

Revision

Statistics

Cross-correlation:

• given two 1D signals f(i) and g(i):

$$(f \star g)(i) = \sum_{k} f(i+k)g(k)$$

• it is a measure of similarity of two signals

Auto-correlation:

• given 1D signal f(i):

$$(f \star f)(i) = \sum_{k} f(i+k)f(k)$$

• it is a measure for finding repeating patterns

David Svoboda (CBIA@FI)

Filters in Image Processing

autumn 2019 6 / 49

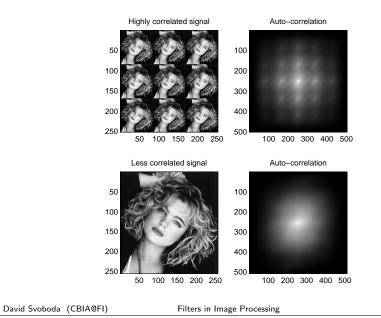
autumn 2019

8 / 49

Revision

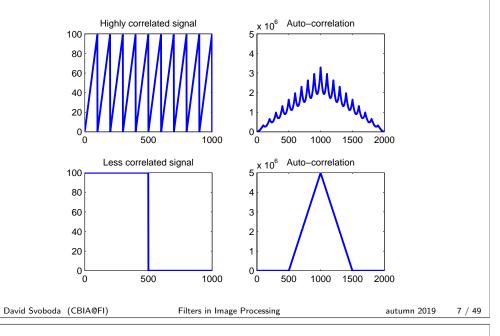
Statistics

Auto-correlation example



Revision

Statistics Auto-correlation example



Revision

Statistics

Highly correlated signals

- contain repeating patterns
- energy (nonzero values) is stretched over the whole space
- this is what we usually have

Decorrelated signals

- energy (nonzero values) is compacted in one location
- easy to compress
- this is what we wish to have

David Svoboda (CBIA@FI)

Revision

Statistics

Covariance

• Covariance exhibits how much two signals f and g (let us assume |f| = |g| = n) vary from the mean with respect to each other:

$$cov(f,g) = rac{\sum\limits_{i=1}^{n} (f_i - \overline{f})(g_i - \overline{g})}{n-1}$$

 Covariance Matrix – a matrix of covariances between two signals f and g:

$$C = \left[\begin{array}{cc} cov(f,f) & cov(f,g) \\ cov(g,f) & cov(g,g) \end{array}\right]$$

Matrix C is always real and symmetric.

Notice:	Two signals f and g are decorrelated iff
cov(f,g) = cov(g, f) = 0, i.e. when the matrix C is diagonal.

David Svoboda (CBIA@FI)

Filters in Image Processing autumn 2019

Motivation

Energy compaction

Evaluate DFT over some short signal:

$$f = [1 \ 3 \ 4 \ 2] \\ \downarrow /DFT/ \\ \mathcal{F} = \frac{1}{\sqrt{4}} [10 \ (-3 - i) \ 0 \ (-3 + i)]$$

Measure the energy of the signals:

$$E(f) = \sum f(i)^2 = 1^2 + 3^2 + 4^2 + 2^2 = 30$$

$$E(\mathcal{F}) = \sum \mathcal{F}(i)^2 = 25 + 10/4 + 10/4 = 30$$

The first component in f accounts for 3.3% of energy while the first component in \mathcal{F} accounts for 83.3% of energy.

Conclusion: Ability of energy compaction \approx optimality of the transform

David Svoboda	(CBIA@FI)	Filters in	۱I

10 / 49

Motivation

The most common linear transforms

• sinusoidal transforms

- DFT (discrete Fourier transform)
- DCT (discrete cosine transform)
- DST (discrete sine transform)
- rectangular wave transforms
 - Walsh-Hadamard transform
 - Haar transform
- variable basis
 - Discrete wavelet transform
- eigenvector-based transforms
 - Karhunen-Loeve transform

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019

Motivation

Why do we need image transforms?

- manipulation with data in another domain might be simpler example of use: low-pass, high-pass filtering
- data decorrelation ≈ co-variance removal ≈ energy compaction example of use: image compression

Which transform properties are the most important?

- speed
- simple to implement

Notice: The requirements suggest to use *linear transforms*, i.e. the input signal f is transformed into the signal F by:

$$F = Af$$
,

where A is a transform matrix.

David Svoboda (CBIA@FI)

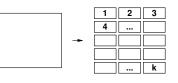
Design of transform matrix A

Task to solve

Given an input discrete signal, design a transformation matrix such that the transformed signal has decorrelated samples (they are mutually independent).

Solution

Given a 2D image, let us break it up into k blocks of n pixels each.



Each block *i* is characterized with its vector $\mathbf{b}^{(i)}$, i = 1, 2, ..., k where length $(\mathbf{b}^{(i)}) = n$.

Filters in Image Processing

David Svoboda (CBIA@FI)

autumn 2019

16 / 49

PCA-based Transform

Algorithm:

(1) collect the input data $\mathbf{b}^{(i)}$

② form the matrix V

- (3) calculate the covariance matrix C_V
- ④ find eigenvectors and eigenvalues of C_V
- s use eigenvectors to form the transform matrix A
- 0 use A as a transform matrix to original data
- 0 get transformed decorrelated data: $\mathbf{w}^{(i)} = A(\mathbf{b}^{(i)} \overline{\mathbf{b}})$

Notice: Red lines \equiv Principal Component Analysis (PCA).

David Svoboda (CBIA@FI)

PCA-based Transform

Design of transform matrix A

input	input	expected output
(correlated)	(mean centered)	(decorrelated)
$\mathbf{b}^{(i)}$	$\mathbf{v}^{(i)} = \mathbf{b}^{(i)} - \overline{\mathbf{b}}$	$\mathbf{w}^{(i)} = A\mathbf{v}^{(i)}, i = 1, 2, \dots, k$
	$V = \left[\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(k)} ight]$	$\mathcal{W} = \mathcal{A}\mathcal{V} = \left[\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(k)}\right]$
	$C_V = V \cdot V^T$	$C_W = W \cdot \dot{W^T}$
	$C_V \ldots$ real, symmetric	C_W diagonal

$$C_W = W \cdot W^T = (AV) \cdot (AV)^T = A(V \cdot V^T)A^T = A \cdot C_V \cdot A^T$$

Notice:

- the off-diagonal elements of covariance matrix C_V are the covariances of the $\mathbf{v}^{(i)}$ vectors ... $(V \cdot V^T)_{ab} = \sum_{i=1}^k v_a^{(i)} v_b^{(i)}$
- the off-diagonal elements of covariance matrix C_W are zero
- the eigenvectors of C_V form the rows of a new matrix A
- C_W is a diagonal matrix formed of the eigenvalues of C_V

David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019

PCA-based Transform

An example

Let us submit the following 2D image to the PCA

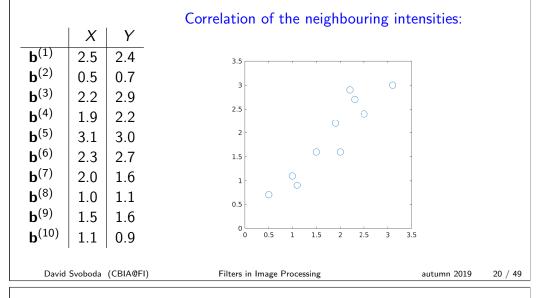
2.5	2.4	0.5	0.7
2.2	2.9	1.9	2.2
3.1	3.0	2.3	2.7
2.0	1.6	1.0	1.1
1.5	1.6	1.1	0.9

Notice: Neighbouring pixels have usually similar value.

David Svoboda (CBIA@FI)

An example

We have chosen n = 2, k = 10 and fetched k vectors $\mathbf{b}^{(i)}, i = 1, 2, ..., k$ in the following manner:



PCA-based Transform

An example

Evaluate all the covariances $C_V(X, X)$, $C_V(X, Y)$, $C_V(Y, X)$, and $C_V(Y, Y)$ and form the covariance matrix C_V :

$c \rightarrow v \gamma T$	0.617	0.615]
$C_V = V \cdot V^T = $	0.615	0.717

Since the covariance matrix is square, we can calculate the eigenvectors and eigenvalues for this matrix:

eigenvalues

$$C_W = W \cdot W^T = \begin{pmatrix} 0.049 & 0 \\ 0 & 1.284 \end{pmatrix}$$

eigenvectors

$$A = \left(\begin{array}{rrr} -0.735 & 0.678\\ -0.678 & -0.735 \end{array}\right)$$

David	Svoboda	(CBIA@FI)	

autumn 2019 22 / 49

PCA-based Transform

An example

Modify the input datasets:

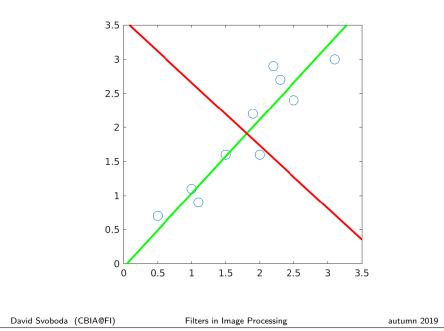
	X	Y		$X - \overline{X}$	$Y - \overline{Y}$	
$\mathbf{b}^{(1)}$	2.5	2.4	$\mathbf{v}^{(1)}$	0.69	0.49	-
b ⁽²⁾	0.5	0.7	v ⁽²⁾	-1.31	-1.21	
b ⁽³⁾	2.2	2.9	v ⁽³⁾	0.39	0.99	
$\mathbf{b}^{(4)}$	1.9	2.2	v ⁽⁴⁾	0.09	0.29	
b ⁽⁵⁾	3.1	3.0	v ⁽⁵⁾	1.29	1.09	
b ⁽⁶⁾	2.3	2.7	v ⁽⁶⁾	0.49	0.79	
$\mathbf{b}^{(7)}$	2.0	1.6	v ⁽⁷⁾	0.19	-0.31	
b ⁽⁸⁾	1.0	1.1	v ⁽⁸⁾	-0.81	-0.81	
b ⁽⁹⁾	1.5	1.6	v ⁽⁹⁾	-0.31	-0.31	
${f b}^{(10)}$	1.1	0.9	v ⁽¹⁰⁾	-0.71	-1.01	
David Svoboda (CBIA@FI)		David Svoboda (CBIA@FI) Filters in Image Processing autumn 201				

21 / 49

23 / 49

PCA-based Transform

An example



An example

The following statements are equal:

- the eigenvalue λ_j is the highest one
- the eigenvector e_j is more dominant
- the energy (the majority in information) is gathered in element $\mathbf{w}_i^{(i)}, i=1,2,\ldots,k$

Filters in Image Processing

• the element $\mathbf{w}_{i}^{(i)}, i = 1, 2, \dots, k$ has the greatest variance

The following statements are also equal:

- the eigenvalue λ_l is the lowest one
- the eigenvector e_l is practically useless

David Svoboda	(CBIA@FI)
---------------	-----------

autumn 2019

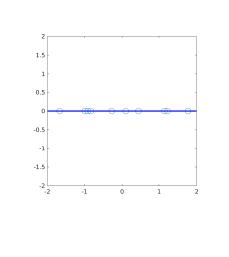
24 / 49

PCA-based Transform

An example

Clear less important component

	X'	Y'	
$\mathbf{w}^{(1)}$	-0.827	0.000	2
w ⁽²⁾	1.777	0.000	1.5
w ⁽³⁾	-0.992	0.000	1
$w^{(4)}$	-0.274	0.000	0.5
$\mathbf{w}^{(5)}$	-1.675	0.000	0
$w^{(6)}$	-0.912	0.000	-0.5
$w^{(7)}$	0.099	0.000	-1
w ⁽⁸⁾	1.144	0.000	-1.5
w ⁽⁹⁾	0.438	0.000	-2
$\mathbf{w}^{(10)}$	1.223	0.000	
	I		
David Svoboda (CBIA@FI)		Filters in Image Processing



autumn 2019

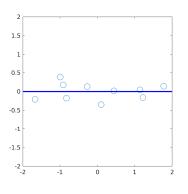
26 / 49

PCA-based Transform

An example

Transformed (decorrelated) data

	X'	Y'
$\mathbf{w}^{(1)}$	-0.827	-0.175
w ⁽²⁾	1.777	0.142
w ⁽³⁾	-0.992	0.384
$w^{(4)}$	-0.274	0.130
$w^{(5)}$	-1.675	-0.209
w ⁽⁶⁾	-0.912	0.175
$w^{(7)}$	0.099	-0.349
w ⁽⁸⁾	1.144	0.046
w ⁽⁹⁾	0.438	0.017
$\mathbf{w}^{(10)}$	1.223	-0.162



David	Svoboda	(CBIA@FI)

Filters in Image Processing

autumn 2019 25 / 49

PCA-based Transform

An example

Transformed back with A^{-1}

	oldX	oldY	newX	newY
$\mathbf{b}^{(1)}$	2.5	2.4	2.42	2.47
b ⁽²⁾	0.5	0.7	0.50	0.71
b ⁽³⁾	2.2	2.9	2.54	2.58
$\mathbf{b}^{(4)}$	1.9	2.2	2.01	2.09
$b^{(5)}$	3.1	3.0	3.04	3.05
b ⁽⁶⁾	2.3	2.7	2.48	2.53
$b^{(7)}$	2.0	1.6	1.74	1.84
b ⁽⁸⁾	1.0	1.1	0.97	1.13
b ⁽⁹⁾	1.5	1.6	1.49	1.61
$b^{(10)}$	1.1	0.9	0.91	1.08
			•	

David Svoboda (CBIA@FI)

Properties:

- optimal decorrelation method (see the example)
- too heavy for evaluation (searching for eigenvalues and eigenvectors)
- matrix A is data dependent (cannot be precomputed)
- all the eigenvectors must be kept for inverse transform

Conclusion: rather theoretical method

David Svoboda (CBIA@FI)

Filters in Image Processing

autumn 2019

28 / 49

```
Discrete Cosine Transform (DCT) DFT \rightarrow DCT
```

The relationship between signal c' and f':

c(2n) = 0 iff $0 \le n < N$ c(2n+1) = f(n) iff $0 \le n < N$ c(4N-n) = c(n) iff 0 < n < 2N

The basic properties of signal 'c':

• c is even (ready for DFT working over real even data) • |c| = 4N Discrete Cosine Transform (DCT) DFT \rightarrow DCT

Let $f = [f(0) \ f(1) \ \dots \ f(N-1)]$ be a discrete signal.

Let us modify it as follows:

David Svoboda (CBIA@FI)

$f(N-1) \ldots f(1) f(0)$	₩	mirror $f(0) f(1) f(2) \dots f(N-1)$
/// 1) /(1) /(0)	₩	insert zeros
$f(N-1) = 0 \dots = 0 f(1) = 0 f(0)$	0	
(↓	DFT domain is periodical
	0	$f(0) \circ f(1) \circ f(2) \ldots \circ f(N-1) \circ f(N-1) \circ \dots \circ f(1) \circ f(0)$
	₩	name substitution
	c(0)	c(1) $c(2)$ $c(3)$ $c(4)$ $c(4N-1)$

Filters in Image Processing

Discrete Cosine Transform (DCT) DFT \rightarrow DCT Let us apply DFT to c:

$$\begin{aligned} \mathcal{C}(k) &= \sum_{j=0}^{4N-1} c(j) e^{-\frac{2\pi i j k}{4N}} = / \text{symmetry} / = \sum_{j=0}^{2N-1} c(j) \left[e^{-\frac{2\pi i j k}{4N}} + e^{-\frac{2\pi i (4N-j) k}{4N}} \right] \\ &= \sum_{j=0}^{2N-1} c(j) \left[e^{-\frac{2\pi i j k}{4N}} + e^{\frac{2\pi i j k}{4N}} \right] / \text{Euler-Moivre eq.} / \\ &= \sum_{j=0}^{2N-1} c(j) \left[\left(\cos \frac{2\pi j k}{4N} - i \sin \frac{2\pi j k}{4N} \right) + \left(\cos \frac{2\pi j k}{4N} + i \sin \frac{2\pi j k}{4N} \right) \right] \\ &= \sum_{j=0}^{2N-1} c(j) \left[2 \cos \frac{2\pi j k}{4N} \right] \end{aligned}$$

David Svoboda (CBIA@FI)

autumn 2019

Discrete Cosine Transform (DCT)
DFT
$$\rightarrow$$
 DCT

$$C(k) = \sum_{j=0}^{2N-1} c(j) \left[2\cos\frac{2\pi jk}{4N} \right] /\text{separating odd and even items} / \\
= \sum_{l=0}^{N-1} 2c(2l) \left[\cos\frac{2\pi 2lk}{4N} \right] /j=2l, l \in \mathbb{N} / \\
+ \sum_{l=0}^{N-1} 2c(2l+1) \left[\cos\frac{2\pi (2l+1)k}{4N} \right] /j=2l+1, l \in \mathbb{N} / \\
= \sum_{l=0}^{N-1} 2f(l) \left[\cos\frac{(2l+1)\pi k}{2N} \right]$$

Discrete Cosine Transform (DCT)

Definition

Forward 1D-DCT:

$$\mathcal{C}(k) = \alpha(k) \sum_{l=0}^{N-1} f(l) \left[\cos \frac{(2l+1)\pi k}{2N} \right], \quad k = \{0, 1, 2, \dots, N-1\}$$

where
$$\alpha(k) = \begin{cases} \sqrt{\frac{1}{N}} & \text{iff} \quad k = 0\\ \sqrt{\frac{2}{N}} & \text{iff} \quad k \neq 0 \end{cases}$$

Inverse 1D-DCT:

$$f(l) = \sum_{k=0}^{N-1} \alpha(k) \mathcal{C}(k) \left[\cos \frac{(2l+1)\pi k}{2N} \right], \quad l = \{0, 1, 2, \dots, N-1\}$$

Filters in Image Processing

Basic properties:

- basis formed of sampled cosine waves only
- no complex numbers

David Svoboda	(CBIA@FI)
---------------	-----------

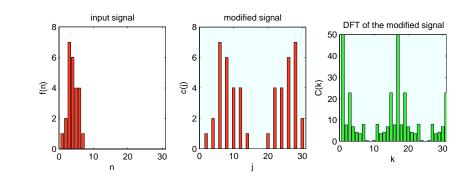
autumn 2019 35 / 49

Discrete Cosine Transform (DCT) DFT \rightarrow DCT

Signal C(k) is:

• even, because 'c' is even

• twice replicated, because c' is stretched by zeros



Notice: Only the coefficients C(k), $k = \{0, 1, 2, ..., N - 1\}$ are used.

This version of DCT is also known as DCT-II.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 34 / -		David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019	34 / 49
--	--	-------------------------	-----------------------------	-------------	---------

Fast Discrete Cosine Transform (F-DCT)

Let us recombine the input signal:

$$y(l) = f(2l)$$

$$y(N-1-l) = f(2l+1) \quad (l = 0, ..., N/2 - 1)$$

Example: f = [1 2 3 4 5 6 7 8] \rightarrow y = [1 3 5 7 8 6 4 2]

Applying DCT on signal *f* we can deduce:

$$\mathcal{C}(k) = \alpha(k) \sum_{l=0}^{N-1} f(l) \cos\left(\frac{(2l+1)\pi k}{2N}\right) \quad /f \to y/=\cdots =$$
$$= \alpha(k) \sum_{l=0}^{N-1} y(l) \cos\left(\frac{(4l+1)\pi k}{2N}\right)$$

David Svoboda (CBIA@FI)

Filters in Image Processing

autumn 2019 36 / 49

Fast Discrete Cosine Transform (F-DCT)

Derivation (cont'd) Let us apply DFT on signal *y*:

$$\mathcal{Y}(k) = \sum_{l=0}^{N-1} y(l) e^{\frac{-2\pi ikl}{N}}$$

$$= \sum_{l=0}^{N-1} y(l) \left[\cos \frac{2\pi kl}{N} - i \sin \frac{2\pi kl}{N} \right] / \cdot e^{-\frac{\pi ik}{2N}} /$$

$$\operatorname{Real} \left[e^{-\frac{\pi ik}{2N}} \mathcal{Y}(k) \right] = \sum_{l=0}^{N-1} y(l) \left[\cos \frac{2\pi kl}{N} \cos \frac{k\pi}{2N} - \sin \frac{2\pi kl}{N} \sin \frac{k\pi}{2N} \right]$$

$$= \sum_{l=0}^{N-1} y(l) \cos \frac{(4l+1)k\pi}{2N} = \mathcal{C}(k) / \alpha(k)$$

$$\operatorname{Imag} \left[e^{-\frac{\pi ik}{2N}} \mathcal{Y}(k) \right] = \operatorname{omitted}$$

$$\mathcal{C}(k) = \alpha(k) \operatorname{Real} \left[e^{-\frac{\pi ik}{2N}} \mathcal{Y}(k) \right]$$
David Svoboda (CBIA@FI) Filters in Image Processing autum 2019 37 / 49

2D Discrete Cosine Transform (2D-DCT) Definition

Forward 2D-DCT:

$$\mathcal{C}(u,v) = \alpha(u)\alpha(v) \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k,l) \left[\cos \frac{(2k+1)\pi u}{2N} \cos \frac{(2l+1)\pi v}{2N} \right]$$

where $u, v = \{0, 1, 2, \dots, N-1\}$

Inverse 2D-DCT:

$$f(k,l) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u) \alpha(v) \mathcal{C}(u,v) \left[\cos \frac{(2k+1)\pi u}{2N} \cos \frac{(2l+1)\pi v}{2N} \right]$$

Basic properties:

 $\bullet~$ 2D-DCT it is simply an extension of 1D-DCT

separable

David Svoboda (CBIA@FI)

Filters in Image Processing

Fast Discrete Cosine Transform (F-DCT)

1) recombine input sequence f of length N to get y:

$$y(l) = f(2l)$$

 $y(N-1-l) = f(2l+1) \quad (l=0,...,N/2-1)$

2 apply FFT to y:

$$\mathcal{Y} = \mathsf{FFT}(y)$$

3 for each k = 0, ..., N - 1 do:

() multiply the *k*-th Fourier coefficient by factor $e^{-\frac{\pi i k}{2N}}$:

$$\mathcal{Y}'(k) = e^{-\frac{\pi ik}{2N}} \mathcal{Y}(k)$$

② fetch only real part from each Fourier coefficient and normalize the results:

$$\mathcal{C}(k) = \alpha(k) \mathsf{Real}\left[\mathcal{Y}'(k)\right]$$

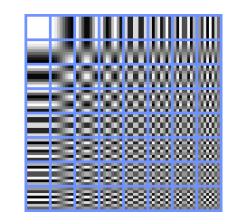
David Svoboda (CBIA@FI)

Filters in Image Processing

autumn 2019 38 / 49

2D Discrete Cosine Transform (2D-DCT) Basis functions

1D-DCT 8 basis 1D functions (N = 8) 2D-DCT 64 basis 2D functions $(N \times N = 8 \times 8)$



David Svoboda (CBIA@FI)

Filters in Image Processing

autumn 2019 40 / 49

Properties

• The transform

David Svoboda (CBIA@FI)

transform:

An example:

DCT.

David Svoboda (CBIA@FI)

David Svoboda (CBIA@FI)

autumn 2019

Walsh-Hadamard Transform

Formal definition:

$$\mathcal{H}(k) = \frac{1}{N} \sum_{n=0}^{N-1} f(n) \prod_{i=0}^{m-1} (-1)^{B(m,i,n,k)}$$

with $k \in \{0, 1, ..., N-1\}$, $N = 2^m$, and $B(m, i, n, k) = b_i(n)b_{m-1-i}(k)$, where $b_k(v)$ denotes the k-th bit in the binary representation of a non-negative integer v.

Notice: Similarly to FT we can define inverse (IWHT) or fast (FWHT) Walsh-Hadamard transform.

David Svoboda (CBIA@FI)

Filters in Image Processing

autumn 2019 46 / 49

Bibliography

- Gonzalez, R. C., Woods, R. E. Digital image processing / 2nd ed., Upper Saddle River: Prentice Hall, c2002, pages 793, ISBN 0201180758
- Klette R., Zamperoni P. Handbook of Image Processing Operators, Wiley, 1996, ISBN-0471956422
- Salomon D. Data Compression, The Complete Reference, 4th edition, Springer, London, 2007, ISBN-1846286025

Walsh-Hadamard Transform

Properties:

- Unlike to DCT the basis functions contain plus and minus ones only.
- So-called Walsh functions are used as a basis functions.
- Any two basis functions are orthogonal.
- In real space only (like DCT).
- Worse approximation of PCA than DCT.
- Wide application in digital communications.
- One can implement the WHT on smaller, cheaper hardware.

Notice: Magnitude in WHT is affected by phase shifts in the signal! Typically, orthogonality is broken.

David Svoboda	(CBIA@FI)

Filters in Image Processing

autumn 2019 47 / 49

You should know the answers

- Explain the difference between correlated and decorrelated signal.
- How does the PCA decorrelate the given signal?
- How do we get the PCA transformation matrix A in practice?
- What is the content of matrix A used in PCA transform?
- Provide your own example (different from the examples presented in the lecture) suitable for PCA transform.
- Explain the relationship between DFT and DCT.
- Describe the F-DCT algorithm and compute F-DCT([1 6 6 1]).
- Analyze the ability to compact the energy for the following transforms: PCA, DFT, DCT, WHT