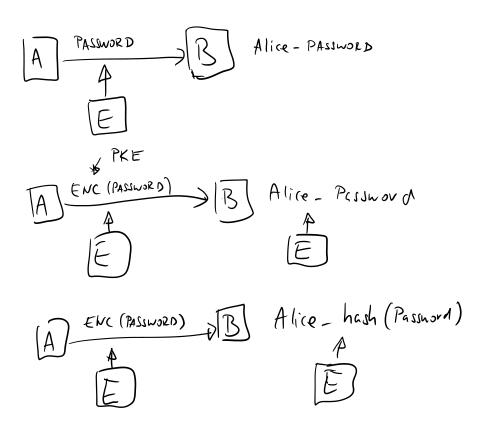
14 November 2019 16:0

Identification

Secret Shaving

Message authentication -> Orthogonal arrays

dentification



These I work only for trusted B (he knows the pasmora)

Here to me learn about Zevo-knowledge identification protocols

Alice can prove knowledge of her password to Bob without revealing

it.

11. P.

Alice - Prover

Bob - Verifier

Ere - Evesdwpper

- 1) Commitment A>B
- 2,) Challenge B->A
- 3.) Response A > B
- 4.) Verification

Fiat-Shamir identification

Lobased on hardness of calculating Square voots i.e TC mod N, where h=p.q, without thouledge of p and q.

PRIVATE: $S \in \{1,...,n-n\}$, $(p_1q_1, with n=p_1q_1)$ PUBLIC: $N, V = S^2 \mod n$

- 1.) commitment: Alice chooses random 1 EVE in and sends

 X = V mod in to Bob
- 2.) challenge: Bob chooses a random bit b and sends it to Alice

3.) <u>response</u> : Alice sends y=v.s mod n to Bob
4) revisication: Bob revifies whether $y^2 = x \cdot v \mod n$
if Bob Enew V, in step 2.) he can choose b=1, then
y= r. S moder and he can calculate S= for moder
-D b needs to be random and whenown to Alice before her commitment. Why?
perhaps they don't know s
verification will be $y^2 = x \mod n$
(an you find two such humbers?
1.) (hoosen 2.) calculate X (order is important - in the prototol x is southirst) than y second
o — II — b=1 — I' —
Verification will be 12=xoV M
(an you find such x and y?
$x = 13. \sqrt{1000}$ mod n
1.) choose to ?.) calantate X

TRANSCRIPT

 $(\times,5,5)$ valid iff

$$(\times,0,5) \sim ((,0,11)$$

$$(\times,1,5) \sim (6,1,3)$$

$$(\times, 0, 50)$$

(x, 0, 150) To calculating these two transcripts is as hord as finding s

After n correct rounds Bob Enows he is talking to Alice W.p 1- 24.

After n corned rounds Bob Enows he is talking to Alice W.p 1- 2n.

Shorr identification

Ly based on discrete logarithm

Security parameter (S.t. 2 < 9 (how hard it is to guess)
$$V = 2^{-\alpha} \mod P$$

PRIVATE: 15 a = 9-1

1.) Commitment: Alice vandomy chooses
$$0 \le k \le q-1$$
 and Sends

4.) Verification: Bob checks
$$g = d^3 \cdot V \mod p$$

$$k = k \pmod{k+ar} - ar$$

$$k = k \pmod{p}$$

The should be random and unknown to Bob

if Bob knows & thou $a = (z-2) \cdot r^{-1} \mod p$

TY should be random and un known to a Prover

otherwise anyone can identify a Alice.

Two humbers & and of for which

be used as commitment and response

With knowledge of v, how hard is it to find such numbers?

EASY: 1) choose of ?.) calculate of

TRANSCRIPTS:

(x,r,y) valid iff x= dor mod p

(8, 1, 1/2n) calculating is equivalent to calculation of a

dv = dv mod p

 $\int_{0}^{\infty} \int_{0}^{-\alpha N} = \int_{0}^{\infty} \int_{0}^{-\alpha N} mod p$

5,-ar = yz-arz mod q

$$\alpha = (5_2 - 5_1) \cdot (v_2 - v_n)^{-1} \text{ mod } q$$

$$P(U) = \{ \phi_1 \{13, \{27, ..., \{1n3, \{21, 23, \{21, 23\}, \{$$

Oversets are always included by default.

Threshold scheme (u,t)

N-number of users

+ - the number of users required to recover the secret

How to construct threshold schomes

3.) to share a secret
$$S \in \mathbb{Z}_p$$
 send secretely to each user $y_i = \alpha(x_i)$

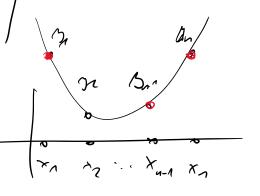
$$\int_{0}^{\infty} = \alpha(x_{i})$$

$$a(x) = \left(\frac{f-1}{2} a_j x^j + S \mod p\right)$$

and a; are chosen at random and kept secret

for t=2 a is a linear function

for to a is quadratic



for the degree of a w is f-1

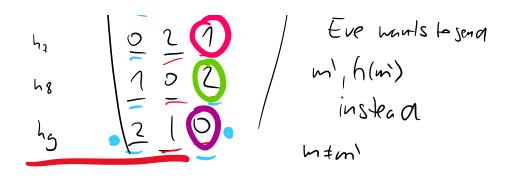
and + points are required to reconstruct almana find S.

$$f(1) = 9 \mod 11$$
 $f(2) = 9 \mod 11$
 $f(3) = 4 \mod 11$
 $Aegree of f is 2. facet$
 $f(x) = ax^2 + bx + C$
 $a + b + c = 9 \mod 11$
 $4a + 2b + c = 9 \mod 11$
 $9a + 3b + c = 4 \mod 11$

ORTHOGONAL ARRAYS

OA (n,k,x) is a think army of in symbols s.d. in any two columns of the army each of the his possible pairs of symbols appear exactly A-times.

Symbols columns condition Symbols Columns repetition OA (3,3,1) 1.) Anversey wants to sand message to Bob Xux E Without seeing a message-tag h2 Pair sent by Alie 1.32 x 3 43 7.3 ام د 2.) Alice Ent avalia pair h s (m,h(m))Eve wants to send



In authentication

m, h (m)

p
hash

m, h (m)

 $\begin{array}{ccc}
A & m_1 h_2(m) \\
& & \longrightarrow
\end{array}$

B