
Orthogonal searching
www.sciencedirect.com

www.cs.wustl.edu

www.sable.mcgill.ca

Problem definition

• Lets consider a finite set of points P. The
goal is to find a structure enabling
efficient search for points in a given
range.

• E.g., in 2D rectangle:

Solution

• k-D trees

• Range trees
wp.soulwasted.net

graphics.stanford.edu

k-D trees

• Usage – GIS, computer graphics, databases
• By dividing the space we create a binary

tree. Its inner nodes contain the dividing
axis and two pointers, leaves contain the
data

• Disadvantages
– Sensitive to the order of points entering the

structure

k-D trees

• Initial requirement: any two points from P
don’t have the same x or y axis (this
requirement can be later removed)

• We build the tree by alternating the
division by x and y axis

k-D trees

• Line l1 intersects with p4, which lies in the
center of the set of points sorted
according to x axis

• This divides the space
 to two half-planes,
 in each of them we
 divide according to y
 axis using the same
 criterion

k-D trees

• Lines l2, l3 intersect points lying in the middle
of “their” half-planes (according to y axis)

• We divide recursively until the half-planes
contain more points

 or until we reach
 a given number of
 iteration (depth of
 the tree)

k-D trees

k-D trees

Pseudocode

k-D trees

• Inserting to k-D tree:
public void insert(Vector <T> x)
{
 root = insert(x, root, 0);
}

// this code is specific for 2-D trees
private KdNode<T> insert(Vector <T> x, KdNode<T> t, int level)
{
 if (t == null)
 t = new KdNode(x);

 int compareResult = x.get(level).compareTo(t.data.get(level));
 if (compareResult < 0)
 t.left = insert(x, t.left, 1 - level);
 else if(compareResult > 0)
 t.right = insert(x, t.right, 1 - level);
 else
 ; // do nothing if equal

 return t;
}

k-D trees

• Inserting node (55, 62)

Region

k-D trees

• Searching for a given range:
 /**
 * Print items satisfying
 * lowRange.get(0) <= x.get(0) <= highRange.get(0)
 * and
 * lowRange.get(1) <= x.get(1) <= highRange.get(1)
 */
 public void printRange(Vector <T> lowRange,
 Vector <T>highRange)
 {
 printRange(lowRange, highRange, root, 0);
 }

private void
printRange(Vector <T> low,Vector <T> high,
 KdNode<T> t, int level)
{
 if (t != null)
 {
 if ((low.get(0).compareTo(t.data.get(0)) <= 0 &&
 t.data.get(0).compareTo(high.get(0)) <=0)
 &&(low.get(1).compareTo(t.data.get(1)) <= 0 &&

 t.data.get(1).compareTo(high.get(1)) <= 0))
 System.out.println("(" + t.data.get(0) + "," +
 t.data.get(1) + ")");
 if (low.get(level).compareTo(t.data.get(level)) <= 0)
 printRange(low, high, t.left, 1 - level);
 if (high.get(level).compareTo(t.data.get(level)) >= 0)
 printRange(low, high, t.right, 1 - level);
 }
}

Range search

k-D trees

• Complexity:
– Building k-D tree
• O(n log n)
• Memory complexity O(n)

– Search
• O(n1-1/d + k), where d is dimension, k is the number

of nodes in a given query range [x,x’] x [y, y’]

k-D trees

• Removing node from k-D tree
– Efficient solution doesn’t exist, a node is

marked as deleted

• Balancing k-D tree
– Any known strategy ensuring the balance of

2-D tree
– Can be reached by repeated balancing the

tree

Assignment

• Implement k-D tree to the basic
framework and visualize the dividing lines

Implementation

• KdNode:
– int k = 2; // dimensionality
– int depth = 0; // current depth
– Point id = null; // point representation
– KdNode parent = null; // pointer to parent

node
– KdNode lesser = null; // pointer to left child
– KdNode greater = null; // pointer to right

child

Implementation

• Point
– double x;
– double y;

• Store the results, e.g., to:
– TreeSet<KdNode> results;

• The comparator of points should be
implemented using the Euclidean distance

