Lectures 1-3 Coding theory 4-13 Cryptography

CODING THEORY BASICS

-D Noisless ading theory (Huffman ading)

-D Noisy waling theory (evror correcting codes)

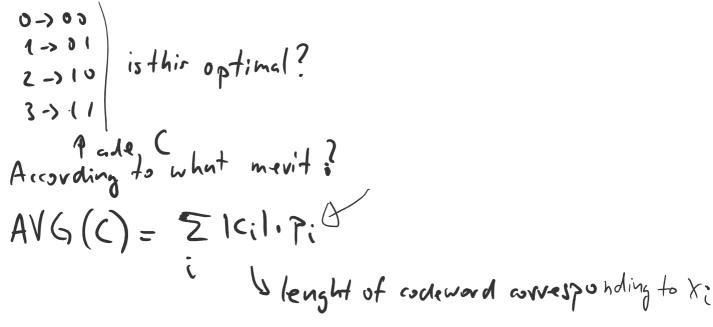
Noisless coming theory

$$X = \{x_{0,...,1} x_{n-1}\}$$

$$P_{0,1,...,1} P_{m-1} \sum_{i} P_{i} = 1 P_{i} \geq 0$$

The GOAL: Write down outcomes of X as efficiently as possible.

(with a given alphabet Z (here mostly 80,13)



Problem formulation:

1. Given a probability distribution (vandom variable) design a code (with smallest average length? What is the smallest achievable average length?

2)

Shannons the overn

For a random variable X {Por. [Pa-1]

S(X) = - Z polog pi (Shannon entupy)

I. Average of code (for v.v. $X \gg S(X)$

II. Encoding multiple outputs together helps

III. As the number of symbols encoded together approaches intinity, the archievable average approaches S(X)

www.

Man Many

1) Huffman wding

Algorithm:

INPUT : Probability distribution

OUTPUT: Code (optimal)

Ex.1.2

C) de

$$S(X) = -0.1 \cdot \log_2 0.8 - 0.1 \cdot \log_2 0.1$$

$$AVG(c) = [0.8].1 + (0.1).2 + (0.05).3$$

$$S(x) = \left[-\frac{1}{3} \cdot \frac{1}{9} \cdot \frac{1}{3}\right] \cdot \frac{3}{3} = -\frac{1}{9} \cdot \frac{1}{3}$$

21.5.

$$=\frac{7}{3}=\frac{1.666...}{3}$$

AA: 1/gAA 1/gAB 1/gAB 1/gRA 1/gRA

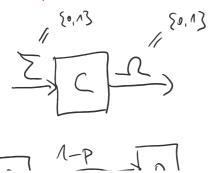
To compare we need Average per symbol

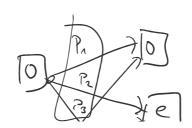
3.222 = 1.6111.

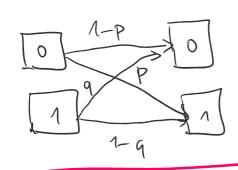
As the number of repetitions in encoded together approaches W_1 then $\frac{AVG(C)}{M}$ reaches S(X).

AND SANDANT

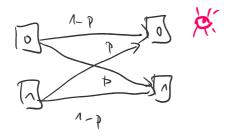
NOISY SHANNON THEORY (ERFOR GREETING GOES)



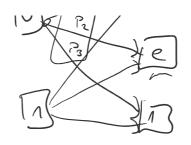




Binary Symmetric Channel



We have P < 1/2.

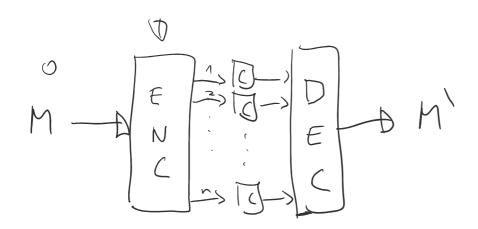


P(kle) -sprebability of output be if I was on the input

PRINCIPLE OF MAXIMUM LIKELY HOOD

If you observe ontput "O" how to interpret it?

Maximum likelyhood says that if you observe O, then you should interpret it (decode it) as O soing sent, because it is more probable of the two possibilities.



0 -) 000

How to decode? Use the maximum likely hood!

1-)117

#1 = 2 decode as 1

111, 110,011,101) 1

 $P_{V}(000|001) = (1-p)(1-p)p$ input output $P_{V}(000|001) = (1-p)(1-p)p$ input output

Pr (M7 1001) = P.P. (1-P)

Pr (world de coding to 000)

 $= (A-p)^{2} + 3(n-p)^{2} \cdot 7 > (1-p)$

Peroaing
if #1 > K then accode 1

if #1 Sk then apcode O

Probability of Louise 1 de coding)

Code vate

Hamming distance

$$C_1 \sim conewords$$
 $C = \{c_i\}$ Codes

5 4 3

EX 1.6

(N'M'Y)h-length of code words -> God vate M- number of codewords determine the max-lizh bood d-minimum distance I the number of every sody can detect or correct 11111 01101 up to Lernors can be corrected over alphabet largest minimum distance & 80,..., 973 code of M warewords with length in (an have

Perfect codes and sphere parking bound $M \left(\binom{h}{0} \right) + \left(\binom{h}{1} \right) \left(q-1 \right) + \left(\binom{h}{2} \right) \left(q-n \right)^2 + \dots + \left(\binom{h}{k} \right) \left(q-n \right)^k \right) \leq q^k$ M = 2k+1 M = 4 Restert (1)