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Introduction
Basic information

Lecture + seminar = 2 + 2 hours per week.

Final exam is written & spoken and is focused on your skills rather than knowledge.

Basic knowledge of English and math (calculus, statistics, algebra) is highly recommended.

Digital Image Processing (PV131) is highly recommended.

Seminars take place in PC labs using MATLAB R©

The experience from seminars will be useful for completing a small team (two students)
project written in MATLAB R©, C/C++, Java (or the preferred language).

At the end of each lecture you can find a list of questions you should be able to answer if
you want to pass the final exam.
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Introduction
Structure of a lecture

1 Introduction & Some revision

2 Fourier transform, Fast Fourier transform

3 Image resampling, Texture filtering

4 Principal component analysis, Discrete cosine transform

5 Subband coding, Wavelet Transform, Discrete WT

6 Z-transform, recursive filtering

7 Edge detection

8 Image compression

9 Image descriptors (Haralick, SIFT, MPEG-7, . . . )

10 Image restoration

11 Steerable filters
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Digital Filters in Image Processing
Some examples

Linear mappings (e.g. Fourier or Wavelet transform)

Denoising (e.g. median filtering)

Point based transforms (e.g. thresholding, contrast, brightness)

(Re)sampling (e.g. nearest neighbour, bilinear, Lanczos)

Texture filtering (e.g. anisotropic filtering)

Edge detection (e.g. Sobel, Canny)

Quantization (common in lossy compression techniques)

More . . .
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Signal Filter
Definition

Filter F is any system having its input/output:

FILTERf h

h = F(f )

f (x) or f (m) . . . input image/function/signal

h(y) or h(n) . . . output image/function/signal

F . . . filter (functor)

x, y . . . continuous signal

m,n . . . discrete sequence
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Convolution

1D convolution

Discrete: given two 1D signals f (i) and g(i):

(f ∗ g)(i) ≡
∑
k

f (k)g(i − k)

Continuous: given two 1D signals f (x) and g(x):

(f ∗ g)(x) ≡
∞∫
−∞

f (x ′)g(x − x ′)dx ′

Notice: ’g ’ is called a convolution kernel (mask)
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Convolution
An example

1D convolution

x’x x’x

1

1 1

f(x’)

x’ x’

x’

g(x’)

g(−x’) g(x−x’)

1
(f*g)(x)

x

f(x’)g(x−x’)

Try: http://www.jhu.edu/~signals/convolve/index.html
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Convolution

2D convolution

Discrete: given two 2D signals f (i , j) and g(i , j):

(f ∗ g)(i , j) ≡
∑
k,l

f (k , l)g(i − k , j − l)

Continuous: given two 2D signals f (x , y) and g(x , y):

(f ∗ g)(x , y) ≡
∫ ∫

f (x ′, y ′)g(x − x ′, y − y ′)dx ′dy ′

Notice: If not necessary we will focus only on 1D (discrete) convolution.
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Impulse symbol δ
Definition

Infinitely brief and infinitely strong unit-area impulse:

δ(x) = 0 x 6= 0

and
∞∫
−∞

δ(x)dx = 1

we call it Dirac delta function or impulse symbol

it is NOT a function
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Impulse symbol δ
Some properties

Given 1D function f and a ∈ R:

∞∫
−∞

δ(x)f (x)dx = f (0)

∞∫
−∞

δ(x − a)f (x)dx = f (a)

δ(x) plot:

x

y
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Kronecker delta (function)

Kronecker delta function . . . discrete counterpart to Dirac delta impulse.

δi ,j =

{
1 if (i = j)
0 otherwise

or

δ(n) =

{
1 if (n = 0)
0 otherwise
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Convolution
With some important functions

Convolution of any function f with:

δ impulse shifts the origin of f to the nonzero response of δ

δ impulses replicate the function f

Gaussian shifts the origin of f to the position of the peak of the
Gaussian and smooths
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Convolution properties

Commutativity

Given two signals f (i) and g(i):

(f ∗ g)(i) = (g ∗ f )(i)

Proof:

(f ∗ g)(i) =
∞∑

j=−∞
f (j)g(i − j) =

∞∑
j=−∞

g(i − j)f (j)

/subst. k = i − j ; j = i − k/

=
∞∑

k=−∞
g(k)f (i − k)

= (g ∗ f )(i) �
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Convolution properties

Associativity

Given three signals f (i), g(i), and h(i):

((f ∗ g) ∗ h)(i) = (f ∗ (g ∗ h))(i)

Proof:

((f ∗ g) ∗ h)(i) =
∑
j

(f ∗ g)(j)h(i − j) =
∑
j

[∑
k

f (k)g(j − k)

]
h(i − j)

=
∑
j

∑
k

f (k)g(j − k)h(i − j)

/subst. l = j − k; j = k + l/

=
∑
l

∑
k

f (k)g(l)h(i − k − l) =
∑
k

f (k)
∑
l

g(l)h(i − k − l)

=
∑
k

f (k) [(g ∗ h)(i − k)] = (f ∗ (g ∗ h))(i) �
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Convolution properties
Separable kernels in 2D

2D kernel g(i , j) is called separable if there exist two 1D vectors grow , gcol
such that:

g = grow ∗ gT
col

Convolution with 2D separable kernel = two consecutive convolutions with
1D kernels:

(f ∗ g)(i , j) = (f ∗ (grow ∗ gcol))(i , j)

/associativity/

= ((f ∗ grow ) ∗ gcol)(i , j)

Notice: 2D kernel is separable if the rank of its matrix is equal to 1.
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Convolution properties
Separable kernels in 2D

Examples

Gaussian:  1 2 1
2 4 2
1 2 1

 =

 1
2
1

 ∗ [ 1 2 1
]

Sobel:  1 2 1
0 0 0
−1 −2 −1

 =

 1
0
−1

 ∗ [ 1 2 1
]

There are also separable functions. An example of such function is 2D
Dirac impulse: δ(x , y) = δ(x)δ(y)
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Convolution properties

Linearity & Position invariance

If convolution kernel ’g ’ is fixed (which might be valid for optical systems,
for example) then we can write:

f ∗ g = Og (f )

The operator Og is:

linear – given the images f1, f2, and any α, β ∈ R, it holds:

Og (αf1 + βf2) = αOg (f1) + βOg (f2)

position invariant – if h(x) = Og (f (x)) then also

∀y : h(x− y) = Og [f (x− y)]
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Convolution properties

Convolution theorem

F (f ∗ g) = F(f ) · F(g)

F (f · g) = F(f ) ∗ F(g)

where

F . . . Fourier transform

“·” . . . point-wise multiplication

“∗” . . . convolution

f , g . . . images

Notice: Proof is coming soon.
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Convolution properties
Why is it good to know/understand them?

Commutativity

convolutions can be reordered in random sequence

images becomes convolution kernels, and vice versa

Associativity

parenthesis can be moved without affecting the result

choosing the simpler way of evaluation – different position of
parenthesis may change the complexity

Kernel separability

convolution with 2D kernels . . .O(n2)

convolution with 1D kernels . . .O(n)
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Complex numbers

Any z ∈ C can be written in one
of the following ways:

z = x + iy

z = |z | (cosϕ+ i sinϕ)

z = |z |e iϕ

where x , y ∈ R and i2 = −1 is a
constant, |z | is a magnitude and
ϕ is a phase of z

Properties:

conjugate complex number:
z = x − iy

x

z = x + iy

z = x − iy

I

R

y

−y

ϕ

ϕ
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Vector composition

Let be given a Euclidean (K = R) or unitary (K = C) vector space
V ⊆ Kn and three vectors u, v,w ∈ V:

Vector addition: z = u + v + w ∈ V

v

w

zu

Linear combination of vectors: z = 1
2u + 3v − 2w ∈ V

v

w

u

z
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Vector decomposition

Let be given Euclidean space V = 〈u1,u2, . . . ,un〉, then each v ∈ V can
be written as:

v = a1u1 + a2u2 + · · ·+ anun

where

(u1,u2, . . . ,un) is the basis of V
∀i = {1, . . . , n} : ai ∈ K
vector (a1, a2, . . . , an) is unique.

Notes:

two vectors u, v ∈ V are orthogonal, if u · v = 0
(’·’ stands to inner product)

basis (u1,u2, . . . ,un) is orthonormal, if ∀i , j = 1, . . . , n : ui · uj = δi ,j
(δi ,j stands for Kronecker delta)
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Vector decomposition
Example

Given Cartesian coordinate system 〈e1, e2, e3〉 and a vector
v = (3.4,−2, 7), we can write:

v = 3.4e1 − 2e2 + 7e3

where

e1 = (1, 0, 0)

e2 = (0, 1, 0)

e3 = (0, 0, 1)

Question: How to find the (linear combination) coefficients when we do
not project the vector v onto standard basis?
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Vector decomposition
Conversion to another basis

Given a vector v ∈ V and “any” basis (u1,u2, . . . ,un) in V, we can write:

v = a1u1 + a2u2 + · · ·+ anun

where
∀i = {1, . . . , n} : ai =

v · ui
ui · ui

If the basis is orthonormal, it is sufficient to write: ai = v · ui

Notice: Inner product v ·w is a projection v onto w. The result is a
number.
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Vector decomposition
Example

standard basis: 〈e1, e2〉 = 〈(1, 0), (0, 1)〉
v〈e1,e2〉 = (−1, 3)

another basis: 〈u1,u2〉 = 〈(−0.7,−0.7), (0.7,−0.7)〉 (0.7
.

=
√

2
2 )

a1 =
(−1, 3) · (−0.7,−0.7)

(−0.7,−0.7) · (−0.7,−0.7)
.

= −1.42

a2 =
(−1, 3) · (0.7,−0.7)

(0.7,−0.7) · (0.7,−0.7)
.

= −2.86

v〈u1,u2〉 = (−1.42,−2.86)

v

e1
e2

u1 u2
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Vector decomposition
Matrix notation

Each orthonormal basis can form a square matrix A:

A =

[
u1
u2

]
=

[
−0.7 −0.7

0.7 −0.7

]

The projection is realized using matrix multiplication:

v〈u1,u2〉 = Av〈e1,e2〉

Notice: Transform (mapping) from one basis onto another one is realized
using matrix multiplication ⇒ linear mapping.
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Vector decomposition
matrix notation

Properties of transform matrix A

A is unitary matrix, i.e. A−1 = A
T

.

If y = Ax is forward transform, then x = A−1y = A
T
y is inverse

transform.
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Let us do the same with functions
(n-dimensional vectors)
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Function decomposition
An example

How can we decompose the following function?
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Function decomposition
An example

We can express it as the following linear combination:

-2
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f1
f2
f3
f4

f5 = 2f1 - 2f2 + 0.4f3 - f4
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Function decomposition
Another example

A step function is defined as an infinite sum of sine waves:

fz(m) =
z∑

n=0

sin {(2n + 1)m}
2n + 1

f3(m) f10(m)

f20(m) f35(m)
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Function decomposition in 1D

Let be a discrete 1D function f of N samples:

f is a point in some N-dim vector space V ⊆ KN (K = R or C)

f can be expressed as a linear combination of basis functions:

f (m) =
N∑

k=1

akϕk(m)

where ak ∈ K and (ϕ1, ϕ2, . . . , ϕN) form the orthonormal basis

The coefficients of linear combination are found in the common way:

∀k = {1, . . . ,N} : ak = f · ϕk

i.e. using the projection (inner product)

Notice: f · ϕk =
∑

m f (m)ϕk(m)
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Basis functions
An example of sine & cosine waves sampled with N = 16

Common request:

the basis is orthonormal, i.e. ϕk · ϕl = δk,l
the basis functions for N = 16 are:

ϕk(m) =
1√
N
e

−2πimk
N =

1√
N

(
cos

2πmk

N
− i sin

2πmk

N

)
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You should know the answers . . .

What happens if we convolve a function f with Gaussian located
outside the origin?

What is the result when convolving a function f with several δ
impulses?

Under which conditions is the convolution kernel separable?

What is the basis and vector space generated by the given basis?

What are the orthogonal vectors?

What is the orthonormal basis?

How can we simply convert a vector from one basis to another basis?

What is the unitary/orthogonal matrix?

What is the difference between basis vector and basis function?
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