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Graham Scan

• By Ronald Graham (1972)

• Algorithm cannot be extended to 3D

• Complexity: O(n.log(n))

• Can be applied also to large datasets

• The core of the algorithm is based on the “left 
turn” criterion which has to be fulfilled by all 
sorted triplets of points on the convex hull



Left turn criterion



Graham Scan

• In the first step, we find point P with the 
smallest y-axis value (when there are more 
such points, we take that one with the 
smallest x-axis value)

• In the second step, we sort all points in the 
ascending order according to the angle 
between a given point P and x axis



Graham Scan

• Then we go through the list of sorted points 
and for the triplet of subsequent points we 
check the left turn criterion:

– If we move counter-clockwise, these points are 
lying on the convex hull

– If we move clockwise, the middle point of the 
triplet cannot lie on the convex hull and has to be 
removed – this is repeated until the triplets 
change the direction back to counter-clockwise



Graham Scan

• If the triplet lies on one line, we can remove 
the middle point or keep it (according to 
current algorithm requirements)



Graham Scan

• Implementation of the left turn criterion:

– Using Half Edge

– We don’t have to calculate the angle between two 
line segments:

For three points (x1, y1), (x2, y2) a (x3, y3) we 
calculate the cross product of two vectors –
from (x1, y1) to (x2, y2) and from (x1, y1) to (x3, y3):

(x2 – x1)(y3 – y1) – (y2 – y1)(x3 – x1) 



Graham Scan

• When the result is:

0 points lie on one line

> 0 points are oriented counter-clockwise
(fulfill the left turn criterion)

< 0 points are oriented clockwise
(fulfill the right turn criterion)



Half Edge

• Data structure for storing the information
about neighboring vertices, edges, and faces

• Each edge is divided into two “half-edges“ 
with opposite orientation

• Each half-edge points to one face and one
vertex

• A reduced variant of this data structure can
skip some information, e.g., pointers to faces
(if we don’t need them)



Half Edge

• http://www.cgal.org/Manual/latest/doc_html
/cgal_manual/HalfedgeDS/Chapter_main.html

• http://halfedgelib.sourceforge.net/

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/HalfedgeDS/Chapter_main.html
http://halfedgelib.sourceforge.net/


Graham Scan - pseudocode

1. Find pivot q, the most right point qx = max(xi), q ∈ H 
(convex hull)

2. Sort all points according to the angle with q, index j
corresponds to this sorted order

3. If we find two points with the same angle, remove the 
one closer to q

4. Initialize j = 2, create stack Q
5. push(q, p1) to Q (indices of the two last points pt, pt-1)
6. For j < n (number of points) repeat:

if pj is on the left side from pt-1, pt
push pj to Q
j = j + 1

else pop Q



Graham Scan



Similar approach

• We find point P with the highest x-axis value
(it lies on the convex hull)

• We select a point Q inside the set (e.g., the
center of mass)



Similar approach

• From Q we shoot rays QAi and sort them
starting from QP



Similar approach

• We proces Ai one by one according to the
sorting and determine if the given vertex lies
on the convex hull

• Points A1, A2, …, An are sorted so for each
point we know its predecessor and successor:

– Ai-1 (predecessor), Ai, Ai+1 (successor)

• The criterion: The successor lies always on the 
left side from the line connecting Ai-1 with Ai, if 
it belongs to the convex hull



Similar approach

• For each triplet Ai-1, Ai, Ai+1 we have to
determine if Ai+1 lies on the left side or on the
right side from Ai-1 Ai

• We replace Ai-1, Ai, Ai+1 by their successors



Similar approach

• We replace Ai by Ai+1 and delete Ai



Incremental algorithm

• We select arbitrary three points forming a 
triangle (these will form an initial convex hull), 
we sort them counter-clockwise

• We find a set of so-called inner points (i.e.,
points lying outside this triangle)

• An arbitrary point from the inner points is 
added to the convex hull



Incremental algorithm



Incremental algorithm

• We have to find out (e.g., using determinant 
or Half Edge test) edges which are visible from 
the currently added point and those have to 
be removed from the convex hull



Incremental algorithm

• This is repeated until the inner points set is 
empty



Incremental algorithm



Incremental algorithm – sweep plane

• For simplicity, lets assume that all points have 
different x-axis values

• This incremental approach first sorts all points 
in the ascending order, according to their 
x-axis value. Then it traverses this list “from 
left to right” and incrementally constructs the 
convex hull



Incremental algorithm – sweep plane

• Adding a next point to the convex hull:

– From the current convex hull we select the 
“rightest” point and we connect it with the newly 
adding point from the list. This results in a non-
convex hull which has to be corrected.

– This correction removes points in both directions 
along the previous convex hull until we reach new 
correct convex hull



Incremental algorithm – sweep plane

• In this case we don’t have to remove any point 
in the clockwise order, but we have to remove 
points in the counter-clockwise order



Implementation

• For better understanding and implementation, 
we divide the convex hull to two parts, upper 
and lower envelope, separated by the most 
left and most right points L and P



Implementation

• Both envelopes are formed by polylines, the 
upper one always turning to the right, lower to 
the left

• We need two stacks to keep the envelope points
• In the k-th step of the algorithm we add the k-th

point to both upper and lower envelope and then 
we have to solve potential problems with the 
change of turn of such updated envelopes. So we 
will first remove the points from the envelope 
and the k-th point will be added only when it 
doesn’t change the turn of the envelope



Pseudocode

1. Sort points according to their x-axis value, mark them 
as b1, …, bn

2. Insert point b1: H = D = (b1) to the upper and lower 
envelope

3. For each point b = b2, …, bn:
1. Recompute the upper envelope:

1. Until |H|≥ 2, H = (…, hk-1, hk) and angle hk-1hkb is oriented to the 
left:

1. Remove the last point hk from envelope H

2. Add point b to envelope H

2. Symmetrically for the lower envelope (with orientation to 
the right)

4. Resulting hull is formed by points in H and D



Angle orientation from determinant

• Lets assume a classical coordinate system in
2D, we want to determine the orientation of 
angle hk-1hkb

– We define vector u = (x1, y1) as a difference 
between coordinates of hk and hk-1 and a vector v 
= (x2, y2) as a difference between coordinates of b 
and hk

– Matrix M is defined as



Angle orientation from determinant

• Angle is left-oriented when det M = x1y2 – x2y1

je non-negative



Divide and conquer

• Complexity O(n log(n))

• More complex implementation

• Principle:

– Dividing the input set S into two subsets S1 and S2

of the same size, processing them separately

– Both solutions are subsequently merged using
upper and lower common tangents t1 and t2 –
merging takes O(n)



Divide and conquer

• Two subsets can be further divided until the
solution is geometrically trivial (triplet of
points forming a triangle)

• We demonstrate the pseudocode on two
subsets A, B

– We assume that any three points lie on a line and 
any two points share the same x-coordinate value



Pseudocode

1. Sort S according to x value

2. Divide S to two subsets A, B, each containing
n/2 points

3. Construct convex hulls H(A) and H(B)

4. Merge convex hulls H = H(A) U H(B)
1. Find lower tangent t1

2. Find upper tangent t2

3. Replace segments of hulls A, B between these 
tangents



Finding the lower tangent

• From the extreme points a, b of A, B we find a 
corresponding point b to a given point a
whose connecting line forms the lower
tangent of subset B

• From point b we search for such a point a
whose connecting line forms the lower
tangent of subset A

• We repeat this until a, b is not the tangent of
both A and B



Finding the lower tangent



Finding the lower tangent

1. Search for point a = the most right point of A

2. Search for point b = the most left point of B

3. Repeat until t1 = ab is not a lower tangent of
A anf B

1. Repeat until t1 is not the lower tangent of A

1. a = a – 1

2. Repeat until t1 is not the lower tangent of B

1. b = b + 1



Finding the upper tangent

• Symmetric…



TASK 3

• Implement the Graham-Scan algorithm 
(according to your preference ☺)


