Filters in Image Processing Introduction & Some revision

David Svoboda

email: svoboda@fi.muni.cz Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno, CZ

CBIΔ

September 16, 2019

Outline

Introduction

- Basic information
- Structure of a lecture
- Bibliography

2 Some Revision

- Signal Filtering
- Convolution
- Vector Spaces
- Function analysis

Introduction

- Basic information
- Structure of a lecture
- Bibliography

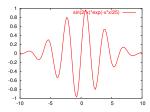
2 Some Revision

- Signal Filtering
- Convolution
- Vector Spaces
- Function analysis

Introduction

Basic information

- Lecture + seminar = 2 + 2 hours per week.
- Final exam is written & spoken and is focused on your skills rather than knowledge.
- Basic knowledge of English and math (calculus, statistics, algebra) is highly recommended.
- Digital Image Processing (PV131) is highly recommended.
- Seminars take place in PC labs using MATLAB[®]
- The experience from seminars will be useful for completing a small team (two students) project written in MATLAB[®], C/C++, Java (or the preferred language).
- At the end of each lecture you can find a list of questions you should be able to answer if you want to pass the final exam.



- Introduction & Some revision
- Pourier transform, Fast Fourier transform
- Image resampling, Texture filtering
- Principal component analysis, Discrete cosine transform
- Subband coding, Wavelet Transform, Discrete WT
- Z-transform, recursive filtering
- Ø Edge detection
- Image compression
- Image descriptors (Haralick, SIFT, MPEG-7, ...)
- Image restoration
- Steerable filters

Introduction Bibliography

- Gonzalez, R. C., Woods, R. E., Digital image processing / 2nd ed., Upper Saddle River: Prentice Hall, 2002, pages 793, ISBN 0201180758
- Bracewell, R. N., Fourier transform and its applications / 2nd ed. New York: McGraw-Hill, pages 474, ISBN 0070070156
- Jähne, B., Digital image processing / 6th rev. and ext. ed., Berlin: Springer, 2005, pages 607, ISBN 3540240357

selected papers

Introduction

- Basic information
- Structure of a lecture
- Bibliography

2 Some Revision

- Signal Filtering
- Convolution
- Vector Spaces
- Function analysis

- Linear mappings (e.g. Fourier or Wavelet transform)
- Denoising (e.g. median filtering)
- Point based transforms (e.g. thresholding, contrast, brightness)
- (Re)sampling (e.g. nearest neighbour, bilinear, Lanczos)
- Texture filtering (e.g. anisotropic filtering)
- Edge detection (e.g. Sobel, Canny)
- Quantization (common in lossy compression techniques)
- More . . .

Filter \mathcal{F} is any system having its input/output:

$$f \longrightarrow FILTER \longrightarrow h$$
$$h = \mathcal{F}(f)$$

- $f(\mathbf{x})$ or $f(\mathbf{m})$... input image/function/signal
- $h(\mathbf{y})$ or $h(\mathbf{n})$... output image/function/signal
- \mathcal{F} ... filter (functor)
- **x**, **y** . . . continuous signal
- m, n . . . discrete sequence

1D convolution

• Discrete: given two 1D signals f(i) and g(i):

$$(f * g)(i) \equiv \sum_{k} f(k)g(i-k)$$

• Continuous: given two 1D signals f(x) and g(x):

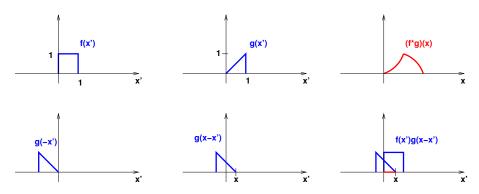
$$(f * g)(x) \equiv \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Notice: 'g' is called a convolution kernel (mask)

Convolution

An example

1D convolution



Try: http://www.jhu.edu/~signals/convolve/index.html

David Svoboda (CBIA@FI)

Filters in Image Processing

autumn 2019 11 / 39

2D convolution

• Discrete: given two 2D signals f(i,j) and g(i,j):

$$(f * g)(i,j) \equiv \sum_{k,l} f(k,l)g(i-k,j-l)$$

• Continuous: given two 2D signals f(x, y) and g(x, y):

$$(f * g)(x, y) \equiv \int \int f(x', y')g(x - x', y - y')dx'dy'$$

Notice: If not necessary we will focus only on 1D (discrete) convolution.

Infinitely brief and infinitely strong unit-area impulse:

$$\delta(x) = 0 \quad x \neq 0$$

and
 $\int_{-\infty}^{\infty} \delta(x) dx = 1$

• we call it Dirac delta function or impulse symbol

• it is NOT a function

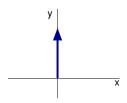
Impulse symbol δ

Some properties

Given 1D function f and $a \in \mathbb{R}$:

$$\int_{-\infty}^{\infty} \delta(x)f(x)dx = f(0)$$
$$\int_{-\infty}^{\infty} \delta(x-a)f(x)dx = f(a)$$

 $\delta(x)$ plot:



Kronecker delta (function)

Kronecker delta function ... discrete counterpart to Dirac delta impulse.

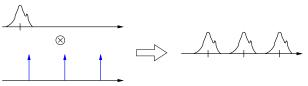
$$\delta_{i,j} = \left\{ egin{array}{cc} 1 & ext{if } (i=j) \ 0 & ext{otherwise} \end{array}
ight.$$

or

$$\delta(n) = \begin{cases} 1 & \text{if } (n = 0) \\ 0 & \text{otherwise} \end{cases}$$

Convolution of any function f with:

- δ impulse shifts the origin of f to the nonzero response of δ
- δ impulses replicate the function f



• Gaussian shifts the origin of *f* to the position of the peak of the Gaussian and smooths

Commutativity

Given two signals f(i) and g(i):

(f * g)(i) = (g * f)(i)

Proof:

$$(f * g)(i) = \sum_{j=-\infty}^{\infty} f(j)g(i-j) = \sum_{j=-\infty}^{\infty} g(i-j)f(j)$$
/subst. $k = i - j; j = i - k/$

$$= \sum_{k=-\infty}^{\infty} g(k)f(i-k)$$

$$= (g * f)(i)$$

Associativity

Given three signals f(i), g(i), and h(i):

$$((f * g) * h)(i) = (f * (g * h))(i)$$

Proof:

$$((f * g) * h)(i) = \sum_{j} (f * g)(j)h(i - j) = \sum_{j} \left[\sum_{k} f(k)g(j - k) \right] h(i - j)$$

=
$$\sum_{j} \sum_{k} f(k)g(j - k)h(i - j)$$

/subst. $l = j - k; j = k + l/$
=
$$\sum_{l} \sum_{k} f(k)g(l)h(i - k - l) = \sum_{k} f(k) \sum_{l} g(l)h(i - k - l)$$

=
$$\sum_{k} f(k) [(g * h)(i - k)] = (f * (g * h))(i) \square$$

2D kernel g(i,j) is called *separable* if there exist two 1D vectors g_{row}, g_{col} such that:

$$g = g_{row} * g_{col}^T$$

Convolution with 2D separable kernel = two consecutive convolutions with 1D kernels:

$$(f * g)(i,j) = (f * (g_{row} * g_{col}))(i,j)$$
$$/associativity/$$
$$= ((f * g_{row}) * g_{col})(i,j)$$

Notice: 2D kernel is separable if the rank of its matrix is equal to 1.

Convolution properties

Examples

• Gaussian:

$$\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix} =
\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} *
\begin{bmatrix}
1 & 2 & 1
\end{bmatrix}$$
• Sobel:

$$\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix} =
\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix} *
\begin{bmatrix}
1 & 2 & 1
\end{bmatrix}$$

There are also *separable functions*. An example of such function is 2D Dirac impulse: $\delta(x, y) = \delta(x)\delta(y)$

Linearity & Position invariance

If convolution kernel 'g' is fixed (which might be valid for optical systems, for example) then we can write:

$$f * g = O_g(f)$$

The operator O_g is:

• linear – given the images f_1 , f_2 , and any $\alpha, \beta \in \mathbb{R}$, it holds:

$$O_g(\alpha f_1 + \beta f_2) = \alpha O_g(f_1) + \beta O_g(f_2)$$

• position invariant – if $h(\mathbf{x}) = O_g(f(\mathbf{x}))$ then also

$$\forall \mathbf{y} : h(\mathbf{x} - \mathbf{y}) = O_g \left[f(\mathbf{x} - \mathbf{y}) \right]$$

Convolution theorem

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$
$$\mathcal{F}(f \cdot g) = \mathcal{F}(f) * \mathcal{F}(g)$$

where

- \mathcal{F} Fourier transform
- "." ... point-wise multiplication
- "*" ... convolution
- *f*, *g* ... images

Notice: Proof is coming soon.

Commutativity

- convolutions can be reordered in random sequence
- images becomes convolution kernels, and vice versa

Associativity

- parenthesis can be moved without affecting the result
- choosing the simpler way of evaluation different position of parenthesis may change the complexity

Kernel separability

- convolution with 2D kernels $\dots O(n^2)$
- convolution with 1D kernels $\ldots O(n)$

\mathbb{C} omplex numbers

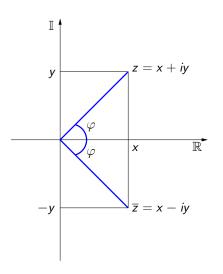
Any $z \in \mathbb{C}$ can be written in one of the following ways:

• z = x + iy• $z = |z| (\cos \varphi + i \sin \varphi)$ • $z = |z|e^{i\varphi}$

where $x, y \in \mathbb{R}$ and $i^2 = -1$ is a constant, |z| is a magnitude and φ is a phase of z

Properties:

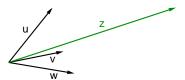
• conjugate complex number: $\overline{z} = x - iy$



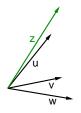
Vector composition

Let be given a Euclidean ($\mathbb{K} = \mathbb{R}$) or unitary ($\mathbb{K} = \mathbb{C}$) vector space $\mathbb{V} \subseteq \mathbb{K}^n$ and three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{V}$:

• Vector addition: $\mathbf{z} = \mathbf{u} + \mathbf{v} + \mathbf{w} \in \mathbb{V}$



• Linear combination of vectors: $\mathbf{z} = \frac{1}{2}\mathbf{u} + 3\mathbf{v} - 2\mathbf{w} \in \mathbb{V}$



Vector decomposition

Let be given Euclidean space $\mathbb{V}=\langle u_1,u_2,\ldots,u_n\rangle$, then each $v\in\mathbb{V}$ can be written as:

$$\mathbf{v} = a_1\mathbf{u_1} + a_2\mathbf{u_2} + \dots + a_n\mathbf{u_n}$$

where

•
$$(u_1, u_2, \dots, u_n)$$
 is the basis of $\mathbb V$

•
$$\forall i = \{1, \ldots, n\} : a_i \in \mathbb{K}$$

Notes:

- two vectors u, v ∈ V are orthogonal, if u · v = 0 ('.' stands to inner product)
- basis $(\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n})$ is orthonormal, if $\forall i, j = 1, \dots, n : \mathbf{u_i} \cdot \mathbf{u_j} = \delta_{i,j}$ $(\delta_{i,j} \text{ stands for Kronecker delta})$

Vector decomposition Example

Given Cartesian coordinate system $\langle e_1,e_2,e_3\rangle$ and a vector v=(3.4,-2,7), we can write:

$$v = 3.4e_1 - 2e_2 + 7e_3$$

where

 $\begin{array}{rcl} {\bf e_1} & = & (1,0,0) \\ {\bf e_2} & = & (0,1,0) \\ {\bf e_3} & = & (0,0,1) \end{array}$

Question: How to find the (linear combination) coefficients when we do not project the vector \mathbf{v} onto standard basis?

David Svoboda (CBIA@FI)

Conversion to another basis

Given a vector $v\in\mathbb{V}$ and "any" basis (u_1,u_2,\ldots,u_n) in $\mathbb{V},$ we can write:

$$\mathbf{v} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \cdots + a_n\mathbf{u}_n$$

where

$$\forall i = \{1, \ldots, n\} : a_i = \frac{\mathbf{v} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}$$

If the basis is orthonormal, it is sufficient to write: $a_i = \mathbf{v} \cdot \mathbf{u_i}$

Notice: Inner product $\mathbf{v} \cdot \mathbf{w}$ is a projection \mathbf{v} onto \mathbf{w} . The result is a number.

Vector decomposition

Example

• standard basis:
$$\langle \mathbf{e_1}, \mathbf{e_2} \rangle = \langle (1,0), (0,1) \rangle$$

 $\mathbf{v}_{\langle \mathbf{e_1}, \mathbf{e_2} \rangle} = (-1,3)$

• another basis: $\langle \mathbf{u_1}, \mathbf{u_2} \rangle = \langle (-0.7, -0.7), (0.7, -0.7) \rangle$ $(0.7 \doteq \frac{\sqrt{2}}{2})$

$$a_{1} = \frac{(-1,3) \cdot (-0.7, -0.7)}{(-0.7, -0.7) \cdot (-0.7, -0.7)} \doteq -1.42$$

$$a_{2} = \frac{(-1,3) \cdot (0.7, -0.7)}{(0.7, -0.7) \cdot (0.7, -0.7)} \doteq -2.86$$

$$\mathbf{v}_{\langle \mathbf{u}_{1}, \mathbf{u}_{2} \rangle} = (-1.42, -2.86)$$

Each orthonormal basis can form a square matrix A:

$$A = \begin{bmatrix} \mathbf{u_1} \\ \mathbf{u_2} \end{bmatrix} = \begin{bmatrix} -0.7 & -0.7 \\ 0.7 & -0.7 \end{bmatrix}$$

The projection is realized using matrix multiplication:

$$\mathbf{v}_{\langle \mathbf{u}_1,\mathbf{u}_2\rangle} = A \mathbf{v}_{\langle \mathbf{e}_1,\mathbf{e}_2\rangle}$$

Notice: Transform (mapping) from one basis onto another one is realized using matrix multiplication \Rightarrow linear mapping.

matrix notation

Properties of transform matrix A

• A is unitary matrix, i.e. $A^{-1} = \overline{A}^T$.

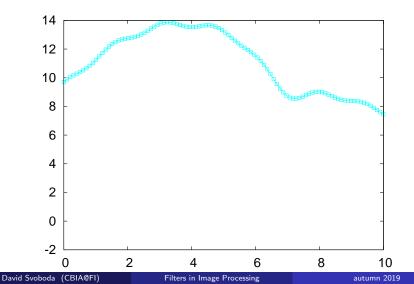
• If y = Ax is forward transform, then $x = A^{-1}y = \overline{A}^T y$ is inverse transform.

Let us do the same with functions (*n*-dimensional vectors)

Function decomposition

An example

How can we decompose the following function?

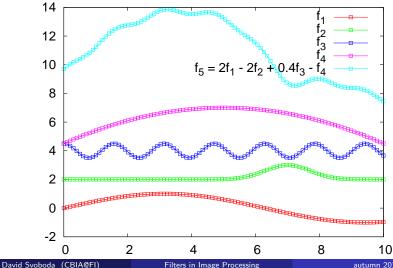


33 / 39

Function decomposition

An example

We can express it as the following linear combination:

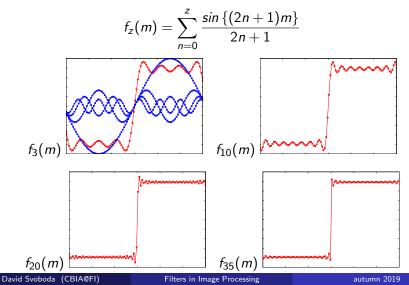


autumn 2019 34 / 39

Function decomposition

Another example

A step function is defined as an infinite sum of sine waves:



35 / 39

Function decomposition in 1D

Let be a discrete 1D function f of N samples:

- f is a point in some N-dim vector space $\mathbb{V} \subseteq \mathbb{K}^N$ $(\mathbb{K} = \mathbb{R} \text{ or } \mathbb{C})$
- f can be expressed as a linear combination of basis functions:

$$f(m) = \sum_{k=1}^{N} a_k \varphi_k(m)$$

where $a_k \in \mathbb{K}$ and $(\varphi_1, \varphi_2, \dots, \varphi_N)$ form the orthonormal basis

The coefficients of linear combination are found in the common way:

$$\forall k = \{1, \ldots, N\} : \mathbf{a}_k = \mathbf{f} \cdot \varphi_k$$

i.e. using the projection (inner product)

Notice: $f \cdot \varphi_k = \sum_m f(m) \overline{\varphi_k(m)}$

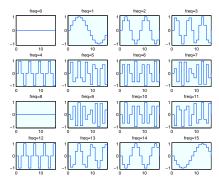
Basis functions

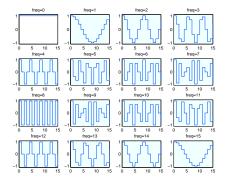
An example of sine & cosine waves sampled with N = 16

Common request:

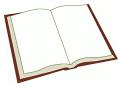
- the basis is orthonormal, i.e. $\varphi_k \cdot \varphi_l = \delta_{k,l}$
- the basis functions for N = 16 are:

$$\varphi_k(m) = \frac{1}{\sqrt{N}} e^{\frac{-2\pi i m k}{N}} = \frac{1}{\sqrt{N}} \left(\cos \frac{2\pi m k}{N} - i \sin \frac{2\pi m k}{N} \right)$$





- Gonzalez, R. C., Woods, R. E., Digital image processing / 2nd ed., Upper Saddle River: Prentice Hall, 2002, pages 793, ISBN 0201180758
- Bracewell, R. N., Fourier transform and its applications / 2nd ed. New York: McGraw-Hill, pages 474, ISBN 0070070156



- What happens if we convolve a function *f* with Gaussian located outside the origin?
- What is the result when convolving a function f with several δ impulses?
- Under which conditions is the convolution kernel separable?
- What is the basis and vector space generated by the given basis?
- What are the orthogonal vectors?
- What is the orthonormal basis?
- How can we simply convert a vector from one basis to another basis?
- What is the unitary/orthogonal matrix?
- What is the difference between *basis vector* and *basis function*?