite field F $f(x) = \sum_{i=0}^{\infty} a_i^* x^i \qquad a_i \in FA \quad (+, 0)$ $p(x) = \sum_{i=0}^{\infty} a_i^* x^i \qquad a_i \in FA \quad (+, 0)$

F_[x] examples

$$\Lambda + \chi \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{2} + \chi^{3} + \chi^{2} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{3} + \chi^{3} \qquad \text{deg}(\chi + 1) = \Lambda$$

$$\Lambda + \chi^{2} + \chi^{3} + \chi^{3$$

Division of polynomials

C.) in
$$f_{Z}$$

$$\frac{1}{2} + 1 : \underbrace{x_{3}^{2} + x_{4}^{2} + 1}_{2} = x_{4}^{2} + x_{4}^{2} + x_{4}^{2}}_{2}$$

$$\frac{1}{2} + x_{4}^{2} + x_{4}^{2} + x_{4}^{2}$$

$$\frac{1}{2} + x_{4}^{2} + x_{4}^{2} + x_{4}^{2}$$

$$\frac{1}{2} + x_{4}^{2} + x_{4}^{2} + x_{4}^{2}$$

$$\frac{1}{2} + x_{4}^{2} + x_$$

$$f(x) = g(x) \cdot h(x) \rightarrow V(x)$$

Aey(x(x)) < Aey(h(x))

Example

all remainders after division by t^2+++1 $t^2++1 = \{0, 1, x, x+1\}$ Falx f(x) contains all polynomials of degree smaller than $deg(f(x)) \in Covvespon as to strings of size in$

						\
	1	0	1	>	XIN	1
/	0	v	^	*	×+1	
	Λ	1	0	VPT	\succ	
	>	*	\times +1	0	1	
\	X+1	×+1	\rightarrow	1	×+1 × 1	
1						/

					2
•	0	1	+	X+1	X3: 27++1
0	б	0	0	\Diamond	×31>+V
	0	1	\succ	$\lambda + \Lambda$	X+/1
X	0	×	メナイ	1	×.(x+1)
$\langle \times \star \wedge$	0	X+/	1	×	x ² +x;x ² +x+1 x ² +x+1=1
					1

Commotative group

#LyJ/flx) is a field iff f(x) is a primitive polynamial **o**ver #

f(x) is aprimitive polynomial over F, if it cannot be written as a product of two polynomials of a smuller degree

is x2+x+1 primitive over Fz?

$$(x+1)$$

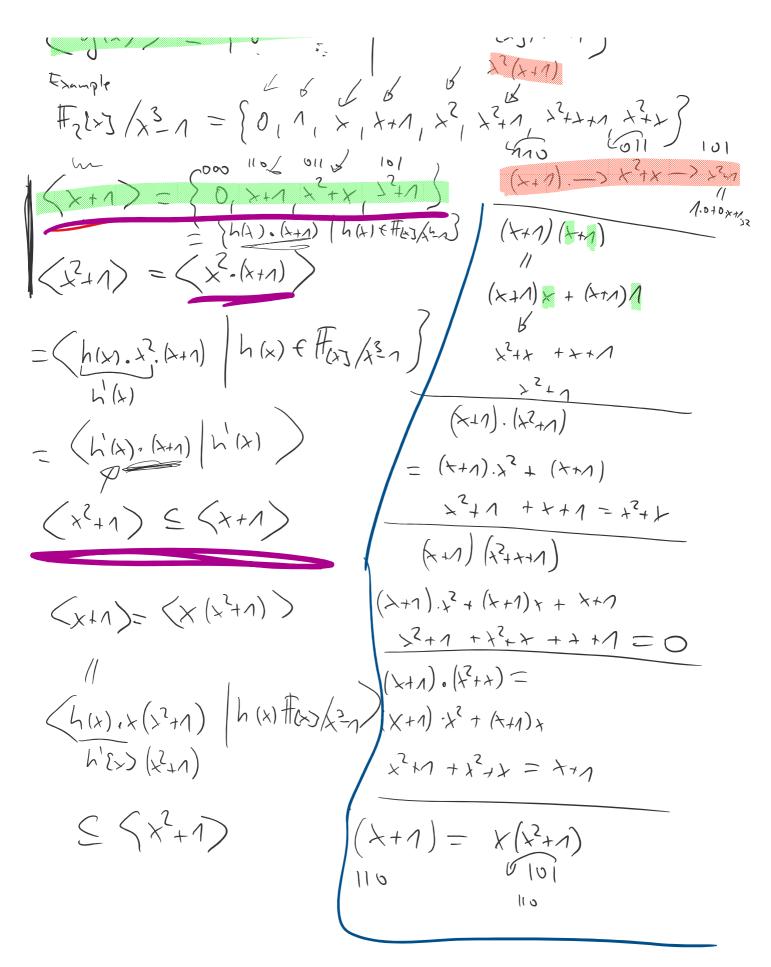
$$x(x+1) = x^{2} + x \neq x^{2} + x + 1$$

$$x(x+1) \cdot (x+1) = x^{2} + 1 \neq x^{2} + x + 1$$

$$(x+1) \cdot (x+1) = x^{2} + 1 \neq x^{2} + x + 1$$

multiplication by x

$$f(x) = a_0 + a_1 + \dots + a_{m-1} + \dots + a_{m-2} + \dots + a_{m-$$



$$\chi^{2} \cdot (x+1) = x^{3} + x^{2}; x^{3} + 1 = 1$$

$$\frac{x^{3}+1}{(110)^{(2+1)}}$$

$$x \cdot x \cdot (x+1)$$

$$0 \mid 1$$

$$(x+1) \cdot x + 1 \cdot x + 0 \cdot x^{3}$$

$$(x+1) \cdot (x+1) \cdot (x+1)$$

$$\frac{\chi^{2}+1}{(\chi^{2}+1)} = \frac{\chi^{2}(\chi+1)}{(\chi^{2}+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$(\chi^{2}+1) = \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

$$= \frac{\chi^{2}(\chi+1)}{(\chi+1)} \cdot h(\chi) \quad | h(\chi) \in \mathbb{R}_{n}$$

(XIN) = (X2+1)

How do we characterize different ideals?

Each ideal is characterized by a unique divisor of In FEXT primitive primitive

$$\times^3 - 1 = (\times + 1)(\times^2 + \times + 1)$$

To find all cyclic codes you need to find Aecomposition of f(x) into primitive polynomials.

To each (. Code we can associate a divisor g(x) and we call it the generator polynamia) deg(g(x))=x

$$f(x) = g(x).h(x) h(x) = h.+h.x+...+h...x$$

$$H = \begin{pmatrix} h_{n-1} & h_{n-1} & ... & h_0 & 0 & 0 \\ 0 & h_{n-2} & h_0 & 0 & 0 \\ 0 & h_{n-2} & h_0 & 0 & 0 \end{pmatrix}$$