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Problem definition

• Lets consider a finite set of points P. The 
goal is to find a structure enabling 
efficient search for points in a given 
range. 

• E.g., in 2D rectangle:



Solution

• k-D trees 

• Range trees
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k-D trees

• Usage – GIS, computer graphics, databases 
• By dividing the space we create a binary 

tree. Its inner nodes contain the dividing 
axis and two pointers, leaves contain the 
data 

• Disadvantages 
– Sensitive to the order of points entering the 

structure



k-D trees

• Initial requirement: any two points from P 
don’t have the same x or y axis (this 
requirement can be later removed) 

• We build the tree by alternating the 
division by x and y axis



k-D trees

• Line l1 intersects with p4, which lies in the 
center of the set of points sorted 
according to x axis 

• This divides the space  
    to two half-planes,  
    in each of them we  
    divide according to y 
    axis using the same 
    criterion



k-D trees

• Lines l2, l3 intersect points lying in the middle 
of “their” half-planes (according to y axis) 

• We divide recursively until the half-planes 
contain more points  

    or until we reach  
    a given number of  
    iteration (depth of  
    the tree) 
    



k-D trees



k-D trees



Pseudocode



k-D trees

• Inserting to k-D tree:
public void insert(Vector <T> x) 
{ 
 root = insert( x, root, 0); 
} 

// this code is specific for 2-D trees 
private KdNode<T> insert(Vector <T> x, KdNode<T> t, int level) 
{ 
 if (t == null) 
    t = new KdNode(x); 

 int compareResult = x.get(level).compareTo(t.data.get(level)); 
 if (compareResult < 0) 
    t.left = insert(x, t.left, 1 - level); 
 else if( compareResult > 0) 
    t.right = insert(x, t.right, 1 - level); 
 else 
  ;  // do nothing if equal 

 return t; 
}



k-D trees

• Inserting node (55, 62)



Region



k-D trees

• Searching for a given range:
 /** 
  * Print items satisfying 
  * lowRange.get(0) <= x.get(0) <= highRange.get(0) 
  * and 
  * lowRange.get(1) <= x.get(1) <= highRange.get(1) 
  */ 
 public void printRange(Vector <T> lowRange, 
         Vector <T>highRange) 
 { 
  printRange(lowRange, highRange, root, 0); 
 }



private void  
printRange(Vector <T> low,Vector <T> high, 
                                     KdNode<T> t, int level) 
{ 
 if (t != null) 
 { 
      if ((low.get(0).compareTo(t.data.get(0)) <= 0  &&  
   t.data.get(0).compareTo(high.get(0)) <=0) 
    &&(low.get(1).compareTo(t.data.get(1)) <= 0 &&  

 t.data.get(1).compareTo(high.get(1)) <= 0)) 
  System.out.println("(" + t.data.get(0) + "," +  
      t.data.get(1) + ")"); 
    if (low.get(level).compareTo(t.data.get(level)) <= 0) 
   printRange(low, high, t.left, 1 - level); 
    if (high.get(level).compareTo(t.data.get(level)) >= 0) 
    printRange(low, high, t.right, 1 - level); 
 } 
}



Range search



k-D trees

• Complexity: 
– Building k-D tree   
• O(n log n) 
• Memory complexity O(n) 

– Search 
• O(n1-1/d + k), where d is dimension, k is the number 

of nodes in a given query range [x,x’] x [y, y’]



k-D trees

• Removing node from k-D tree  
– Efficient solution doesn’t exist, a node is 

marked as deleted 

• Balancing k-D tree 
– Any known strategy ensuring the balance of 

2-D tree 
– Can be reached by repeated balancing the 

tree



Assignment

• Implement k-D tree to the basic 
framework and visualize the dividing lines



Implementation

• KdNode: 
– int k = 2; // dimensionality 
– int depth = 0; // current depth 
– Point id = null; // point representation 
– KdNode parent = null; // pointer to parent 

node 
– KdNode lesser = null; // pointer to left child 
– KdNode greater = null; // pointer to right 

child



Implementation

• Point 
– double x; 
– double y; 

• Store the results, e.g., to: 
– TreeSet<KdNode> results; 

• The comparator of points should be 
implemented using the Euclidean distance


