

Delaunay triangulation

* Triangulation aiming to preserve the triangles
to be as equilateral as possible (in such a
representation, each triangle represents the
local value on the surface in the best way)

* |tis unique
— Independent on the starting point or the

orientation of the input dataset

— If 4 and more points are not lying on a circle

Delaunay triangulation

* InpUt: P = {pll p2/ cee) pn}
e Qutput: Triangulation T for P

* Definition of triangulation T for P represents the
space division into the set of m triangles T = {t,
t,, ..., t,.} which fulfill:

— Two arbitrary triangles can share maximally one edge

— The union of all triangles from T forms the convex hull
of P
— None of the triangles contains another point from P

Active Edge List (AEL)

Data structure often used for construction of DT
Contains the topology of the DT triangles

Let’s consider two adjacent triangles t, t;from DT,
sharing one edge marked as e;int;and as e;; in t;

Each edge e (Active Edge) in t;triangle oriented
counter-clockwise keeps:

— Pointer to the following edge e,,; in t,
— Pointer to edge e; from the adjacent triangle t;

Active Edge List (AEL)

Except for edges lying on the convex hull H, each
edge e from DT is represented twice (as e;and
e;), with different orientations

These doubled edges are called twin edges

Each triangle is then described by a triplet of
edges (e;, €;,4; €;,5) With counter-clockwise
orientation and forming a Circular List

The list of all such edges forms the Active Edge
List

Active Edge List (AEL)

DT construction — algorithms

* Direct construction:
— Local switching
— Incremental approach
— Divide and conquer

* Indirect construction:
— Via Voronoi diagram

Local switching

 Modifying of a general triangulation to DT

e Based on switching the “illegal” edges in
adjacent triangles forming a convex quad

e Complexity O(n?)

Local switching

Algorithm: Delaunay Triangulation Local(P)

Create some triangulation T(P)
legal = false;
while T(P) !legal
legal = true;
Repeat for each e;jin T(P)
Take edge e;and find its incident triangles t; and t;
If the union of t; and t;is convex and illegal
Legalize (t3, t2);

L 00 NOULAEWNR

legal = false;

Edge legalization
* Edge flip = swapping the quad diagonals
* The resulted triangles are both legal = locally

optimal according to the selected criterion

: pk pk

P | P, B, | A
. edge flip By : B-,
' i | Bik |

o _ /P P |

Edge legalization

* Typical criteria:
— Minimization of the maximal angle

— Vertices lying inside a circumscribed circle of the
triangle

— Minimal/maximal triangle height v
— Minimal/maximal area of triangle S

Incremental approach

Can be used in 2D and 3D

Incremental addition of points into already
created DT

For already existing Delaunay edge e = p,p,, we
search for such a point p which has the minimal

Delaunay distance d,(p,p, , p) from p,p,

Each Delaunay edge is oriented, the point p is
searched only on the left side from this edge

We use the test for orientation of the triangle
vertices if it is counter-clockwise (determinant

test)

Incremental approach

* We add edges of triangle (p,, p,, p) to DT

 |f such a point p does not exist (the examined
edge lies on the convex hull), we change the
edge orientation and repeat the search

e Complexity O(n?)

Delaunay distance

e Let k(S, r) be a circle and / a line intersecting
with k in points a, b and p point lying on k

* Delaunay distance of point p from edge ag,b is
marked as d,(h, p)

—r Points §, p are in the opposite halfplane wrt. /

dﬂ(h! P) - {

r Points S, p are in the same halfplane wrt. /

Incremental approach

 When constructing, we can use the modified
AEL structure:

— |t contains edges e for whose we are searching for
points p, it doesn’t store the topology model

Incremental approach

change of [ﬁ) L

orientation *

Incremental approach

Incremental approach

Pseudocode

Algorithm: Delaunay Triangulation Incremental (S, AEL, DT)

1. p:1=random point from P, p2 = the closest point to p1

2. create edge e = pip;;

3. p=dp(e), point with the smallest Delaunay distance left from e

4. if p=NULL, swap orientation e = psp>toe = pop: and go back to 3

5. ex=pp, e3=pp;:

6. adde, e,, esto AEL

7. while AEL not empty do

8. e = pip; first edge from AEL

o. swap orientation e = piprtoe = pyp;:

10. point p with the smallest Delaunay distance dp(e) left from e
11. if p 1= NULL

12. €2 = p2p, €3 = pPp:1

13. add e;, esto AEL (if these or their flips are not in AEL or DT)
14. Add e to DT

15. pop (e)

Pseudocode

Algorithm for adding edge e to AEL checks if AEL already contains the pair e’ with opposite
orientation.

If so, e is removed from AEL.

If not, e is added to AEL.

Edge e is in both cases added to DT.

The triangulation is stored triangle by triangle.

Algorithm: Add (e = ab, AEL, DT)

create edge e’ = ba
if (e”is in AEL)
remove ab from AEL
else
push ab to AEL
push ab to DT

o Uk wh e

Incremental insertion method

Uses so-called simplex (bounding triangle)
Frequent method for DT construction
Complexity O(n?)

Principle:

— In each step we add one point to DT and perform
the legalization of DT

Incremental insertion method

* Input: setP={p, p,, ..., p,} Of points in a plane

* Select p, as a point with the highest y-axis
value (or also the x-axis)

* We add two other points p_, (sufficiently low
and far away to the right) and p_, (sufficiently
high and far away to the left) so that P lies
inside the triangle p, p_; p_,

P=2 Po

right convex hull

left convex hull
P—1

Incremental insertion method

* We create the DT sets {p_,,p.., Py Py --r P}
and at the end we remove all edges containing
points p_, and p_,

* DT for the set {p_,,p_;, py } is the triangle {p_,,
p-1; pO }

Incremental insertion method

e We don’t want to determine the exact

position of p_,, p_,, so for determining the
position of p; wrt. the oriented line we use the
following equivalence:

1. pjlies on the left side from pip-1
2. pjlies on the left side from p-zpi

3. p;j>piinalexicographic order according to y-axis and then to x-axis

pP—2

o1

Algorithm DELAUNAY TRIANGULATION(P)
Input. A set PP of n+ 1 points in the plane.
Output. A Delaunay triangulation of P.

1.

2.

ol S AR

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.
20.

Let py be the lexicographically highest point of P, that is, the rightmost among the points
with largest y-coordinate.
Let p_; and p_3 be two points in R? sufficiently far away and such that P is contained in
the triangle ppp_1p- 2.
Initialize T as the triangulation consisting of the single triangle ppp_1p_2.
Compute a random permutation py, p3,...,pp of P\ {po}.
forr«— 1ton
do (# Insert p, into T: #)
Find a triangle p;p;py € T containing p,.
il p, lies in the interior of the triangle p;p;py
then Add edges from p, to the three vertices of p;p;pg. thereby splitting p;p;py
into three triangles.
LEGALIZEEDGE(p,, pip;,T)
LEGALIZEEDGE(p,, p;pi, T)
LEGALIZEEDGE(p,, pipi, T)
else (+ p, lies on an edge of p;p;py, say the edge p;p; *)
Add edges from p, to p; and to the third vertex py of the other triangle that
is incident to p;p;, thereby splitting the two triangles incident to p;p; into
four triangles.
LEGALIZEEDGE(p,, pip;, T)
LEGALIZEEDGE(p,, p;p;,T)
LEGALIZEEDGE(p,, pipg,T)
LEGALIZEEDGE(p,, pipi, T)
Discard p_ and p_o with all their incident edges from 7T,
return T

py lies in the interior of a triangle

Pk

Pi
Pj

Pi

pr falls on an edge

Pi

Pj

Pk

LEGALIZEEDGE(p;, pipj,7)

1
2
3.
4.
5
6

(* The point being inserted is p,, and p;p; is the edge of T that may need to be flipped. *)
if pip;j is illegal
then Let p;ppy be the triangle adjacent to p,p;p; along p;p;.
(+ Flip p;p;j: *) Replace p;p; with p,py.
LEGALIZEEDGE(p,, Pipk, T)
LEGALIZEEDGE(p,, pxPj,7)

Step 7 —finding the triangle containing
p

 The most computationally demanding step (it
is not efficient to search for p in all triangles)
* The most common methods:

— Walking method (heuristic method, O(n?))
— DAG tree (ternary tree construction, O(n log n))

Walking method

* By traversing the adjacent triangles we are
gradually approaching the searched triangle t;

 We are testing the mutual position of p and
edge e; in AEL.

on the left side from €;jinf;, = we are testing €;1 jin {;
p

on the right side from €j jint;, we are testing €;; in{;

* Point p lies on the left side from all edges of
the searched triangle

Divide and conquer

* [nput set of points is divided into smaller
parts, each of them is triangulated separately

e Resulting triangulations are merged and
legalized

Assignment

* Implement the Delaunay triangulation using
the incremental approach

Useful details for implementation

 We have to be able to determine the
circumscribed circle = circle containing three
vertices

* We can do this in the following way:

— Create a class RealPoint(float x, float y)

 |ts distance method calculates the distance between
points pl and p2:
— sqrt((p;.x - po.X)? + (p1.y - P2.Y)?)

Useful details for implementation

* Class Circle is determined by its center
(RealPoint c) and radius (float r)

* Testing if a point p lies inside a circle:

— Method inside

o if (c.distanceSq(p) < r?) return true;
where distanceSq = (p;.x - p,.x)? + (p..y - p,.y)?

Useful details for implementation

e Calculating the circle with three points lying on it

(RealPoint p,, p,, ps):
— Method circumCircle(p,, p,, ps)
cp = crossproduct (p;, p,, P3);
if (cp <> 0){
P1Sq = py.X* + Py
P,Sq = py.X* + P,y
P3Sq = p3.Xx* + P3.y;
num = p,Sq *(p,.y - P3.y) + P,SA *(ps.y - pyy) +
P3Sq *(p1.Y - P,-Y);
cx =num /(2.0 * cp);
num = p;Sq *(p3.X - Py-X) + P,SA*(py.X - p3.X) +
P3Sa*(p,.X - p1.X);
cy = num / (2.0f * cp); c.set(cx, cy);
c.set(cx, cy);
r = c.distance(p,);

Useful details for implementation

* crossproduct (p,, p,, P3)>
u; = py-X() - py-x();
Vi = PoY() - peyl);
u, = p3.x() - py-x();
V, = p3y() - pey();
return u; * v, - v, * u,;

