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Revision
Algebra

Definition:
Let C ⊂ Rn×n be a square matrix. Vector v ∈ Cn is an eigenvector of
C ⇔ ∃λ ∈ C : Cv = λv. λ is called an eigenvalue.

Properties of eigenvalues:

Cv = λv equals to (C − λE )v = 0
The solution of equation |C − λE | = 0 is identical to the search for roots in

the polynomial of degree n.

if C is symmetric then all the eigenvalues are real

Properties of eigenvectors:

the two eigenvectors corresponding to two different eigenvalues are
orthogonal

if C is symmetric then all the eigenvectors are real and orthogonal
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Revision
Algebra

Properties of symmetric matrices:

if C ⊂ Rn×n : C = CT with its eigenvectors e1, e2, . . . , en and
eigenvalues λ1, λ2, . . . , λn then ∃A ⊂ Rn×n such that ATCA = D,
where

D =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

 and A =


e1
e2
e3
...
en
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Revision
Statistics

Cross-correlation:

given two 1D signals f (i) and g(i):

(f ? g)(i) =
∑
k

f (i + k)g(k)

it is a measure of similarity of two signals

Auto-correlation:

given 1D signal f (i):

(f ? f )(i) =
∑
k

f (i + k)f (k)

it is a measure for finding repeating patterns
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Revision
Statistics

Auto-correlation example
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Revision
Statistics

Auto-correlation example
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Revision
Statistics

Highly correlated signals

contain repeating patterns

energy (nonzero values) is stretched over the whole space

this is what we usually have

Decorrelated signals

energy (nonzero values) is compacted in one location

easy to compress

this is what we wish to have
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Revision
Statistics

Covariance

Covariance exhibits how much two signals f and g (let us assume
|f | = |g | = n) vary from the mean with respect to each other:

cov(f , g) =

n∑
i=1

(fi − f )(gi − g)

n − 1

Covariance Matrix – a matrix of covariances between two signals f
and g :

C =

[
cov(f , f ) cov(f , g)
cov(g , f ) cov(g , g)

]
Matrix C is always real and symmetric.

Notice: Two signals f and g are decorrelated iff
cov(f , g) = cov(g , f ) = 0, i.e. when the matrix C is diagonal.
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Motivation

The most common linear transforms

sinusoidal transforms

DFT (discrete Fourier transform)
DCT (discrete cosine transform)
DST (discrete sine transform)

rectangular wave transforms

Walsh-Hadamard transform
Haar transform

variable basis

Discrete wavelet transform

eigenvector-based transforms

Karhunen-Loeve transform
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Motivation
Energy compaction

Evaluate DFT over some short signal:

f = [1 3 4 2]

⇓ /DFT/

F =
1
√

4
[10 (−3− i) 0 (−3 + i)]

Measure the energy of the signals:

E(f ) =
∑

f (i)2 = 12 + 32 + 42 + 22 = 30

E(F) =
∑
F(i)2 = 25 + 10/4 + 10/4 = 30

The first component in f accounts for 3.3% of energy while the first
component in F accounts for 83.3% of energy.

Conclusion: Ability of energy compaction ≈ optimality of the transform
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Motivation
Why do we need image transforms?

manipulation with data in another domain might be simpler
example of use: low-pass, high-pass filtering

data decorrelation ≈ co-variance removal ≈ energy compaction
example of use: image compression

Which transform properties are the most important?

speed

simple to implement

Notice: The requirements suggest to use linear transforms, i.e. the input
signal f is transformed into the signal F by:

F = Af ,

where A is a transform matrix.
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PCA-based Transform
Design of transform matrix A

Task to solve
Given an input discrete signal, design a transformation matrix such that
the transformed signal has decorrelated samples (they are mutually
independent).

Solution
Given a 2D image, let us break it up into k blocks of n pixels each.

1 2 3

4

k

...

...

Each block i is characterized with its vector b(i), i = 1, 2, . . . , k where
length(b(i)) = n.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 16 / 49

PCA-based Transform
Design of transform matrix A

input input expected output
(correlated) (mean centered) (decorrelated)

b(i) v(i) = b(i) − b w(i) = Av(i), i = 1, 2, . . . , k
V =

[
v(1), v(2), . . . , v(k)

]
W = AV =

[
w(1),w(2), . . . ,w(k)

]
CV = V · V T CW = W ·W T

CV . . . real, symmetric CW . . . diagonal

CW = W ·W T = (AV ) · (AV )T = A(V · V T )AT = A · CV · AT

Notice:

the off-diagonal elements of covariance matrix CV are the covariances of the

v(i) vectors . . . (V · V T )ab =
∑k

i=1 v
(i)
a v

(i)
b

the off-diagonal elements of covariance matrix CW are zero

the eigenvectors of CV form the rows of a new matrix A

CW is a diagonal matrix formed of the eigenvalues of CV
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PCA-based Transform

Algorithm:

1 collect the input data b(i)

2 form the matrix V

3 calculate the covariance matrix CV

4 find eigenvectors and eigenvalues of CV

5 use eigenvectors to form the transform matrix A

6 use A as a transform matrix to original data

7 get transformed decorrelated data: w(i) = A(b(i) − b)

Notice: Red lines ≡ Principal Component Analysis (PCA).
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PCA-based Transform
An example

Let us submit the following 2D image to the PCA

2.5 2.4 0.5 0.7

2.2 2.9 1.9 2.2

3.1 3.0 2.3 2.7

2.0 1.6 1.0 1.1

1.5 1.6 1.1 0.9

Notice: Neighbouring pixels have usually similar value.
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PCA-based Transform
An example

We have chosen n = 2, k = 10 and fetched k vectors b(i), i = 1, 2, . . . , k in
the following manner:

X Y

b(1) 2.5 2.4

b(2) 0.5 0.7

b(3) 2.2 2.9

b(4) 1.9 2.2

b(5) 3.1 3.0

b(6) 2.3 2.7

b(7) 2.0 1.6

b(8) 1.0 1.1

b(9) 1.5 1.6

b(10) 1.1 0.9

Correlation of the neighbouring intensities:
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PCA-based Transform
An example

Modify the input datasets:

X Y X − X Y − Y

b(1) 2.5 2.4 v(1) 0.69 0.49

b(2) 0.5 0.7 v(2) -1.31 -1.21

b(3) 2.2 2.9 v(3) 0.39 0.99

b(4) 1.9 2.2 v(4) 0.09 0.29

b(5) 3.1 3.0 v(5) 1.29 1.09

b(6) 2.3 2.7 v(6) 0.49 0.79

b(7) 2.0 1.6 v(7) 0.19 -0.31

b(8) 1.0 1.1 v(8) -0.81 -0.81

b(9) 1.5 1.6 v(9) -0.31 -0.31

b(10) 1.1 0.9 v(10) -0.71 -1.01
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PCA-based Transform
An example

Evaluate all the covariances CV (X ,X ), CV (X ,Y ), CV (Y ,X ), and
CV (Y ,Y ) and form the covariance matrix CV :

CV = V · V T =

[
0.617 0.615
0.615 0.717

]
Since the covariance matrix is square, we can calculate the eigenvectors
and eigenvalues for this matrix:

eigenvalues

CW = W ·W T =

(
0.049 0

0 1.284

)
eigenvectors

A =

(
−0.735 0.678
−0.678 −0.735

)
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PCA-based Transform
An example
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PCA-based Transform
An example

The following statements are equal:

the eigenvalue λj is the highest one

the eigenvector ej is more dominant

the energy (the majority in information) is gathered in element

w
(i)
j , i = 1, 2, . . . , k

the element w
(i)
j , i = 1, 2, . . . , k has the greatest variance

The following statements are also equal:

the eigenvalue λl is the lowest one

the eigenvector el is practically useless
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PCA-based Transform
An example

Transformed (decorrelated) data

X ′ Y ′

w(1) -0.827 -0.175

w(2) 1.777 0.142

w(3) -0.992 0.384

w(4) -0.274 0.130

w(5) -1.675 -0.209

w(6) -0.912 0.175

w(7) 0.099 -0.349

w(8) 1.144 0.046

w(9) 0.438 0.017

w(10) 1.223 -0.162
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PCA-based Transform
An example

Clear less important component

X ′ Y ′

w(1) -0.827 0.000

w(2) 1.777 0.000

w(3) -0.992 0.000

w(4) -0.274 0.000

w(5) -1.675 0.000

w(6) -0.912 0.000

w(7) 0.099 0.000

w(8) 1.144 0.000

w(9) 0.438 0.000

w(10) 1.223 0.000
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PCA-based Transform
An example

Transformed back with A−1

oldX oldY newX newY

b(1) 2.5 2.4 2.42 2.47

b(2) 0.5 0.7 0.50 0.71

b(3) 2.2 2.9 2.54 2.58

b(4) 1.9 2.2 2.01 2.09

b(5) 3.1 3.0 3.04 3.05

b(6) 2.3 2.7 2.48 2.53

b(7) 2.0 1.6 1.74 1.84

b(8) 1.0 1.1 0.97 1.13

b(9) 1.5 1.6 1.49 1.61

b(10) 1.1 0.9 0.91 1.08
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PCA-based Transform

Properties:

optimal decorrelation method (see the example)

too heavy for evaluation (searching for eigenvalues and eigenvectors)

matrix A is data dependent (cannot be precomputed)

all the eigenvectors must be kept for inverse transform

Conclusion: rather theoretical method
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Discrete Cosine Transform (DCT)
DFT → DCT

Let f = [f (0) f (1) . . . f (N − 1)] be a discrete signal.

Let us modify it as follows:

f (0) f (1) f (2) . . . f (N − 1)

⇓ mirror

f (N − 1) . . . f (1) f (0) f (0) f (1) f (2) . . . f (N − 1)

⇓ insert zeros

f (N − 1) 0 . . . 0 f (1) 0 f (0) 0 f (0) 0 f (1) 0 f (2) . . . 0 . . . f (N − 1) 0

⇓ DFT domain is periodical

0 f (0) 0 f (1) 0 f (2) . . . 0 . . . f (N − 1) 0 f (N − 1) 0 . . . 0 f (1) 0 f (0)

⇓ name substitution

c(0) c(1) c(2) c(3) c(4) . . . c(4N − 1)
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Discrete Cosine Transform (DCT)
DFT → DCT

The relationship between signal ’c ’ and ’f ’:

c(2n) = 0 iff 0 ≤ n < N

c(2n + 1) = f (n) iff 0 ≤ n < N

c(4N − n) = c(n) iff 0 < n < 2N

The basic properties of signal ’c ’:

c is even (ready for DFT working over real even data)

|c| = 4N
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Discrete Cosine Transform (DCT)
DFT → DCT

Let us apply DFT to c :

C(k) =
4N−1∑
j=0

c(j)e−
2πijk
4N = /symmetry/ =

2N−1∑
j=0

c(j)
[
e−

2πijk
4N + e−

2πi(4N−j)k
4N

]

=
2N−1∑
j=0

c(j)
[
e−

2πijk
4N + e

2πijk
4N

]
/Euler-Moivre eq./

=
2N−1∑
j=0

c(j)

[(
cos

2πjk

4N
− i sin

2πjk

4N

)
+

(
cos

2πjk

4N
+ i sin

2πjk

4N

)]

=
2N−1∑
j=0

c(j)

[
2 cos

2πjk

4N

]
= . . .

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 32 / 49



Discrete Cosine Transform (DCT)
DFT → DCT

C(k) =
2N−1∑
j=0

c(j)

[
2 cos

2πjk

4N

]
/separating odd and even items/

=
N−1∑
l=0

2c(2l)

[
cos

2π2lk

4N

]
/j=2l, l ∈ N/

+
N−1∑
l=0

2c(2l + 1)

[
cos

2π(2l + 1)k

4N

]
/j=2l+1, l ∈ N/

=
N−1∑
l=0

2f (l)

[
cos

(2l + 1)πk

2N

]
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Discrete Cosine Transform (DCT)
DFT → DCT

Signal C(k) is:

even, because ’c ’ is even

twice replicated, because ’c ’ is stretched by zeros
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input signal

n

f(
n)
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modified signal

j

c(
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30

40

50
DFT of the modified signal

k

C
(k

)

Notice: Only the coefficients C(k), k = {0, 1, 2, . . . ,N − 1} are used.

This version of DCT is also known as DCT-II.
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Discrete Cosine Transform (DCT)
Definition

Forward 1D-DCT:

C(k) = α(k)
N−1∑
l=0

f (l)

[
cos

(2l + 1)πk

2N

]
, k = {0, 1, 2, . . . ,N − 1}

where

α(k) =


√

1
N iff k = 0√
2
N iff k 6= 0

Inverse 1D-DCT:

f (l) =
N−1∑
k=0

α(k)C(k)

[
cos

(2l + 1)πk

2N

]
, l = {0, 1, 2, . . . ,N − 1}

Basic properties:

basis formed of sampled cosine waves only

no complex numbers
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Fast Discrete Cosine Transform (F-DCT)
Derivation

Let us recombine the input signal:

y(l) = f (2l)

y(N − 1− l) = f (2l + 1) (l = 0, . . . ,N/2− 1)

Example: f = [1 2 3 4 5 6 7 8] → y = [1 3 5 7 8 6 4 2]

Applying DCT on signal f we can deduce:

C(k) = α(k)
N−1∑
l=0

f (l) cos

(
(2l + 1)πk

2N

)
/f → y/ = · · · =

= α(k)
N−1∑
l=0

y(l) cos

(
(4l + 1)πk

2N

)
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Fast Discrete Cosine Transform (F-DCT)
Derivation (cont’d)

Let us apply DFT on signal y :

Y(k) =

N−1∑
l=0

y(l)e
−2πikl

N

=

N−1∑
l=0

y(l)

[
cos

2πkl

N
− i sin

2πkl

N

]
/ · e−

πik
2N /

Real
[
e−

πik
2N Y(k)

]
=

N−1∑
l=0

y(l)

[
cos

2πkl

N
cos

kπ

2N
− sin

2πkl

N
sin

kπ

2N

]

=

N−1∑
l=0

y(l) cos
(4l + 1)kπ

2N
= C(k)/α(k)

Imag
[
e−

πik
2N Y(k)

]
= omitted

C(k) = α(k)Real
[
e−

πik
2N Y(k)

]
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Fast Discrete Cosine Transform (F-DCT)
Algorithm

1 recombine input sequence f of length N to get y :

y(l) = f (2l)

y(N − 1− l) = f (2l + 1) (l = 0, . . . ,N/2− 1)

2 apply FFT to y :
Y = FFT(y)

3 for each k = 0, . . . ,N − 1 do:

1 multiply the k-th Fourier coefficient by factor e−
πik
2N :

Y ′(k) = e−
πik
2N Y(k)

2 fetch only real part from each Fourier coefficient and normalize the
results:

C(k) = α(k)Real [Y ′(k)]
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2D Discrete Cosine Transform (2D-DCT)
Definition

Forward 2D-DCT:

C(u, v) = α(u)α(v)
N−1∑
k=0

N−1∑
l=0

f (k , l)

[
cos

(2k + 1)πu

2N
cos

(2l + 1)πv

2N

]
where u, v = {0, 1, 2, . . . ,N − 1}

Inverse 2D-DCT:

f (k , l) =
N−1∑
u=0

N−1∑
v=0

α(u)α(v)C(u, v)

[
cos

(2k + 1)πu

2N
cos

(2l + 1)πv

2N

]

Basic properties:

2D-DCT it is simply an extension of 1D-DCT

separable
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2D Discrete Cosine Transform (2D-DCT)
Basis functions

1D-DCT
8 basis 1D functions
(N = 8)

a
0

2

1

3

4

5

6

7

b

2D-DCT
64 basis 2D functions
(N×N = 8×8)
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Discrete Cosine Transform (DCT)

Properties

Almost as efficient as PCA in term of decorrelation optimality.

The transform matrix can be easily prepared without having the data.

Unlike DFT, DCT works with real data.

As its is derived directly from FFT, there exists fast alternative for
DCT.

Regarding its construction, it works with symmetric data.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 41 / 49

Walsh-Hadamard Transform

Jacques Salomon Hadamard (1865 – 1963)
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Walsh-Hadamard Transform

Similarly to DFT we can define Hadamard matrix which defines the
transform:

Hm =
1√
2

(
Hm−1 Hm−1
Hm−1 −Hm−1

)
H1 =

1√
2

(
1 1
1 −1

)
H0 = +1

An example:

H2 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
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Walsh-Hadamard Transform

An 8-samples long Walsh functions:
a

0

1

2

3

4

5

6

7
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Walsh-Hadamard Transform

Formal definition:

H(k) =
1

N

N−1∑
n=0

f (n)
m−1∏
i=0

(−1)B(m,i ,n,k)

with k ∈ {0, 1, . . . ,N − 1}, N = 2m, and B(m, i , n, k) = bi (n)bm−1−i (k),
where bk(v) denotes the k-th bit in the binary representation of a
non-negative integer v .

Notice: Similarly to FT we can define inverse (IWHT) or fast (FWHT)
Walsh-Hadamard transform.
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Walsh-Hadamard Transform

Properties:

Unlike to DCT the basis functions contain plus and minus ones only.

So-called Walsh functions are used as a basis functions.

Any two basis functions are orthogonal.

In real space only (like DCT).

Worse approximation of PCA than DCT.

Wide application in digital communications.

One can implement the WHT on smaller, cheaper hardware.

Notice: Magnitude in WHT is affected by phase shifts in the signal!
Typically, orthogonality is broken.
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You should know the answers . . .

Explain the difference between correlated and decorrelated signal.

How does the PCA decorrelate the given signal?

How do we get the PCA transformation matrix A in practice?

What is the content of matrix A used in PCA transform?

Provide your own example (different from the examples presented in
the lecture) suitable for PCA transform.

Explain the relationship between DFT and DCT.

Describe the F-DCT algorithm and compute F-DCT([1 6 6 1]).

Analyze the ability to compact the energy for the following
transforms: PCA, DFT, DCT, WHT
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