

yagosweb.blogspot.com

Delaunay triangulation

jonathanpuckey.com

www.comp.lancs.ac.uk

Delaunay triangulation

- Triangulation aiming to preserve the triangles to be as equilateral as possible (in such a representation, each triangle represents the local value on the surface in the best way)
- It is unique
 - Independent on the starting point or the orientation of the input dataset
 - If 4 and more points are not lying on a circle

Delaunay triangulation

- Input: $P = \{p_1, p_2, ..., p_n\}$
- Output: Triangulation T for P
- Definition of triangulation *T* for *P* represents the space division into the set of *m* triangles $T = \{t_1, t_2, ..., t_m\}$ which fulfill:
 - Two arbitrary triangles can share maximally one edge
 - The union of all triangles from T forms the convex hull of P
 - None of the triangles contains another point from P

Active Edge List (AEL)

- Data structure often used for construction of DT
- Contains the topology of the DT triangles
- Let's consider two adjacent triangles t_i, t_j from DT, sharing one edge marked as e_{ij} in t_i and as e_{ji} in t_j
- Each edge e_{ij} (Active Edge) in t_i triangle oriented counter-clockwise keeps:
 - Pointer to the following edge e_{i+1} in t_i
 - Pointer to edge e_{ji} from the adjacent triangle t_j

Active Edge List (AEL)

- Except for edges lying on the convex hull *H*, each edge *e* from DT is represented twice (as *e*_{ij} and *e*_{ji}), with different orientations
- These doubled edges are called **twin edges**
- Each triangle is then described by a triplet of edges (e_{ij}, e_{i+1j}, e_{i+2j}) with counter-clockwise orientation and forming a Circular List
- The list of all such edges forms the Active Edge List

Active Edge List (AEL)

DT construction – algorithms

- Direct construction:
 - Local switching
 - Incremental approach
 - Divide and conquer
- Indirect construction:
 Via Voronoi diagram

Local switching

- Modifying of a general triangulation to DT
- Based on switching the "illegal" edges in adjacent triangles forming a convex quad

• Complexity *O*(*n*²)

Local switching

Algorithm: Delaunay Triangulation Local(P)

- 1. Create some triangulation T(P)
- 2. legal = false;
- 3. while T(P) !legal
- 4. legal = true;
- 5. Repeat for each e_i in *T(P)*
- 6. Take edge e_i and find its incident triangles t₁ and t₂
- 7. If the union of t_1 and t_2 is convex and illegal
- Legalize (t₁, t₂);

9. legal = false;

Edge legalization

- **Edge flip** = swapping the quad diagonals
- The resulted triangles are both legal = locally optimal according to the selected criterion

Edge legalization

• Typical criteria:

...

- Minimization of the maximal angle
- Vertices lying inside a circumscribed circle of the triangle
- Minimal/maximal triangle height v
- Minimal/maximal area of triangle S

- Can be used in 2D and 3D
- Incremental addition of points into already created DT
- For already existing Delaunay edge e = p₁p₂, we search for such a point p which has the minimal Delaunay distance d_D(p₁p₂, p) from p₁p₂
- Each Delaunay edge is oriented, the point p is searched only on the left side from this edge
- We use the test for orientation of the triangle vertices if it is counter-clockwise (determinant test)

- We add edges of triangle (p_1, p_2, p) to DT
- If such a point p does not exist (the examined edge lies on the convex hull), we change the edge orientation and repeat the search

• Complexity *O*(*n*²)

Delaunay distance

- Let k(S, r) be a circle and I a line intersecting with k in points a, b and p point lying on k
- Delaunay distance of point p from edge a,b is marked as d_D(h, p)

 $d_D(h,p) = \begin{cases} -r \text{ Points } S, p \text{ are in the opposite halfplane wrt. } I \\ r \text{ Points } S, p \text{ are in the same halfplane wrt. } I \end{cases}$

- When constructing, we can use the modified AEL structure:
 - It contains edges *e* for whose we are searching for points *p*, it doesn't store the topology model

Pseudocode

Algorithm: Delaunay Triangulation Incremental (S, AEL, DT)

- 1. p_1 = random point from *P*, p2 = the closest point to p_1
- 2. create edge $e = p_1 p_2$;
- 3. $p = d_D(e)$, point with the smallest Delaunay distance left from e
- 4. if p = NULL, swap orientation $e = p_1p_2$ to $e = p_2p_1$ and go back to 3
- 5. $e_2 = p_2 p_2, e_3 = p p_1$
- 6. add e_1, e_2, e_3 to AEL
- 7. while AEL not empty do
- 8. $e = p_1 p_2$ first edge from AEL
- 9. swap orientation $e = p_1 p_2$ to $e = p_2 p_1$
- 10. point p with the smallest Delaunay distance $d_D(e)$ left from e
- 11. if *p* != *NULL*
- 12. $e_2 = p_2 p_2, e_3 = p p_1$
- 13. add e_2 , e_3 to AEL (if these or their flips are not in AEL or DT)
- 14. Add *e* to DT
- 15. pop (*e*)

Pseudocode

- Algorithm for adding edge *e* to AEL checks if AEL already contains the pair *e'* with opposite orientation.
- If so, e is removed from AEL.
- If not, e is added to AEL.
- Edge *e* is in both cases added to DT.
- The triangulation is stored triangle by triangle.

Algorithm: Add (*e = ab, AEL, DT*)

- 1. create edge *e'* = *ba*
- 2. if (*e'* is in AEL)
- 3. remove *ab* from AEL
- 4. else
- 5. push *ab* to AEL
- 6. push *ab* to DT

- Uses so-called simplex (bounding triangle)
- Frequent method for DT construction
- Complexity *O*(*n*²)
- Principle:
 - In each step we add one point to DT and perform the legalization of DT

- Input: set $P = \{p_0, p_1, ..., p_n\}$ of points in a plane
- Select p₀ as a point with the highest y-axis value (or also the x-axis)
- We add two other points p₋₁ (sufficiently low and far away to the right) and p₋₂ (sufficiently high and far away to the left) so that P lies inside the triangle p₀ p₋₁ p₋₂

- We create the DT sets {p₋₂, p₋₁, p₀, p₁, ..., p_n} and at the end we remove all edges containing points p₋₂ and p₋₁
- DT for the set {p₋₂, p₋₁, p₀ } is the triangle {p₋₂, p₋₁, p₀ }

- We don't want to determine the exact position of p₋₂, p₋₁, so for determining the position of p_j wrt. the oriented line we use the following equivalence:
- 1. p_j lies on the left side from $p_i p_{-1}$
- 2. p_j lies on the left side from $p_{-2}p_i$
- 3. $p_j > p_i$ in a lexicographic order according to y-axis and then to x-axis

Algorithm DELAUNAYTRIANGULATION(P)

Input. A set P of n + 1 points in the plane.

Output. A Delaunay triangulation of P.

- Let p₀ be the lexicographically highest point of P, that is, the rightmost among the points with largest y-coordinate.
- Let p₋₁ and p₋₂ be two points in ℝ² sufficiently far away and such that P is contained in the triangle p₀p₋₁p₋₂.
- 3. Initialize \mathcal{T} as the triangulation consisting of the single triangle $p_0 p_{-1} p_{-2}$.
- 4. Compute a random permutation p_1, p_2, \ldots, p_n of $P \setminus \{p_0\}$.
- 5. for $r \leftarrow 1$ to n
- 6. **do** (* Insert p_r into \mathfrak{T} : *)
- 7. Find a triangle $p_i p_j p_k \in \mathcal{T}$ containing p_r .
- 8. **if** p_r lies in the interior of the triangle $p_i p_j p_k$
- 9. then Add edges from p_r to the three vertices of $p_i p_j p_k$, thereby splitting $p_i p_j p_k$ into three triangles.
- 10. LEGALIZEEDGE $(p_r, \overline{p_i p_j}, \mathfrak{T})$
- 11. LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathcal{T})$
- 12. LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathcal{T})$
- 13. else (* p_r lies on an edge of $p_i p_j p_k$, say the edge $\overline{p_i p_j}$ *)
- 14. Add edges from p_r to p_k and to the third vertex p_l of the other triangle that is incident to $\overline{p_i p_j}$, thereby splitting the two triangles incident to $\overline{p_i p_j}$ into four triangles.
- 15. LEGALIZEEDGE $(p_r, \overline{p_i p_l}, \mathfrak{T})$
- 16. LEGALIZEEDGE $(p_r, \overline{p_l p_j}, \mathcal{T})$
- 17. $\text{LEGALIZEEDGE}(p_r, \overline{p_j p_k}, \mathfrak{T})$
- 18. LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathcal{T})$
- 19. Discard p_{-1} and p_{-2} with all their incident edges from \mathcal{T} .

20. return T

LEGALIZEEDGE $(p_r, \overline{p_i p_j}, \mathfrak{T})$

- 1. (* The point being inserted is p_r , and $\overline{p_i p_j}$ is the edge of \mathcal{T} that may need to be flipped. *)
- 2. **if** $\overline{p_i p_j}$ is illegal
- 3. **then** Let $p_i p_j p_k$ be the triangle adjacent to $p_r p_i p_j$ along $\overline{p_i p_j}$.
- 4. (* Flip $\overline{p_i p_j}$: *) Replace $\overline{p_i p_j}$ with $\overline{p_r p_k}$.
- 5. LEGALIZEEDGE $(p_r, \overline{p_i p_k}, \mathfrak{T})$
- 6. LEGALIZEEDGE $(p_r, \overline{p_k p_j}, \mathfrak{T})$

Step 7 – finding the triangle containing *p*

- The most computationally demanding step (it is not efficient to search for *p* in all triangles)
- The most common methods:
 - Walking method (heuristic method, $O(n^2)$)
 - DAG tree (ternary tree construction, O(n log n))

Walking method

- By traversing the adjacent triangles we are gradually approaching the searched triangle t_i
- We are testing the mutual position of p and edge e_{ij} in AEL.

 $p \begin{cases} \text{on the left side from } e_{i,j} \text{ in } t_i, & \text{we are testing } e_{i+1,j} \text{ in } t_i \\ \text{on the right side from } e_{i,j} \text{ in } t_i, & \text{we are testing } e_{j,i} \text{ in } t_j \end{cases}$

 Point p lies on the left side from all edges of the searched triangle

Divide and conquer

- Input set of points is divided into smaller parts, each of them is triangulated separately
- Resulting triangulations are merged and legalized

Assignment

• Implement the Delaunay triangulation using the incremental approach

- We have to be able to determine the circumscribed circle = circle containing three vertices
- We can do this in the following way:
 - Create a class RealPoint(float x, float y)
 - Its *distance* method calculates the distance between points p1 and p2:

 $- sqrt((p_1.x - p_2.x)^2 + (p_1.y - p_2.y)^2)$

 Class Circle is determined by its center (RealPoint c) and radius (float r)

- Testing if a point *p* lies inside a circle:
 - Method *inside*
 - if (c.distanceSq(p) < r²) return true; where distanceSq = $(p_1 \cdot x - p_2 \cdot x)^2 + (p_1 \cdot y - p_2 \cdot y)^2$

- Calculating the circle with three points lying on it (RealPoint p₁, p₂, p₃):
 - Method *circumCircle*(p_1, p_2, p_3) $cp = crossproduct (p_1, p_2, p_3);$ if (cp <> 0) { $p_1Sq = p_1.x^2 + p_1.y^2;$ $p_2Sq = p_2.x^2 + p_2.y^2;$ $p_3Sq = p_3.x^2 + p_3.y^2;$ num = p_1 Sq *(p_2 .y - p_3 .y) + p_2 Sq *(p_3 .y - p_1 .y) + $p_3Sq *(p_1.y - p_2.y);$ cx = num / (2.0 * cp);num = p_1 Sq *(p_3 .x - p_2 .x) + p_2 Sq*(p_1 .x - p_3 .x) + $p_3Sq^*(p_2.x - p_1.x);$ cy = num / (2.0f * cp); c.set(cx, cy);c.set(cx, cy); $r = c.distance(p_1);$

- crossproduct (p₁, p₂, p₃)>
 - $u_{1} = p_{2}.x() p_{1}.x();$ $v_{1} = p_{2}.y() - p_{1}.y();$ $u_{2} = p_{3}.x() - p_{1}.x();$ $v_{2} = p_{3}.y() - p_{1}.y();$ return $u_{1} * v_{2} - v_{1} * u_{2};$