Filters in Image Processing

Fourier transform in two dimensions & (Re)sampling

David Svoboda

email: svoboda@fi.muni.cz Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno, CZ

CBIA

September 26, 2019

Outline

- Fourier transform (2D)
 - Discrete
 - Continuous
 - Theorems & Properties
- Sampling
 - Nyquist-Shannon theorem
 - Aliasing
 - Reconstruction
- Resampling in 1D
 - Design of an ideal resampling filter
- Resampling in 2D

- Fourier transform (2D)
 - Discrete
 - Continuous
 - Theorems & Properties
- Sampling
 - Nyquist-Shannon theorem
 - Aliasing
 - Reconstruction
- Resampling in 1D
 - Design of an ideal resampling filter
- 4 Resampling in 2D

2D Fourier Transform (discrete)

Definition

Given 2D discrete function f of (M, N) samples and two bases $(\varphi_k, k = \{0, \dots, M-1\})$ and $(\varphi_l, l = \{0, \dots, N-1\})$, let us define:

• forward 2D discrete Fourier transform:

$$\mathcal{F}(k,l) \equiv \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-2\pi i \left(\frac{mk}{M} + \frac{nl}{N}\right)}$$

inverse 2D discrete Fourier transform:

$$f(m,n) \equiv \frac{1}{\sqrt{MN}} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} \mathcal{F}(k,l) e^{2\pi i \left(\frac{mk}{M} + \frac{nl}{N}\right)}$$

2D Fourier Transform

Separability

The evaluation of 2D-(D)FT can be decomposed into two simpler tasks:

$$\mathcal{F}(k,l) = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-2\pi i \left(\frac{mk}{M} + \frac{nl}{N}\right)}$$

$$= \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left\{ \frac{1}{\sqrt{M}} \sum_{m=0}^{M-1} f(m,n) e^{-\frac{2\pi i n l}{M}} \right\} e^{-\frac{2\pi i n l}{N}}$$

$$= \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \mathcal{F}(k,n) e^{-\frac{2\pi i n l}{N}}$$

Question

Let us have an image with dimensions $M \times N$ (M and N are powers of 2). As we want to apply discrete cosine transform (Fourier transform) to implement JPEG compression, we would like to know the efficiency of this process.

What is the complexity:

- when doing straightforward (naive) evaluation of DFT?
- when we utilize separability of FT and FFT?

2D Fourier Transform (continuous)

Definition

Given 2D integrable function f and two bases $(\varphi_{\omega_x}, \omega_x \in \mathbb{R})$ and $(\phi_{\omega_y}, \omega_y \in \mathbb{R})$, let us define:

forward 2D continuous Fourier transform

$$\mathcal{F}(\omega_x, \omega_y) \equiv \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} f(x, y) e^{-2\pi i (x\omega_x + y\omega_y)} dx dy$$

• inverse 2D continuous Fourier transform

$$f(x,y) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{F}(\omega_x, \omega_y) e^{2\pi i (x\omega_x + y\omega_y)} d\omega_x d\omega_y$$

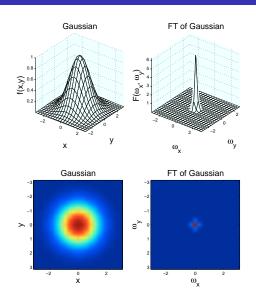
2D Discrete Fourier Transform Properties

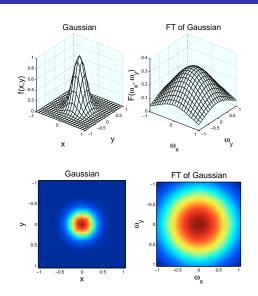
All the properties from 1D DFT are valid:

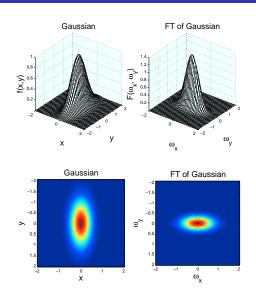
- scaling
- shift
- repetition
- convolution theorem

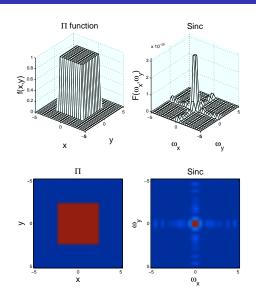
There are some more properties:

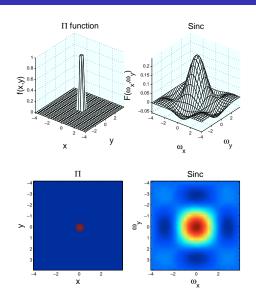
- separability
- rotation



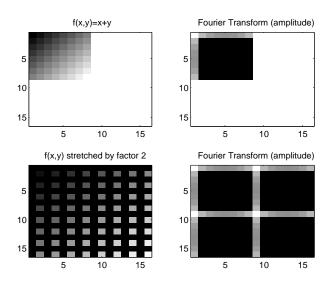




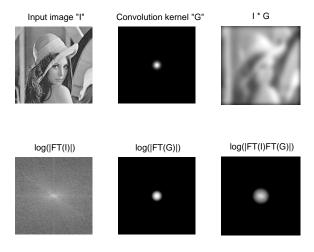




Repetition



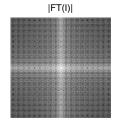
Convolution theorem

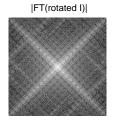


Rotation

Input image "I"

×





Rotation

Let us introduce the polar coordinates:

$$x = r\cos\phi$$

$$y = r\sin\phi$$

$$\omega_x = R\cos\psi$$

$$\omega_y = R\sin\psi$$

Then

$$f(x,y) \rightarrow f(r,\phi)$$

 $\mathcal{F}(\omega_x,\omega_y) \rightarrow \mathcal{F}(R,\psi)$

Rotation

It is now clear to see that:

$$f(r, \phi + \phi_0) \supset \mathcal{F}(R, \psi + \phi_0)$$

Conclusion: Rotating f(x, y) by an angle ϕ_0 rotates $\mathcal{F}(\omega_x, \omega_y)$ by the same angle, and vice versa.

- Fourier transform (2D)
 - Discrete
 - Continuous
 - Theorems & Properties
- Sampling
 - Nyquist-Shannon theorem
 - Aliasing
 - Reconstruction
- Resampling in 1D
 - Design of an ideal resampling filter
- 4 Resampling in 2D

Comb function

In 1D space

$$III(x) = \sum_{n=-\infty}^{\infty} \delta(x - n)$$

Notice: "III" is pronouced as shah (Cyrilic character).

Comb function

Some properties

•
$$III(-x) = III(x)$$

•
$$III(x + n) = III(x)$$

•
$$III(x - \frac{1}{2}) = III(x + \frac{1}{2})$$

• III(
$$x$$
) = 0 $x \neq n$

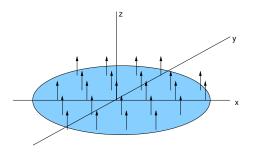
• III(ax) =
$$\frac{1}{|a|} \sum \delta(x - \frac{n}{a})$$

•
$$III(\frac{x}{\tau}) \supset \tau III(\tau \omega)$$

Comb function

In 2D space

²III(x,y) =
$$\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x-m, y-n)$$



Separability of delta function implies:

$$^{2}III(x, y) = III(x)III(y)$$

Sampling = the process of converting a continuous signal into a discrete sequence.

• In 1D:

$$III(x)f(x) = \sum_{n=-\infty}^{\infty} f(n)\delta(x-n)$$

• In 2D:

$$^{2}III(x,y)f(x,y) = \sum_{m} \sum_{n} f(m,n)\delta(x-m,y-n)$$

Question: What happens in frequency (Fourier) domain?

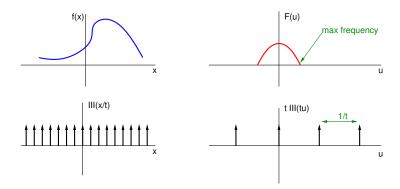
Comparison of image and Fourier domain

Image/Time domain:

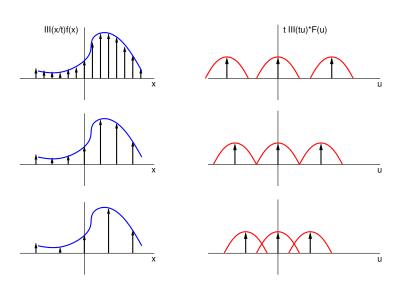
- multiplication of the function f and III
- sampling

Fourier domain:

- convolution of the function FT(f) and FT(III)
- ullet convolution with Dirac impulses causes replication of FT(f)
- scaling property is also valid for III function



Notice: The comb function density must be high enough to guarantee proper sampling



Nyquist-Shannon theorem

Exact reconstruction of a continuous signal from its samples is possible if the signal is bandlimited and the sampling frequency is greater than twice the signal maximal frequency

Harry Nyquist (1889 – 1976) & Claude Elwood Shannon (1916 – 2001)

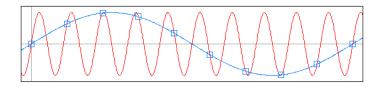
Question: How to use N-S theorem, if the original signal is unlimited?

Common problems - aliasing

The cause of aliasing:

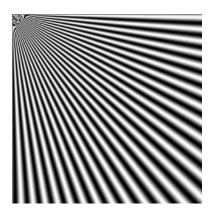
when Nyquist-Shannon condition is broken, i.e.

- sampling frequency is not high enough or (time alias – wagon wheel effect)
- the signal in not bandlimited (PC games – far horizon)



Common problems - aliasing

An example



Common problems - aliasing

An example

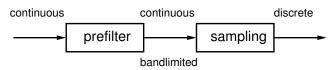
Common problems - aliasing

How to eliminate aliasing?

- sampling at higher frequency
 - does it help if the signal is not band limited?
 - expensive for memory and time

OR

- prefiltering
 - before sampling the input signal is "prefiltered" by lowpass filter



Common problems - aliasing

Some lowpass filters

Gaussian filter

$$f_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

Sinc filter

$$f(x) = \frac{\sin(x)}{x}$$

B-spline filter

$$b_1(x) = \begin{cases} 1 & |x| \le 1/2 \\ 0 & |x| > 1/2 \end{cases}$$

 $b_n(x) = b_1(x) * b_1(x) * \cdots * b_1(x)$ n-times

Inverse process to sampling

The purpose: reconstruction of the original continuous signal from the sampled sequence.

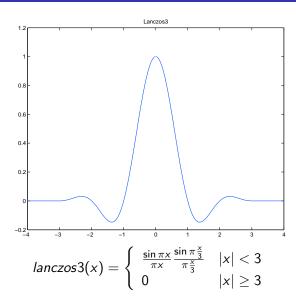
Reconstruction \equiv convolution with a *low-pass* filter.

Common reconstruction filters:

- box (nearest neighbour)
- tent (linear interpolation)
- cubic B-spline (cubic polynomial interpolation)
- Gaussian
- sinc function
- Lanczos (windowed sinc function)

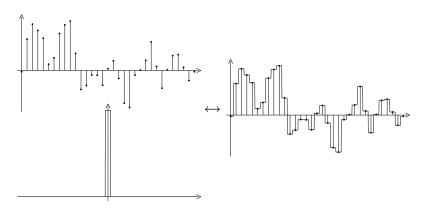
Notice: The unit area under the curve.

Lanczos filter



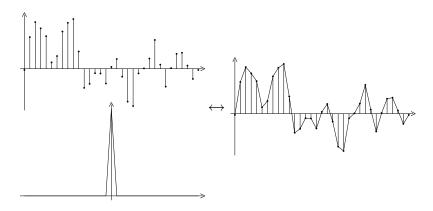
Examples of reconstruction

Box filter



Examples of reconstruction

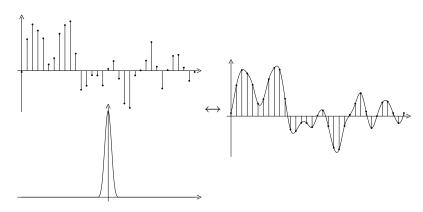
Tent filter



Reconstruction

Examples of reconstruction

Cubic B-spline filter



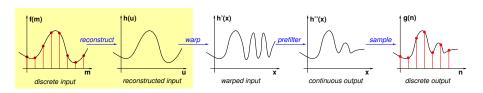
- Fourier transform (2D)
 - Discrete
 - Continuous
 - Theorems & Properties
- Sampling
 - Nyquist-Shannon theorem
 - Aliasing
 - Reconstruction
- Resampling in 1D
 - Design of an ideal resampling filter
- 4 Resampling in 2D

Let us design a 1D resampling filter

- The filter should be easy to implement and fast for computation.
- The filter should solve the alias problem.

Design of the resampling filter

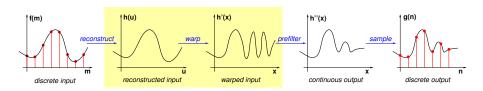
- reconstruct the continuous signal from the discrete one
- warp the domain of the continuous signal
- prefilter the warped, continuous signal
- sample this signal to produce the discrete output signal



- f(m) ... discrete input signal
- r(u) ... reconstruction filter
- $h(u) = (f * r)(u) = \sum_{k} f(k)r(u k)$... reconstructed input signal

Design of the resampling filter

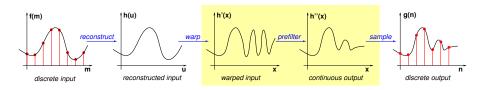
- 1 reconstruct the continuous signal from the discrete one
- warp the domain of the continuous signal
- openities prefilter the warped, continuous signal
- sample this signal to produce the discrete output signal



- $h'(x) = h(u) = h(\gamma^{-1}(x)) \dots$ warped signal
- $x = \gamma(u)$... mapping from one coordinate system to another one

Design of the resampling filter

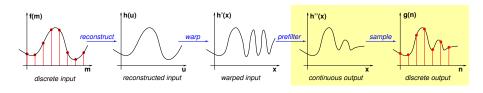
- 1 reconstruct the continuous signal from the discrete one
- warp the domain of the continuous signal
- prefilter the warped, continuous signal
- sample this signal to produce the discrete output signal



- $h''(x) = (h' * p)(x) = \int h'(t)p(x-t)dt$... prefiltered signal
- p(x) ... (lowpass) prefilter

Design of the resampling filter

- I reconstruct the continuous signal from the discrete one
- warp the domain of the continuous signal
- openities prefilter the warped, continuous signal
- sample this signal to produce the discrete output signal



• g(n) = h''(x)III(x) ... discrete output signal

Important (implementation) notes

- During the resampling process we actually never construct a continuous signal h(u), h'(x) or h''(x).
- We pick up the individual positions in the resampled image g(n) and look for their corresponding positions and their neighbourhood in the original image f(m).
- As the computation is inverted, we never use γ function. We use only γ^{-1} .

Derivation of an ideal resampling filter

Computation of one sample point

$$g(n) = h''(n) = \int h'(t)p(n-t)dt$$

$$= \int h(\gamma^{-1}(t))p(n-t)dt$$

$$= \int p(n-t)\sum_{k} f(k)r(\gamma^{-1}(t)-k)dt = \sum_{k} f(k)\rho(n,k)$$

where

$$\rho(n,k) = \int p(n-t)r(\gamma^{-1}(t)-k)dt$$

- $\rho(n, k)$ is called a resampling filter.
- If γ is affine, we can derive: $\rho(n,k) = p(\gamma^{-1}(n) k) * r(\gamma^{-1}(n) k)$.

Practical problems

• If the mapping γ is not affine, the filter $\rho(m,k)$ is space variant.

Solution (postfiltering/supersampling)

- Reconstruct the continuous signal from the discrete input signal.
- Warp the domain of the input signal.
- Sample the warped signal at very high resolution to avoid alias.
- Open Postfilter the signal to produce a lower resolution output signal.

Notice: The convolution is employed in the very end of this algorithm, i.e. it is discrete and space invariant.

Practical problems

• If the mapping γ is not affine, the filter $\rho(m, k)$ is space variant.

Solution (postfiltering/supersampling)

- Reconstruct the continuous signal from the discrete input signal.
- Warp the domain of the input signal.
- Sample the warped signal at very high resolution to avoid alias.
- Ostfilter the signal to produce a lower resolution output signal.

Notice: The convolution is employed in the very end of this algorithm, i.e. it is discrete and space invariant.

- Fourier transform (2D)
 - Discrete
 - Continuous
 - Theorems & Properties
- Sampling
 - Nyquist-Shannon theorem
 - Aliasing
 - Reconstruction
- Resampling in 1D
 - Design of an ideal resampling filter
- Resampling in 2D

Task

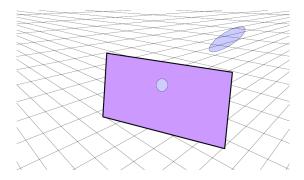
Design a 2D resampling filter

- Obey the rules that are valid for 1D resampling filter.
- The filter maps texels from texture space to screen space.
- The filter might be anisotropic.
- The filter should work fast.

 γ -mapping

Basic properties of γ -mapping

- ullet γ converts coordinates from screen space to texture space.
- \bullet γ is projective (neither linear nor affine).
- Circular neighbourhood of one pixel (in screen space) is transformed into ellipse (in texture space).



γ -mapping

Approximation of γ -mapping

• Let us approximate γ in the neighbourhood of \mathbf{u}_0 as the locally-affine mapping:

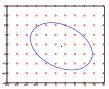
$$\gamma(\mathbf{u}) = \mathbf{u}_0 + J_{\mathbf{u}_0}(\mathbf{u} - \mathbf{u}_0)$$

where $J_{\mathbf{u}_0}$ is Jacobian and $\mathbf{u} = (u, v)$ is 2D vector in texture space.

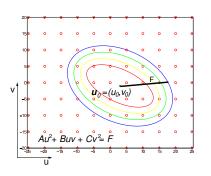
Construction of ellipse in texture space

• The major and minor axis determining the ellipse shape correspond to partial derivatives of γ in the position \mathbf{u}_0 , i.e. the rows of matrix $J_{\mathbf{u}_0}$:

$$J_{\mathbf{u}_0} = \left[\begin{array}{cc} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} & \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{v}}{\partial \mathbf{x}} & \frac{\partial \mathbf{v}}{\partial \mathbf{y}} \end{array} \right]$$



Construction of ellipse in texture space (continued)



$$A = \left(\frac{\partial v}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial y}\right)^{2}$$

$$B = -2\left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\frac{\partial v}{\partial y}\right)$$

$$C = \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2}$$

$$F = \left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial y} - \frac{\partial u}{\partial y}\frac{\partial v}{\partial x}\right)^{2}$$

 γ -mapping

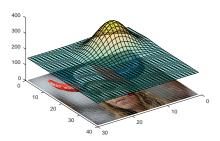
Image Pyramids (MIP map)

• Size of ellipse determines level of detail in MIP map pyramid that should be fetched from the memory.

Computation in texture space

Collecting pixels from texture space:

- Create the Gaussian with the elliptical support.
- Attach the Gaussian to the texture image loaded from the MIP map pyramid.
- 3 Sum up the image pixels by using the Gaussian weights.



Elliptical Weighted Average (EWA)

Implementation Notes

For each image pixel (x,y) from screen space:

- Find corresponding point (u,v) in texture space.
- 2 Define the local affine transform γ .
- \odot Compute Jacobian J of this mapping.
- Oelineate the ellipse in texture space.
- Using the ellipse size choose the appropriate MIP map level.
- O Build the Gaussian over the ellipse.
- Evaluate direct convolution of MIP map image with Gaussian.
- 3 Store the result (one value) in the screen pixel (x,y).

EWA - Properties

EWA fullfills the requirements applied to optimal resampling filter

$$g(\mathbf{n}) = \sum_{\mathbf{k}} f(\mathbf{k}) \rho(\mathbf{n}, \mathbf{k})$$

where

$$\rho(\mathbf{n}, \mathbf{k}) = p(\gamma^{-1}(\mathbf{n}) - \mathbf{k}) * r(\gamma^{-1}(\mathbf{n}) - \mathbf{k})$$

- $oldsymbol{\circ}$ γ is locally affine: prefilter p and reconstruction filter r are Gaussians. Their convolution is again Gaussian.
- γ is locally affine: p and r have elliptical support. The product of their convolution has also elliptical support, as the ellipses are closed under affine transforms.

EWA - Technical Notes

The quality of filtering corresponds to the resampling filter support

- Anisotropic filtering $1 \times ... 8$ texels (pixels from texture space)
- Anisotropic filtering 2× ... 16 texels
- Anisotropic filtering 4× ...32 texels
- Anisotropic filtering 8× ... 64 texels
- Anisotropic filtering 16× ...128 texels

Higher the quality ⇒ higher the computational cost (GPU usage)

EWA - An Example

Texture filtering with naive MIP map (on the left) and anisotropic filtering with so called *EWA* based method (on the right)

source: wikipedia.org

EWA – An Example

Texture filtering with naive MIP map

source: shinvision.com

EWA - An Example

Texture filtering with so called EWA based method

source: shinvision.com

Bibliography

- Bracewell, R. N., Fourier transform and its applications / 2nd ed. New York: McGraw-Hill, p 474. ISBN 0070070156
- Paul Heckbert, Fundamentals of Texture Mapping and Image Warping, Master's thesis, UCB/CSD 89/516, CS Division, U.C. Berkeley, June 1989, 86 pp
- Turkowski, K. Filters for common resampling tasks. In Graphics Gems, A. S. Glassner, Ed. Academic Press Professional, San Diego, CA, 147-165, 1990
- McCormack, J., Perry, R.N., Farkas, K.I.; Jouppi, N.P. "Feline: Fast Elliptical Lines for Anisotropic Texture Mapping", ACM SIGGRAPH, pp 243-250, August 1999
- Pharr, M., Humphreys, G. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004

You should know the answers ...

- Show that the 2D DFT is separable transform.
- Derive the complexity of 2D discrete FFT.
- Explain the reciprocity of wide and narrow shapes in time and frequency domain, respectively.
- Derive (dot not formulate) the Nyquist-Shannon theorem for 2D image data.
- Show an example of the aliasing effect.
- What is a prefilter?
- What is the difference between a screen space and texture space?
- \bullet Give an example of γ warping function both for 1D and 2D case.
- What is the difference between projective and affine mappings?
- Describe individual steps of EWA filter.