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2D Fourier Transform (discrete)
Definition

Given 2D discrete function f of (M,N) samples and two bases
(ϕk , k = {0, . . . ,M − 1}) and (ϕl , l = {0, . . . ,N − 1}), let us define:

forward 2D discrete Fourier transform:

F(k , l) ≡ 1√
MN

M−1∑
m=0

N−1∑
n=0

f (m, n)e−2πi(
mk
M

+ nl
N )

inverse 2D discrete Fourier transform:

f (m, n) ≡ 1√
MN

M−1∑
k=0

N−1∑
l=0

F(k , l)e2πi(
mk
M

+ nl
N )
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2D Fourier Transform
Separability

The evaluation of 2D-(D)FT can be decomposed into two simpler tasks:

F(k , l) =
1√
MN

M−1∑
m=0

N−1∑
n=0

f (m, n)e−2πi(
mk
M

+ nl
N )

=
1√
N

N−1∑
n=0

{
1√
M

M−1∑
m=0

f (m, n)e−
2πimk
M

}
e−

2πinl
N

=
1√
N

N−1∑
n=0

F(k , n)e−
2πinl
N
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Question

Let us have an image with dimensions M × N (M and N are powers of 2).
As we want to apply discrete cosine transform (Fourier transform) to
implement JPEG compression, we would like to know the efficiency of this
process.

What is the complexity:

when doing straightforward (naive) evaluation of DFT?

when we utilize separability of FT and FFT?
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2D Fourier Transform (continuous)
Definition

Given 2D integrable function f and two bases (ϕωx , ωx ∈ R) and
(φωy , ωy ∈ R), let us define:

forward 2D continuous Fourier transform

F(ωx , ωy ) ≡
∞∫
−∞

∞∫
−∞

f (x , y)e−2πi(xωx+yωy )dxdy

inverse 2D continuous Fourier transform

f (x , y) ≡
∞∫
−∞

∞∫
−∞

F(ωx , ωy )e2πi(xωx+yωy )dωxdωy
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2D Discrete Fourier Transform Properties

All the properties from 1D DFT are valid:

scaling

shift

repetition

convolution theorem

There are some more properties:

separability

rotation
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2D DFT
Scaling
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2D DFT
Scaling
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2D DFT
Scaling
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2D DFT
Scaling
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2D DFT
Scaling
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2D DFT
Repetition
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2D DFT
Convolution theorem

Input image "I" Convolution kernel "G" I * G

log(|FT(I)|) log(|FT(G)|) log(|FT(I)FT(G)|)
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2D DFT
Rotation

Input image "I" |FT(I)|

rotated I |FT(rotated I)|
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2D DFT
Rotation

Let us introduce the polar coordinates:

x = r cosφ

y = r sinφ

ωx = R cosψ

ωy = R sinψ

Then

f (x , y) → f (r , φ)

F(ωx , ωy ) → F(R, ψ)
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2D DFT
Rotation

It is now clear to see that:

f (r , φ+ φ0) ⊃ F(R, ψ + φ0)

Conclusion: Rotating f (x , y) by an angle φ0 rotates F(ωx , ωy ) by the
same angle, and vice versa.
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Comb function
In 1D space

III(x) =
∞∑

n=−∞
δ(x − n)

x

Notice: “III” is pronouced as shah (Cyrilic character).
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Comb function
Some properties

III(−x) = III(x)

III(x + n) = III(x)

III(x − 1
2) = III(x + 1

2)

III(x) = 0 x 6= n

III(ax) = 1
|a|
∑
δ(x − n

a )

III( xτ ) ⊃ τ III(τω)
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Comb function
In 2D space

2III(x , y) =
∞∑

m=−∞

∞∑
n=−∞

δ(x −m, y − n)

x

y

z

Separability of delta function implies:

2III(x , y) = III(x)III(y)
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Sampling

Sampling = the process of converting a continuous signal into a discrete
sequence.

In 1D:

III(x)f (x) =
∞∑

n=−∞
f (n)δ(x − n)

In 2D:

2III(x , y)f (x , y) =
∑
m

∑
n

f (m, n)δ(x −m, y − n)

Question: What happens in frequency (Fourier) domain?
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Sampling
Comparison of image and Fourier domain

Image/Time domain:

multiplication of the function f and III

sampling

Fourier domain:

convolution of the function FT (f ) and FT (III)

convolution with Dirac impulses causes replication of FT (f )

scaling property is also valid for III function
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Sampling

x

f(x)

u

x u

III(x/t) t III(tu)

F(u)

1/t

max frequency

Notice: The comb function density must be high enough to guarantee
proper sampling
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Sampling

III(x/t)f(x)

x

x u

u

u

t III(tu)*F(u)

x
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Nyquist-Shannon theorem

Exact reconstruction of a continuous signal from its samples is possible if
the signal is bandlimited and the sampling frequency is greater than twice
the signal maximal frequency

Harry Nyquist (1889 – 1976) & Claude Elwood Shannon (1916 – 2001)

Question: How to use N-S theorem, if the original signal is unlimited?
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Sampling
Common problems – aliasing

The cause of aliasing:

when Nyquist-Shannon condition is broken, i.e.

sampling frequency is not high enough or
(time alias – wagon wheel effect)

the signal in not bandlimited
(PC games – far horizon)
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Sampling
Common problems – aliasing

An example
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Sampling
Common problems – aliasing

An example
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Sampling
Common problems – aliasing

How to eliminate aliasing?

sampling at higher frequency

does it help if the signal is not band limited?
expensive for memory and time

OR

prefiltering

before sampling the input signal is “prefiltered” by lowpass filter

prefilter sampling

continuouscontinuous discrete

bandlimited
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Sampling
Common problems – aliasing

Some lowpass filters

Gaussian filter

fσ(x) =
1

σ
√

2π
e−

x2

2σ2

Sinc filter

f (x) =
sin(x)

x

B-spline filter

b1(x) =

{
1 |x | ≤ 1/2
0 |x | > 1/2

bn(x) = b1(x) ∗ b1(x) ∗ · · · ∗ b1(x) n-times
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Reconstruction
Inverse process to sampling

The purpose: reconstruction of the original continuous signal from the
sampled sequence.

Reconstruction ≡ convolution with a low-pass filter.

Common reconstruction filters:

box (nearest neighbour)

tent (linear interpolation)

cubic B-spline (cubic polynomial interpolation)

Gaussian

sinc function

Lanczos (windowed sinc function)

Notice: The unit area under the curve.
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Reconstruction
Lanczos filter
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Reconstruction
Examples of reconstruction

Box filter

↔
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Reconstruction
Examples of reconstruction

Tent filter

↔
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Reconstruction
Examples of reconstruction

Cubic B-spline filter

↔
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Resampling in 1D

Let us design a 1D resampling filter

The filter should be easy to implement and fast for computation.

The filter should solve the alias problem.
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Resampling in 1D
Design of the resampling filter

1 reconstruct the continuous signal from the discrete one

2 warp the domain of the continuous signal

3 prefilter the warped, continuous signal

4 sample this signal to produce the discrete output signal

m

f(m)

reconstruct

u

warp

reconstructed inputdiscrete input

h(u)

prefilter

warped input

h’(x)

x

continuous output

x

sample

g(n)h’’(x)

discrete output

n

f (m) . . . discrete input signal
r(u) . . . reconstruction filter
h(u) = (f ∗ r)(u) =

∑
k f (k)r(u − k) . . . reconstructed input signal
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Resampling in 1D
Design of the resampling filter

1 reconstruct the continuous signal from the discrete one

2 warp the domain of the continuous signal

3 prefilter the warped, continuous signal

4 sample this signal to produce the discrete output signal

m

f(m)

reconstruct

u

warp

reconstructed inputdiscrete input

h(u)

prefilter

warped input

h’(x)

x

continuous output

x

sample

g(n)h’’(x)

discrete output

n

h′(x) = h(u) = h(γ−1(x)) . . . warped signal
x = γ(u) . . . mapping from one coordinate system to another one
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Resampling in 1D
Design of the resampling filter

1 reconstruct the continuous signal from the discrete one

2 warp the domain of the continuous signal

3 prefilter the warped, continuous signal

4 sample this signal to produce the discrete output signal

m

f(m)

reconstruct

u

warp

reconstructed inputdiscrete input

h(u)

prefilter

warped input

h’(x)

x

continuous output

x

sample

g(n)h’’(x)

discrete output

n

h′′(x) = (h′ ∗ p)(x) =
∫
h′(t)p(x − t)dt . . . prefiltered signal

p(x) . . . (lowpass) prefilter
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Resampling in 1D
Design of the resampling filter

1 reconstruct the continuous signal from the discrete one

2 warp the domain of the continuous signal

3 prefilter the warped, continuous signal

4 sample this signal to produce the discrete output signal

m

f(m)

reconstruct

u

warp

reconstructed inputdiscrete input

h(u)

prefilter

warped input

h’(x)

x

continuous output

x

sample

g(n)h’’(x)

discrete output

n

g(n) = h′′(x)III (x) . . . discrete output signal
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Resampling in 1D
Important (implementation) notes

During the resampling process we actually never construct a
continuous signal h(u), h′(x) or h′′(x).

We pick up the individual positions in the resampled image g(n) and
look for their corresponding positions and their neighbourhood in the
original image f (m).

As the computation is inverted, we never use γ function.
We use only γ−1.
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Resampling in 1D
Derivation of an ideal resampling filter

Computation of one sample point

g(n) = h′′(n) =

∫
h′(t)p(n − t)dt

=

∫
h(γ−1(t))p(n − t)dt

=

∫
p(n − t)

∑
k

f (k)r(γ−1(t)− k)dt =
∑
k

f (k)ρ(n, k)

where

ρ(n, k) =

∫
p(n − t)r(γ−1(t)− k)dt

ρ(n, k) is called a resampling filter.

If γ is affine, we can derive: ρ(n, k) = p(γ−1(n)− k) ∗ r(γ−1(n)− k).
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Resampling in 1D

Practical problems

If the mapping γ is not affine, the filter ρ(m, k) is space variant.

Solution (postfiltering/supersampling)

1 Reconstruct the continuous signal from the discrete input signal.

2 Warp the domain of the input signal.

3 Sample the warped signal at very high resolution to avoid alias.

4 Postfilter the signal to produce a lower resolution output signal.

Notice: The convolution is employed in the very end of this algorithm, i.e.
it is discrete and space invariant.
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Resampling in 2D
Task

Design a 2D resampling filter

Obey the rules that are valid for 1D resampling filter.

The filter maps texels from texture space to screen space.

The filter might be anisotropic.

The filter should work fast.
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Resampling in 2D
γ-mapping

Basic properties of γ-mapping

γ converts coordinates from screen space to texture space.

γ is projective (neither linear nor affine).

Circular neighbourhood of one pixel (in screen space) is transformed
into ellipse (in texture space).
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Resampling in 2D
γ-mapping

Approximation of γ-mapping

Let us approximate γ in the neighbourhood of u0 as the locally-affine
mapping:

γ(u) = u0 + Ju0(u− u0)

where Ju0 is Jacobian and u = (u, v) is 2D vector in texture space.

Construction of ellipse in texture space

The major and minor axis determining the ellipse shape correspond to
partial derivatives of γ in the position u0, i.e. the rows of matrix Ju0 :

Ju0 =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
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Resampling in 2D
γ-mapping

Construction of ellipse in texture space (continued)

v

2

0u =(u ,v )0 0

u

Au + Buv + Cv = F2

F

A =

(
∂v

∂x

)2

+

(
∂v

∂y

)2

B = −2

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
C =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

F =

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)2
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Resampling in 2D
γ-mapping

Image Pyramids (MIP map)

Size of ellipse determines level of detail in MIP map pyramid that
should be fetched from the memory.
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Resampling in 2D
Computation in texture space

Collecting pixels from texture space:

1 Create the Gaussian with the elliptical support.

2 Attach the Gaussian to the texture image loaded from the MIP map
pyramid.

3 Sum up the image pixels by using the Gaussian weights.

0
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300

30 20

400

40 30
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Resampling in 2D
Elliptical Weighted Average (EWA)

Implementation Notes

For each image pixel (x,y) from screen space:

1 Find corresponding point (u,v) in texture space.

2 Define the local affine transform γ.

3 Compute Jacobian J of this mapping.

4 Delineate the ellipse in texture space.

5 Using the ellipse size choose the appropriate MIP map level.

6 Build the Gaussian over the ellipse.

7 Evaluate direct convolution of MIP map image with Gaussian.

8 Store the result (one value) in the screen pixel (x,y).
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Resampling in 2D
EWA – Properties

EWA fullfills the requirements applied to optimal resampling filter

g(n) =
∑
k

f (k)ρ(n, k)

where
ρ(n, k) = p(γ−1(n)− k) ∗ r(γ−1(n)− k)

γ is locally affine: prefilter p and reconstruction filter r are Gaussians.
Their convolution is again Gaussian.

γ is locally affine: p and r have elliptical support. The product of
their convolution has also elliptical support, as the ellipses are closed
under affine transforms.
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Resampling in 2D
EWA – Technical Notes

The quality of filtering corresponds to the resampling filter support

Anisotropic filtering 1× . . . 8 texels (pixels from texture space)

Anisotropic filtering 2× . . . 16 texels

Anisotropic filtering 4× . . . 32 texels

Anisotropic filtering 8× . . . 64 texels

Anisotropic filtering 16× . . . 128 texels

Higher the quality ⇒ higher the computational cost (GPU usage)
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Resampling in 2D
EWA – An Example

Texture filtering with naive MIP map (on the left) and anisotropic filtering
with so called EWA based method (on the right)

source: wikipedia.org
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Resampling in 2D
EWA – An Example

Texture filtering with naive MIP map

source: shinvision.com
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Resampling in 2D
EWA – An Example

Texture filtering with so called EWA based method

source: shinvision.com
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You should know the answers . . .

Show that the 2D DFT is separable transform.

Derive the complexity of 2D discrete FFT.

Explain the reciprocity of wide and narrow shapes in time and
frequency domain, respectively.

Derive (dot not formulate) the Nyquist-Shannon theorem for 2D
image data.

Show an example of the aliasing effect.

What is a prefilter?

What is the difference between a screen space and texture space?

Give an example of γ warping function both for 1D and 2D case.

What is the difference between projective and affine mappings?

Describe individual steps of EWA filter.
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