LINEAR CODES

CE {0,13 h number of codo words

A in general inefficient to calculate

To Chus (n, M, d) parameters

length minimum distance

distance

T. EN(ODING

mo) Co

this table needs to be stored

to encode with general C

DECODING

for each recieved w we need to find (EC) need to Company
that is closest to w in Hamming distance. It each

LINEAR GODES - All tasks I.-III. and
much more efficient.

DEFINITION

Code C is linear if two conditions hold:

Code C is linear if two conditions hold:

$$y = (x_0, \dots, x_{n-1})$$

 $y = (x_0, \dots, x_{n-1})$
 $y = (x_0, \dots, x_{n-1})$
 $y = (x_0, \dots, x_{n-1})$
 $y = (x_0, \dots, x_{n-1})$

(2.)
$$\forall k \in \{0, ..., 9-1\}$$

for q - any codes

 $C = (G_1, ..., G_{m-1})$
 $\forall k \in \{0, ..., G_{m-1}\}$

0100

Code is linear!

How to calculate the minimum distance of a linear code C.

$$H(00110, 10010) = Z$$

$$H(w_1w_1)$$

$$H(w_1w_2)$$

$$H(w_1w_2)$$

$$H(w_1w_2)$$

$$H(w_1w_2)$$

$$H(w_1w_2)$$

Cryptography 2019 Page 2

To calculate d we need to find the coneword (EC with the smallest weight (number of non-zero positions).

ENCODING

N

length Size of subspace
[m, 2]

For each linear code C you can find abasis of size E. That means there are E codewords, such that all codewords can be written as a linear combination of the so codewords.

10100

$$(=\{000,111,222\}$$
 $(+,\cdot)$ are from \mathbb{F}_q (mod q)

I. V
 $(000)=(000)+($

Cryptography 2019 Page

for a prime I. V , V) + (000) = (000) · S 2. (111) = (222) & C 2. (222) = (444) = (111) + (busis is (nnn) [n, E] size of subsider 3 => 6=1 (€ {0,1,2}, | C| = 9 basis has 2 Vectors {6,52} and each (= 2, 5, + 2.52 Lie {0,1,2] Matrix 6 = [50] is a generating matrix of a linear code with basis = \$60,..., 5 En] To encode message m € {0,13. calculate m.G= (m.,..,hz-1).G= ((01..., Cm.n)

Cryptography 2019 Page 4

For encoding we do not need a lookup table. We only need to store the genevating matrix G. EFFICIENT.

How to obtain a normal form?

Start from an arbitrary 6 of code C.

Use the following operations:

a.) permutation of rows

b.) multiplication of a row by a non-tero scalar change of (s) addition of rows -> d.) multiplication of columns by a non-zero scalar of different but

equivalent code $G = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$... operations are such that $G = \begin{pmatrix} T_3 & 1A \\ 8x3 \end{pmatrix}$ (3x2) G' is of canonical form and has the

same [n, E, d] pavameters

Codes with 6 in camonical form are called systemica

Decoding

Standard array

Yuiv coset u and coset v are either identical or aisjoint

Coset leader is an element of a coset with smallest weight.

Ex.2.7	Cosotleader	4	\checkmark
00000	. 101101	01011	(100) (ode is a cost (00000)
0000	(0111	61010	11100
00010	10100	01001	(1111)
00000	10010	0111	[100] = {C+U}
-/ 01001	11110	11/000	[1010] UE {00100,10010,0111,11001]
. 10000	00110	11011	(00000+11001) (10110+01111)
00110	10000	01101	HOLL -> NOT A NEW COJET
(11000	01110	16011	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0110	11000	00111	(1000)

AFter constructing the standard array, decoding is as Follows.

- 11.) tind w in 12 sinning away.
- III,) Find coset leader by of W.
- IV.) Coset leader contains positions of evrous ie decode us W+lw.

Syndrome deading

Scalar product

$$\overrightarrow{X} \cdot \overrightarrow{J} = \left(\times_1 \cdot J_1 + \times_2 J_2 + \dots + \times_3 J_n \right) \mod 2$$

X. and of are perpendicular

if C is of dimension & then C is of dimension nx

$$G = T_{\xi} | A$$

$$H = (-A^{T} | I_{n-\xi})$$

there is a one to one correspondence between syndremes and cosets of (

Find
$$G$$
 = $\begin{pmatrix} 1101001 \\ 0111100 \\ 10011100 \end{pmatrix}$ = $\begin{pmatrix} 1101001 \\ 0111100 \\ 0111100 \end{pmatrix}$ = $\begin{pmatrix} A^{-1} I I \\ 1101001 \\ 1101001 \end{pmatrix}$