Tutorial IV

Historical Cryptosystems and Perfoct section.

Definition of encryption system:

EXAMPE:

CEASAR CRYPTOSYSTEM

$$\mathbb{Z}_{3}(c) \rightarrow \mathbb{F}$$

EXAMPLE OF A MONOALPHABETIC ENCRYPTION

(it maps letters to letters, it maps the same letter to the same

Encrypt "CRYPTOCOGY"

Affine Cryptosystem

$$b = c = \left\{ o^{1} \cdots b_{2} \right\}$$

$$K = \{ (a,b) \text{ st. } a \text{ is invertible mod } 26 \left(= \{ (a,b) \text{ st. } a \text{ is invertible mod$$

How to break monoalphabetic (njptosystems?

WIWGC RYC CXA VYC VYMW LGXUGWOO. WIWGC OSWL VYC QW BGAHSBAN.
CWS SEWGW DHNN OSGWSPE XAS QWBXGW CXA YZ WIWG-NWZUSEWZHZU,
WIWG-YOPWZRHZU, WIWG-HVLGXIHZU LYSE. CXA MZXD CXA DHNN ZWIWG
UWS SX SEW WZR XB SEW FXAGZWC. QAS SEHO, OX BYG BGXV
RHOPXAGYUHZU, XZNC YRRO SX SEW FXC YZR UNXGC XB SEW PNHVQ.

HILL (PYPTOSYSTEM

$$P = \{ xy \mid x \in \{A-2\}, y \in \{A-2\} \}$$
 (+)

$$e_{\xi}: M_{\xi} \begin{pmatrix} x \\ z \end{pmatrix}$$
 $d_{\xi}: M_{\xi} \begin{pmatrix} a \\ b \end{pmatrix}$

det
$$(n) = d$$

when does this

det $(n^{-1}) = d^{-1}$
 $g(a(d, 21) = 1)$

$$M = \begin{pmatrix} 13 \\ 34 \end{pmatrix} def(a) = 1.4 - 3.3 mod 26$$

$$= 4 - 9 = -5 = 21$$

$$M^{-1} = \begin{pmatrix} a \\ c \\ d \end{pmatrix} \begin{pmatrix} 13 \\ 34 \end{pmatrix} = \begin{pmatrix} 10 \\ 01 \end{pmatrix}$$

KET KEY KEY K & Shift of alphabet in this position

DC RTEPTO LOGY

M V W . . .

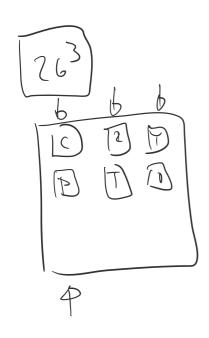
K+(=1)+2=12

E+R=4+17=21

4+1 = 24+26 = -2+-2 =-4=72

k+4 = 24+10 = 34=P

KETHOLE CRYP TOG



KASISKI'S METHOD

-12 if a submoved is repeated in the cuppet text in intervals that are a multiple of &, there is probable key length

FRIED MAN N

For english:

n-length of cyptotext n;- is number of letter's in cyptotext

$$L = \frac{0.027 \text{ n}}{(n-1) l - 0.058 n + 0.065}$$

PERFECT SECRECY

Intuitively seare encyption should hide Statistical proporties of the plaintext. (Otherwise easy cuptomalysis is possible).

Pr(P) -> under lying publishity of glaintext messages.

Pr(K) ~> distribution of the Eegs (topically uniform)

Pr(C) >> probability of serving a cyphortext Co => (an be calculated from PLP) and Pr(K)

Pr (C=c|P=P) probability that p gets encypted as C
Pr (P=p|(=c) probability that c gets decrypted as P

Perfect servery &

Vertect servey
$$P$$
 $P_{r}(P_{p}) = P_{r}(P_{p}) =$

BAYES THEOREM

$$P(A|B) \cdot P(B) = P(B|A) \cdot P(A) = P(B|A) \cdot P(A) = P(B|A) \cdot P(A)$$

$$P(P=P|(=c) = P(C=c) = P(C=c)$$

$$|f P| = P| (= c) = P_v(P = P) \qquad (perfect secreg)$$

$$e_{\xi_{3}}(x) = a$$
 $e_{\xi_{3}}(x) = b$

$$P_{r}(P=x) = \frac{3}{8}$$
 | $P_{r}(k=\xi_{1}) = \frac{1}{3}$

$$P_{r}(P=x) = \frac{3}{8}$$

 $P_{r}(P=x) = \frac{1}{8}$
 $P_{r}(P=x) = \frac{1}{2}$

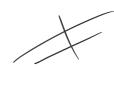
$$P_{r}(K=\xi_{1}) = 1/3$$
 $P_{r}(K=\xi_{2}) = 1/6$
 $P_{r}(K=\xi_{3}) = 1/2$

$$= P_{V}(P=x) \cdot P_{V}(K=\xi_{n}) + P_{V}(P=x) P_{V}(K=\xi_{n})$$

$$+ P_{V}(P=y) \cdot P_{V}(K=y)$$

$$= \frac{3}{9} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{6} + \frac{1}{9} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{12} + \frac{1}{16} = \frac{13}{47}$$

$$P_{r}((=6) = \frac{3}{12} \cdot \frac{1}{12} + \frac{1}{12} = \frac{13}{12} = \frac{1}{12} + \frac{1}{12} = \frac{13}{12} = \frac{1}{12} + \frac{1}{12} = \frac{13}{12} = \frac{1}{12} = \frac{1}$$



MEANS THAT (PTPTOSYSTEM & IS NOT PERFECTLY SECURE.

$$P((=a) = \frac{3}{8}, \frac{1}{3} + \frac{1}{6}, \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$$

$$= \frac{1}{3}(\frac{2}{acP}, \frac{P}{P} = a) = \frac{1}{3}$$

$$P((=a) = \frac{3}{8}, \frac{1}{3} + \frac{1}{6}, \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$$

$$= \frac{1}{3}(\frac{2}{acP}, \frac{P}{P} = a) = \frac{1}{3}$$

$$P((=a|P=x) = \frac{1}{3}) = \frac{1}{3}$$

+ cia 3 single Ley mapping a-sc

$$P_{r}((=c|P=a) = 1/3)$$

$$P_{r}((=c) = \frac{7}{2} P_{r}(P=a) \cdot \frac{7}{2} P(k=k)$$

$$= \frac{7}{2} P_{r}(P=a) \cdot \frac{7}{2} P(k=k)$$

$$= \frac{7}{2} P_{r}(P=a) \cdot \frac{7}{3}$$

$$= \frac{7}{2} P_{r}(P=a) \cdot \frac{7}{3}$$

$$= \frac{7}{3} P_{r}(P=a)$$

$$= \frac{7}{3} P_{r}(P=a)$$