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Delaunay triangulation

• Triangulation aiming to preserve the triangles 
to be as equilateral as possible (in such a 
representation, each triangle represents the 
local value on the surface in the best way)

• It is unique

– Independent on the starting point or the 
orientation of the input dataset

– If 4 and more points are not lying on a circle



Delaunay triangulation

• Input: P = {p1, p2, …, pn}

• Output: Triangulation T for P

• Definition of triangulation T for P represents the 
space division into the set of m triangles T = {t1, 
t2, …, tm} which fulfill:

– Two arbitrary triangles can share maximally one edge

– The union of all triangles from T forms the convex hull 
of P

– None of the triangles contains another point from P



Active Edge List (AEL)

• Data structure often used for construction of DT

• Contains the topology of the DT triangles

• Let’s consider two adjacent triangles ti, tj from DT,
sharing one edge marked as eij in ti and as eji in tj

• Each edge eij (Active Edge) in ti triangle oriented 
counter-clockwise keeps:

– Pointer to the following edge ei+1 in ti 

– Pointer to edge eji from the adjacent triangle tj



Active Edge List (AEL)

• Except for edges lying on the convex hull H, each
edge e from DT is represented twice (as eij and
eji), with different orientations

• These doubled edges are called twin edges

• Each triangle is then described by a triplet of 
edges (eij, ei+1j, ei+2j) with counter-clockwise 
orientation and forming a Circular List

• The list of all such edges forms the Active Edge
List 



Active Edge List (AEL)



DT construction – algorithms

• Direct construction:

– Local switching

– Incremental approach

– Divide and conquer

• Indirect construction:

– Via Voronoi diagram



Local switching

• Modifying of a general triangulation to DT

• Based on switching the “illegal” edges in 
adjacent triangles forming a convex quad

• Complexity O(n2)



Local switching



Edge legalization

• Edge flip = swapping the quad diagonals

• The resulted triangles are both legal = locally 
optimal according to the selected criterion



Edge legalization

• Typical criteria:

– Minimization of the maximal angle

– Vertices lying inside a circumscribed circle of the 
triangle

– Minimal/maximal triangle height v

– Minimal/maximal area of triangle S

– …



Incremental approach

• Can be used in 2D and 3D
• Incremental addition of points into already 

created DT
• For already existing Delaunay edge e = p1p2, we 

search for such a point p which has the minimal
Delaunay distance dD(p1p2 , p) from p1p2

• Each Delaunay edge is oriented, the point p is 
searched only on the left side from this edge

• We use the test for orientation of the triangle 
vertices if it is counter-clockwise (determinant
test)



Incremental approach

• We add edges of triangle (p1 , p2 , p) to DT

• If such a point p does not exist (the examined 
edge lies on the convex hull), we change the 
edge orientation and repeat the search

• Complexity O(n2)



Delaunay distance

• Let k(S, r) be a circle and l a line intersecting 
with k in points a, b and p point lying on k

• Delaunay distance of point p from edge a,b is 
marked as dD(h, p)



Incremental approach

• When constructing, we can use the modified
AEL structure:

– It contains edges e for whose we are searching for 
points p, it doesn’t store the topology model



Incremental approach



Incremental approach



Incremental approach



Pseudocode



Pseudocode



Incremental insertion method

• Uses so-called simplex (bounding triangle)

• Frequent method for DT construction

• Complexity O(n2)

• Principle:

– In each step we add one point to DT and perform 
the legalization of DT



Incremental insertion method

• Input: set P = {p0, p1, …, pn} of points in a plane

• Select p0 as a point with the highest y-axis 
value (or also the x-axis)

• We add two other points p-1 (sufficiently low 
and far away to the right) and p-2 (sufficiently 
high and far away to the left) so that P lies 
inside the triangle p0 p-1 p-2



Incremental insertion method

• We create the DT sets {p-2 ,p-1, p0, p1, …, pn}
and at the end we remove all edges containing 
points p-2 and p-1

• DT for the set {p-2 ,p-1, p0 } is the triangle {p-2 ,
p-1, p0 } 



Incremental insertion method

• We don’t want to determine the exact 
position of p-2, p-1 , so for determining the 
position of pj wrt. the oriented line we use the 
following equivalence: 









Step 7 – finding the triangle containing
p

• The most computationally demanding step (it 
is not efficient to search for p in all triangles)

• The most common methods:

– Walking method (heuristic method, O(n2))

– DAG tree (ternary tree construction, O(n log n))



Walking method

• By traversing the adjacent triangles we are 
gradually approaching the searched triangle ti

• We are testing the mutual position of p and 
edge eij in AEL.

• Point p lies on the left side from all edges of 
the searched triangle





Divide and conquer

• Input set of points is divided into smaller 
parts, each of them is triangulated separately

• Resulting triangulations are merged and 
legalized



Assignment

• Implement the Delaunay triangulation using 
the incremental approach



Useful details for implementation

• We have to be able to determine the 
circumscribed circle = circle containing three 
vertices

• We can do this in the following way:

– Create a class RealPoint(float x, float y)

• Its distance method calculates the distance between 
points p1 and p2:
– sqrt((p1.x - p2.x)2 + (p1.y - p2.y)2)



Useful details for implementation

• Class Circle is determined by its center
(RealPoint c) and radius (float r)

• Testing if a point p lies inside a circle:

– Method inside

• if (c.distanceSq(p) < r2) return true;

where distanceSq = (p1.x - p2.x)2 + (p1.y - p2.y)2



Useful details for implementation

• Calculating the circle with three points lying on it
(RealPoint p1, p2, p3):
– Method circumCircle(p1, p2, p3)

cp = crossproduct (p1, p2, p3);
if (cp <> 0) {

p1Sq = p1.x2 + p1.y2; 
p2Sq = p2.x2 + p2.y2; 
p3Sq = p3.x2 + p3.y2; 
num = p1Sq *(p2.y - p3.y) + p2Sq *(p3.y - p1.y) + 

p3Sq *(p1.y - p2.y); 
cx = num / (2.0 * cp); 
num = p1Sq *(p3.x - p2.x) + p2Sq*(p1.x - p3.x) + 

p3Sq*(p2.x - p1.x); 
cy = num / (2.0f * cp); c.set(cx, cy);
c.set(cx, cy); 
r = c.distance(p1);



Useful details for implementation

• crossproduct (p1, p2, p3)>
u1 = p2.x() - p1.x(); 

v1 = p2.y() - p1.y(); 

u2 = p3.x() - p1.x(); 

v2 = p3.y() - p1.y(); 

return u1 * v2 - v1 * u2;


