Elliptic curve cyptography

Elliptic curve E:
$$\chi^2 = x^3 + ax + b$$

We work with "non-singular" curves

Z/p - multiplicative group mod p will be substituted with a group defined by an elliptic arre.

Elliptic Curve contains points which together with addition deline a group

$$\chi_1^2 = \chi_1^3 + 6 \chi_1 + 6$$

$$P_{1} + P_{2} = P_{3} = (x_{3}, 5_{3})$$

$$\chi_{2} = \chi_{3} - \chi_{4} - \chi_{5}$$

$$\lambda_3 = \lambda^{(-)} - \lambda_3$$

$$\lambda_3 = \lambda^{(-)} - \lambda_3$$

$$\lambda = \begin{cases} \frac{b^{2} - b^{1}}{\sqrt{2} \times 1} & \text{if } P_{1} \\ \sqrt{3} \times 1 + \frac{b^{2}}{2} & \text{if } P_{1} - P_{2} \end{cases}$$

mod P

if two points lie "above" each other

EXAMPLE Calculate
$$3P = (P+P)+P$$
 for $P=(0,1)$ and $E: S^2 = x^3 + 4x + 1 \mod 5$

Does P lie on E ? $(P \in E)$ $1 = 0 + 4.0 + 1 \mod 5$

$$53^{2} \times (71^{2} \times 3) - 51 \mod 5$$

$$= 2(0-4)-1 \mod 5$$

$$= 2-1=1 \mod 5$$

$$27 = (4,1)$$

$$1^{2} = 4^{3} + 4.4 + 1 \mod 5$$

$$= -1 - 4 + 1$$

$$= -5 + 1 = 1$$

Cryptography 2019 Page 2

$$3P = (14)$$

$$A = (14)$$

$$A = 13 + 4 + 1$$

$$A = 5 + 1 = 1 \mod 5$$

$$P_{1} = (x_{1} \otimes x_{1})$$

$$P_{2} = (x_{1} \otimes x_{1})$$

$$P_{3} = (x_{1} \otimes x_{1})$$

$$P_{4} = (x_{1} \otimes x_{1})$$

$$P_{5} = (x_{1} \otimes x_{1})$$

$$P_{7} = (x_{1} \otimes$$

P1+72 = 0

$$(P+Q+R) = (P+Q)+R = P+(Q+R)$$

NOW WE KNOW THAT (E,+) Lorms a grap $P+Q=Q+P \int$

NOW WE KNOW THAT (E,t) Lovins a commutative group (Abelian)

$$(1,6) + (6,1) = (1,1)$$

How many elements does (E, +) have?

Hesse's theorem

E: modp has N points

and | N-p-1 | = 2 Jp

Upper Sound

lower bonnd

$$-(N-p-1) \leq 2J_{\overline{p}}^{2}$$

P= 2

$$N < 5 + 4 + 1 = 10$$

How many points E: B= x + 4x + 1 have? [62=1 my]

sisthis a Quadratic Residue? Euler's Criterian

x 1,3+4x+1 mid 5 | QR? / A

		<i>7</i> 4		Enle
\times	x3 +4x +1 mod 5	QR?	5	
	1	V	(1,4) 2	
1	1	\checkmark	(1,4) 2 (1,4) 2	
2	2	×	_	
3		\	(0) 1	
4	1	\ \ \	(0) 1 (1,C ₁) 2	
	P			(hr o)

aP+bP = (a+b)P

An example of two elliptic curves with the same number of points but a different structure:

$$3^{2} = x^{3} + 6x + 6 \quad \text{mod } 7 = \left\{ (3,3)(3,4), (5,0), \infty \right\} = \left\{ (2,x^{2}), 4 \right\}$$

$$4 \quad 4 \quad 4$$

Discrete logarithm problem with EC

in (E, t)

$$Q = x. P$$

Cinding &, S.A. I holds is EC discrete losavith in equivalent This is computationally hard

Why?

12* p = p-1 ~ -> this uses numbers of size log, p

(E,+) = p+1+27 -) this uses numbers of site bg=P

lato want Ei modo with a large mamber of private and -

We want E: modp with a large number of points and a cyclic structure! (equivalent to (2/n,t)

/ El Gamal encuption

Private: X

Eucyption of m

Choose a random r ∈ {?,..., P-2} (hoose a random number

Encypt point M

CORRECT 6

-X= X mod Ouder (P)

Incorrect!

Phas order K

$$-xA = -x(x.P)$$

$$= 1 \mod \xi$$

$$= P + P + P - \cdots + P = P$$

$$= P$$

El Gamal Signatures

E mod p

Public:

Public

$$E \text{ (nod p)}$$
 $P - generator of (E, +)$
 $Q = X.P$

Private: X

6 = Ord (P)

Sign m:

1.) (house V randomly from 2/2-1 az q modp b= ~ (m-ax) mod (p-1) Sign w:

Choose V randowly from Zk

 $A = r.P = \left(a_{11}a_{2}\right)$

b= [] (m-q,x) mod &

Verily

Verity:

 $a_1Q + 5.A = mP$

 $a_{\lambda} \cdot x \cdot P + \sqrt{(m-a_{\lambda} \cdot x)} \cdot P =$

a, x.P+ (m-a, x).p

a, x.P+m.P-axP

= m. P

2.6 Pollard p-1 algorithm: TTPO IN SLIDES

m = [losaB] Glais aprime (slides q losn)

the smallest number divisible by all numbers & < B