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Revision Revision
Algebra Algebra
Definition:

Let C € R™ " be a square matrix. Vector v € C" is an eigenvector of

C&dNeC: Cv=)\v. \is called an eigenvalue. Properties of symmetric matrices:

o if C C R™": C = CT with its eigenvectors ey, e, ..., e, and
Properties of eigenvalues: eigenvalues A1, Ao, ..., \, then 3A C R™" such that ATCA =D,
o Cv=)\vequalsto (C—AE)v=0 where
The solution of equation |C — AE| = 0 is identical to the search for roots in [\ 0 0 ... 0] [ e ]
the polynomial of degree n. 0 X 0 ... 0 e
o if C is symmetric then all the eigenvalues are real D=1 0 0 X3 ... O and A= | &
Properties of eigenvectors: 0 0 0 o )\'n e;n

o the two eigenvectors corresponding to two different eigenvalues are
orthogonal

o if C is symmetric then all the eigenvectors are real and orthogonal
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Revision
Statistics

Cross-correlation:
o given two 1D signals f(i) and g(/):
(Fxg)(i) =D i+ k)g(k)
k

o it is a measure of similarity of two signals

Auto-correlation:

o given 1D signal f(i):

(F £)(i) =D F(i + k) (k)

k

o it is a measure for finding repeating patterns

Revision
Statistics
Auto-correlation example

Highly correlated signal

x 10° Auto-correlation
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Revision
Statistics
Auto-correlation example
Highly correlated signal Auto-correlation
250 11 0
50 100 150 200 250 100 200 300 400 500
Less correlated signal Auto-correlation
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Revision
Statistics
Highly correlated signals
o contain repeating patterns
o energy (nonzero values) is stretched over the whole space
o this is what we usually have
Decorrelated signals
o energy (nonzero values) is compacted in one location
o easy to compress
o this is what we wish to have
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Revision
Statistics
Covariance

o Covariance exhibits how much two signals f and g (let us assume
|f| = |g| = n) vary from the mean with respect to each other:

n —_—

S (5~ T)(g — 2)
cov(f,g) = i=1

n—1

o Covariance Matrix — a matrix of covariances between two signals f
and g:

cov(f,f) cov(f,g)

cov(g,f) cov(g,g)

Matrix C is always real and symmetric.

Notice: Two signals f and g are decorrelated iff
cov(f,g) = cov(g,f) =0, i.e. when the matrix C is diagonal. J
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Motivation

The most common linear transforms

o sinusoidal transforms

o DFT (discrete Fourier transform)
o DCT (discrete cosine transform)
o DST (discrete sine transform)

o rectangular wave transforms

o Walsh-Hadamard transform
o Haar transform

o variable basis
o Discrete wavelet transform
o eigenvector-based transforms
o Karhunen-Loeve transform
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Motivation
Energy compaction

Evaluate DFT over some short signal:

f [1342]
DFT
1
7

< |

[10 (=3—1i) 0 (=3+1)]

Measure the energy of the signals:

E(f) = S fiP=1"+3+42+2"=30

E(F) = > F(i)’=25+10/4+10/4 =30

The first component in f accounts for 3.3% of energy while the first
component in F accounts for 83.3% of energy.

Conclusion: Ability of energy compaction = optimality of the transform J
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Motivation
Why do we need image transforms?

© manipulation with data in another domain might be simpler
example of use: low-pass, high-pass filtering

o data decorrelation & co-variance removal & energy compaction
example of use: image compression

Which transform properties are the most important?
o speed

o simple to implement

Notice: The requirements suggest to use linear transforms, i.e. the input
signal f is transformed into the signal F by:

F = Af,

where A is a transform matrix.

v
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PCA-based Transform

Design of transform matrix A

Task to solve

Given an input discrete signal, design a transformation matrix such that
the transformed signal has decorrelated samples (they are mutually
independent).

Solution
Given a 2D image, let us break it up into k blocks of n pixels each.
(2 ]3]
(4 L. I ]
-~ I L]
| .
[ LIk ]
Each block i is characterized with its vector b(i), i=1,2,...,k where
length(b()) = n.
David Svoboda (CBIA®FI) Filters in Image Processing autumn 2019 16 / 49

PCA-based Transform

Design of transform matrix A

input input expected output
(correlated)  (mean centered) (decorrelated)
b(") vi) =b() —b wi) =AvD) =12 . k

V = [v(l), v, ,v(k)] W=AV= [w(l), w@ . ,w(k)]
Cy=V. VT Cw=W-WT
Cy ...real, symmetric Cw ...diagonal

Cw=W-W'=(AV)- (AV)T = A(V- VAT = A.C,-AT J

Notice:

o the off-diagonal elements of covariance matrix Cy, are the covariances of the
v vectors ... (V- VT), = Zf;l vg')vé')
o the off-diagonal elements of covariance matrix Cy, are zero

o the eigenvectors of Cy form the rows of a new matrix A

o Cy is a diagonal matrix formed of the eigenvalues of Cy
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PCA-based Transform

Algorithm:

@ collect the input data b(")

@ form the matrix V

calculate the covariance matrix Cy

find eigenvectors and eigenvalues of Cy

use eigenvectors to form the transform matrix A

use A as a transform matrix to original data

get transformed decorrelated data: w() = A(b() — b)

© 66 6606

Notice: Red lines = Principal Component Analysis (PCA).
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PCA-based Transform

An example

Let us submit the following 2D image to the PCA

25|24/0.5 0.7

2229|1922

3.13.023 | 2.7

20|16 1.0 1.1

1516|1109

Notice: Neighbouring pixels have usually similar value.
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PCA-based Transform

An example

We have chosen n =2, k = 10 and fetched k vectors b(i), i=1,2,...,kin
the following manner:

Correlation of the neighbouring intensities:

Xy
b1 [25]24
b® |05 |07 A
b3 | 22129
b*# | 19|22
b®) |31 3.0 2
b® | 23|27
b | 20] 16 A
b® | 1.0 1.1
b® | 15|16
b(10) | 1.1 ] 0.9 B es 115 2 25 5 s
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PCA-based Transform

An example

Modify the input datasets:

X| v X-X|Y-Y
b1 [25]24]v® 0.69 0.49
b? | 05|07 | v® 131 -1.21
bB) | 22|29 v® 0.39 0.99
b® | 19|22 | v® 0.09 0.29
b®) | 31|30/ v® 1.29 1.09
b® | 23|27 v® 0.49 0.79
b | 20116 v® 019 | -0.31
b® | 10|11/ v® -0.81| -0.81
b® |15 1.6 | v -0.31| -0.31
b(19 | 1.1 {09 | v | _071| -1.01
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PCA-based Transform

An example

Evaluate all the covariances Cy/ (X, X), Cy(X,Y), Cy(Y,X), and
Cv(Y,Y) and form the covariance matrix Cy:

Co—v.yT [0.617 0.615}
V: . pu—

0.615 0.717

Since the covariance matrix is square, we can calculate the eigenvectors
and eigenvalues for this matrix:

o eigenvalues

o w.wT (0.049 0)
W: . p—

0

o eigenvectors
- ( —0.735 0.678 )
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PCA-based Transform

An example

3.5

15

0.5
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PCA-based Transform

An example

The following statements are equal:

o the eigenvalue J; is the highest one
o the eigenvector ¢; is more dominant

o the energy (the majority in information) is gathered in element

w i=12.. k

o the element wJ(.'), i=1,2,...,k has the greatest variance

The following statements are also equal:

o the eigenvalue )\ is the lowest one

o the eigenvector ¢, is practically useless

PCA-based Transform

An example

Transformed (decorrelated) data

X' Yy’
wD [ -0.827 | -0.175
w® | 1777 | 0.142
w® | -0.992 | 0.384
w® | 0274 | 0.130
w® | -1.675 | -0.209
w® | 0912 | 0.175
w(® | 0.099 | -0.349
w® | 1.144 | 0.046
w® | 0438 | 0.017
w10 | 1223 | -0.162

15

0.5

.05+

15}
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PCA-based Transform
An example
Clear less important component
X’ Y’
w®) [ -0.827 | 0.000 )
w® | 1.777 | 0.000
w(® | -0.992 | 0.000 1|
w® | -0.274 | 0.000
w® | -1.675 | 0.000 °
w(® | -0.912 | 0.000
w(® | 0.099 | 0.000
w(® | 1.144 | 0.000
w® | 0.438 | 0.000 2T
w9 | 1223 | 0.000
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PCA-based Transform
An example
Transformed back with A~1
oldX | oldY | newX | newY
b(D) 25| 24| 242 247
b(2) 05| 07| 050]| 0.71
b(3) 22| 29| 254 | 258
b(4) 19| 22| 201 2.09
b(5) 31| 30| 304 3.05
b(®) 23| 27| 248 | 253
b(7) 20| 16| 1.74| 184
b(®) 10| 11| 097| 1.13
b(9) 1.5 16| 149| 161
b(10) 1.1 09| 091| 1.08
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PCA-based Transform

Properties:

o optimal decorrelation method (see the example)
o too heavy for evaluation (searching for eigenvalues and eigenvectors)
o matrix A is data dependent (cannot be precomputed)

o all the eigenvectors must be kept for inverse transform

Conclusion: rather theoretical method )
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Discrete Cosine Transform (DCT)

DFT — DCT

Let f =[f(0) (1) ... f(N —1)] be a discrete signal.

Let us modify it as follows:

f(0) f(1) f(2) f(N—1)
4 mirror
f(N—1) ... f(1) f(0) f(0) f(1) f(2) ... f(N—1)
4 insert zeros
f(N—1)0 ... 0f(1)0f(0) fO)OFf(1)0F(2) ... 0 ... f(N—1)
(3 DFT domain is periodical
fO)OFf(1)0f(2) ... 0 ... f(N—=1)0OF(N—1)0 ...
J name substitution
c(0) c(1) c(2) c(3) c(4) ... c(4N —1)
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Discrete Cosine Transform (DCT)

DFT — DCT

The relationship between signal "¢’ and 'f':

c2n) = 0 iff 0<n<N
c2n+1) = f(n) iff 0<n<N
c(4N —n) = c(n) iff 0<n<2N

The basic properties of signal 'c":

o c is even (ready for DFT working over real even data)
o |c|=4N
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Discrete Cosine Transform (DCT)

DFT — DCT
Let us apply DFT to c:

AN-1 - 2N-1
C(k) = Z c(j)e” W = /symmetry/ = Z c(j) [e_ N 4 e~
Jj=0 Jj=0
2N—1 T 2mijk 2mijk
= Z c(j) e W + e } /Euler-Moivre eq./
Jj=0

2N-1 - : . .
27 jk 2mjk 2mjk
= E c()) _(cos%—isin %) + (cos%+isin

Jj=0
2N-1 -
. 27 jk
= 2
Z c(j) |2 cos m }
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Discrete Cosine Transform (DCT)

DFT — DCT

mjk
C(J [2 cos ﬁ] /separating odd and even items/

2n2lk
= 2c(2/) { ”N ] Ji=2l, 1 € N/
/=0
N-1
2n(21+ 1)k .
2c(2/+1 ———— | /j=2141, I € N
+IZ; c( +)[cos N :|/J + /
N-1
(2 + 1)k
= 2f(/ —_—
) {cos >N
/=0
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Discrete Cosine Transform (DCT)
DFT — DCT
Signal C(k) is
@ even, because 'c’ is even
o twice replicated, because 'c’ is stretched by zeros

input signal modified signal " X

8 8 DFT of the modified signal
50
6 6 40
= .30

g4 S g
© 20
2 2 10
I | 11 I ol T . i
0 0 0 10 20 30
0 10 20 30 0 10 20 30 K
j

n

Notice: Only the coefficients C(k), k ={0,1,2,..., N — 1} are used.

This version of DCT is also known as DCT-II. )
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Discrete Cosine Transform (DCT)

Definition
Forward 1D-DCT:
N 1
(21 4+ 1)k B
C(k (! |:COST:|, k=1{0,1,2,...,N -1}
/:0
where
" Vi k=0
o =
V3 i k#0
Inverse 1D-DCT:
N-1
B (21 + )7k B
f() = kz_% a(k)C(k) [cos o , 1={0,1,2,...,N -1}

Basic properties:
o basis formed of sampled cosine waves only
@ no complex numbers
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Fast Discrete Cosine Transform (F-DCT)

Derivation

Let us recombine the input signal:
y() = f(2)
y(IN=1-1) = f(2I+1) (/=0,...,N/2-1)
Example: £ = [1 23 45678] -—y=1[135728642] J

Applying DCT on signal f we can deduce:

C(k) = a(k) f(/)cos(%) [f—y) ==

= a(k) Y v cos (U 0™)
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Fast Discrete Cosine Transform (F-DCT)

Derivation (cont'd)

Let us apply DFT on signal y:

N—1

Z y(l)e —2/\7/rikl

1=0

Y(k)

N—1
27kl 27kl i
= Zy(l) [cos X isin Tt }/-e*Tl\f/
1=0

N N
N—1
i / k 27kl k
Real e y0] = 30 cos 22 cos 17— in 27 sin 1
N—1
41+ 1)k
= Sy eos WEDET o4y /0 k)
s 2N
_mik .
Imag [e 2N y(k)] = omitted
ik
C(K) = a(k)Real [~ V()] J
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Fast Discrete Cosine Transform (F-DCT)

Algorithm

@ recombine input sequence f of length N to get y:

y(l) = f(2)
y(N—=1-1) = f(2/+1) (I=0,...,N/2—1)

@ apply FFT to y:
Y =FFT(y)
@ foreach k=0,...,N —1 do:

@ multiply the k-th Fourier coefficient by factor e W

ik

Y'(k) =e = Y(k)

@ fetch only real part from each Fourier coefficient and normalize the
results:
C(k) = a(k)Real [V (k)]
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2D Discrete Cosine Transform (2D-DCT)

Definition

Forward 2D-DCT:

N-1N-1
B (2k+1)mu  (2/+ 1)7v
Clu,v) = a(u)a(v) 2 2 f(k,1) [ N cos
where u,v={0,1,2,...,N -1}

Inverse 2D-DCT:

N—-1N-1
fk,l) = Z Z a(u)a(v)C(u,v) [COS (2k ;-Nl)ﬂu cos (21 —;All)ﬂ'v}
u=0 v=0

Basic properties:
o 2D-DCT it is simply an extension of 1D-DCT

o separable
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2D Discrete Cosine Transform (2D-DCT)

Basis functions

1D-DCT 2D-DCT
8 basis 1D functions 64 basis 2D functions
(N =28) (NxN =8x8)
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Discrete Cosine Transform (DCT)

Properties

o Almost as efficient as PCA in term of decorrelation optimality.

©

The transform matrix can be easily prepared without having the data.
o Unlike DFT, DCT works with real data.

As its is derived directly from FFT, there exists fast alternative for
DCT.

Regarding its construction, it works with symmetric data.

©

(]

David Svoboda (CBIA®QFI) Filters in Image Processing autumn 2019 41/ 49

Walsh-Hadamard Transform

Jacques Salomon Hadamard (1865 — 1963)
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Walsh-Hadamard Transform

Similarly to DFT we can define Hadamard matrix which defines the

transform:
Hm _ i( Hm—l Hm—l)
2 Hm—l _Hm—l
1 1 1
o= 51 )
H = +1
An example:
1 1 1 1
11 -1 1 -1
=311 1 1 1
1 -1 -1 1
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Walsh-Hadamard Transform

An 8-samples long Walsh functions:
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Walsh-Hadamard Transform

Formal definition:

with k € {0,1,...,N =1}, N =27 and B(m,i,n, k) = bi(n)bm_1-i(k),
where by(v) denotes the k-th bit in the binary representation of a
non-negative integer v.

Notice: Similarly to FT we can define inverse (IWHT) or fast (FWHT)
Walsh-Hadamard transform.
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Walsh-Hadamard Transform

Properties:

o Unlike to DCT the basis functions contain plus and minus ones only.

So-called Walsh functions are used as a basis functions.

©

Any two basis functions are orthogonal.

©

In real space only (like DCT).
Worse approximation of PCA than DCT.

(]

(]

(]

Wide application in digital communications.

@ One can implement the WHT on smaller, cheaper hardware.

Notice: Magnitude in WHT is affected by phase shifts in the signal!
Typically, orthogonality is broken.
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You should know the answers . ..

o Explain the difference between correlated and decorrelated signal.
o How does the PCA decorrelate the given signal?

o How do we get the PCA transformation matrix A in practice?

o What is the content of matrix A used in PCA transform?

o Provide your own example (different from the examples presented in
the lecture) suitable for PCA transform.

o Explain the relationship between DFT and DCT.
o Describe the F-DCT algorithm and compute F-DCT([1 6 6 1]).

o Analyze the ability to compact the energy for the following
transforms: PCA, DFT, DCT, WHT
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