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Motivation

Fourier transform and its derivatives have nice properties

reversible

linear operator

easy to construct (data independent)

decorrelation property

Fourier transform has some drawbacks

localization is very expensive

complexity cannot be lower than O(n log n)
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New basis
Fourier basis originates from sin and cos functions.
Let us introduce so called scaling function ϕ and wavelet function φ.
ϕ and ψ should be strictly localized.
A new basis should originate from ϕ and ψ.

Scaling function ϕ

ϕ(x) =

{
1 iff 0 ≤ x < 1
0 otherwise

0 1 2 3 4

0

1

2

Wavelet function ψ

ψ(x) =


1 iff 0 ≤ x < 0.5
−1 iff 0.5 ≤ x < 1

0 elsewhere

0 1 2 3 4

1

2

0

−1
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New basis
Scaling function

Let ϕ(x) be a scaling function. We will modify it as follows:

ϕj ,k(x) = 2j/2ϕ
(

2j
x

M
− k
)

where j , k ∈ Z then

j . . .ϕj ,k(x)’s width
controls broadness and height of the function along x and y axis,
respectively.

k . . . shift of ϕj ,k(x) along x-axis

M . . . length of the processed signal

Notice: The function is orthogonal to its integer shifts
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New basis
Scaling function (M = 1) – examples
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1

1
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1

1

−1

1

1

−1

1

1

ϕ0,0(x) = ϕ(x)

ϕ1,1(x) =
√
2ϕ(2x − 1)

ϕ2,0(x) = 2ϕ(4x)

ϕ1,0(x) =
√
2ϕ(2x)

ϕ2,1(x) = 2ϕ(4x − 1) ϕ2,2(x) = 2ϕ(4x − 2) ϕ2,3(x) = 2ϕ(4x − 3)
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New basis
Scaling function (M = 4) – examples
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1
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4

1

−1

4

1

−1

4

1

ϕ0,0(x) = ϕ(x4)

ϕ1,1(x) =
√
2ϕ(2x4 − 1)ϕ1,0(x) =

√
2ϕ(2x4)

ϕ2,2(x) = 2ϕ(4x4 − 2) ϕ2,3(x) = 2ϕ(4x4 − 3)ϕ2,0(x) = 2ϕ(4x4) ϕ2,1(x) = 2ϕ(4x4 − 1)
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New basis
Wavelet function

Let ψ(x) be a wavelet function. We will modify it as follows:

ψj ,k(x) = 2j/2ψ
(

2j
x

M
− k
)

where j , k ∈ Z then

j . . .ϕj ,k(x)’s width
controls broadness and height of the function along x and y axis,
respectively.

k . . . shift of ϕj ,k(x) along x-axis

M . . . length of the processed signal

Notice: The function is orthogonal to its integer shifts
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New basis
Wavelet function (M = 1) – examples
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ψ0,0(x) = ψ(x)

ψ1,1(x) =
√
2ψ(2x − 1)

ψ2,0(x) = 2ψ(4x)

ψ1,0(x) =
√
2ψ(2x)

ψ2,1(x) = 2ψ(4x − 1) ψ2,2(x) = 2ψ(4x − 2) ψ2,3(x) = 2ψ(4x − 3)
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New basis
Wavelet function (M = 4) – examples
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ψ0,0(x) = ψ(x4)

ψ1,1(x) =
√
2ψ(2x4 − 1)

ψ2,0(x) = 2ψ(4x4)

ψ1,0(x) =
√
2ψ(2x4)

ψ2,1(x) = 2ψ(4x4 − 1) ψ2,2(x) = 2ψ(4x4 − 2) ψ2,3(x) = 2ψ(4x4 − 3)
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New basis
Support of basis functions

Fourier basis

The domain of sin and cos is 〈0; 1〉.
The domain is periodic.

When applying the Fourier basis function ϕm(k) to a transformed
function f of length N, this basis function ϕm(k) (its period) is
stretched to the length N.

New basis

The domain of ϕ(x) and ψ(x) is 〈0; 1〉.
Each function has limited compact support.

When applying the scaling or wavelet function to a transformed
function f of length M, both scaling and wavelet function are
appropriately stretched to the required length.
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New basis
Design of transform matrix

Let us recall that the basis forms the rows of transform matrix!

Sample matrix for signal of length M = 4

HT4 =
1

2


1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2


= ϕ0,0

= ψ0,0

= ψ1,0

= ψ1,1

Notice the structure of individual rows.

Explain the value 1
2 .
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New basis
Design of transform matrix

Matrices for signal of length M = 8

HT8 =
1
√

8



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2
√

2 −
√

2 −
√

2 0 0 0 0

0 0 0 0
√

2
√

2 −
√

2 −
√

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2



= ϕ0,0

= ψ0,0

= ψ1,0

= ψ1,1

= ψ2,0

= ψ2,1

= ψ2,2

= ψ2,3

0 1 2 3 4 5 6 7 8

-4

-2

0

2

4

6

8

10

⇒

0 1 2 3 4 5 6 7 8

-4

-2

0

2

4

6

8

10

f = [3 5 3 7 0 -1 2 4] HT8 * f’
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1D Discrete Wavelet Transform (DWT)
Forward

Aj0(k) =
1√
M

M−1∑
m=0

f (m)ϕj0,k(m)

Dj(k) =
1√
M

M−1∑
m=0

f (m)ψj ,k(m)

Inverse

f (m) =
1√
M

2j0−1∑
k=0

Aj0(k)ϕj0,k(m) +
1√
M

J−1∑
j=j0

2j−1∑
k=0

Dj(k)ψj ,k(m)

ϕ,ψ . . . orthogonal scaling and wavelet
function, respectively

Aj0 (k) . . . scaling coefficients
(approximations)

Dj (k) . . . wavelet coefficients (details)

M = 2J . . . number of samples in
function f

j ∈ {j0, ..., J − 1} . . . level of detail,
where j0 ≥ 0

k ∈ {0, 1, . . . , 2j − 1}
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1D Discrete Wavelet Transform (DWT)
An example

Input:

f = [1, 4,−3, 0]

|f | = M = 4 ⇒ J = 2

decomposition level: j0 = 1

��������)

PPPPPPPPq

A1 D1

f = A2

A1(0) =
1

2

3∑
m=0

f (m)ϕ1,0(m) =
1

2
[1 ·
√

2 + 4 ·
√

2 + (−3) · 0 + 0 · 0] =
5√
2

A1(1) =
1

2

3∑
m=0

f (m)ϕ1,1(m) =
1

2
[1 · 0 + 4 · 0 + (−3) ·

√
2 + 0 ·

√
2] =

−3√
2

D1(0) =
1

2

3∑
m=0

f (m)ψ1,0(m) =
1

2
[1 ·
√

2 + 4 · (−
√

2)− 3 · 0 + 0 · 0] = − 3√
2

D1(1) =
1

2

3∑
m=0

f (m)ψ1,1(m) =
1

2
[1 · 0 + 4 · 0− 3 ·

√
2 + 0 · (−

√
2)] = − 3√

2
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1D Discrete Wavelet Transform (DWT)
An example

Input:

f = [1, 4,−3, 0]

|f | = M = 4 ⇒ J = 2

decomposition level: j0 = 0

������)

PPPPPPq

PPPPPPPPq

���������9

D1

f = A2

D0A0

A0(0) =
1

2

3∑
m=0

f (m)ϕ0,0(m) =
1

2
[1 · 1 + 4 · 1− 3 · 1 + 0 · 1] = 1

D0(0) =
1

2

3∑
m=0

f (m)ψ0,0(m) =
1

2
[1 · 1 + 4 · 1− 3 · (−1) + 0 · (−1)] = 4

D1(0) =
1

2

3∑
m=0

f (m)ψ1,0(m) =
1

2
[1 ·
√

2 + 4 · (−
√

2)− 3 · 0 + 0 · 0] = −3

2

√
2

D1(1) =
1

2

3∑
m=0

f (m)ψ1,1(m) =
1

2
[1 · 0 + 4 · 0− 3 ·

√
2 + 0 · (−

√
2)] = −3

2

√
2
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1D Discrete Wavelet Transform (DWT)
An example

DWT(f ) = [1, 4,−3
2

√
2,−3

2

√
2], i.e.

f (m) = IDWT ([1, 4,−3

2

√
2,−3

2

√
2])

=
1

2
A0(0) · ϕ0,0(m) +

1

2
(D0(0) · ψ0,0(m) + D1(0) · ψ1,0(m) + D1(1) · ψ1,1(m))

=
1

2
· 1 · ϕ0,0(m) +

1

2

(
4 · ψ0,0(m)− 3

2

√
2 · ψ1,0(m)− 3

2

√
2 · ψ1,1(m)

)

Utilization of the same basis functions in forward and inverse transforms is
conditioned to orthonormality of selected functions.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 20 / 50

1D Discrete Wavelet Transform (DWT)
An example

After submitting signal

f = f(0) f(1) f(2) f(3)

to 1D-DWT, we obtain separately approximations and details of the signal:

for j0 = 2:
no decomposition

for j0 = 1:

DWT(f) = A1(0) A1(1) D1(0) D1(1)

for j0 = 0:

DWT(f) = A0(0) D0(0) D1(0) D1(1)

Notice: The output signal is always of the same length as the input signal.
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1D Discrete Wavelet Transform (DWT)
Variability & Issues

The common families of scaling (father) and wavelet (mother) functions

Haar (already introduced)

Daubechies: db1, db2, db3, db4, . . .

Meyer

Coiflets: coif1, coif2, coif3, . . .

Symlets: sym2, sym3, sym4, . . .

Biorthogonal: bior1, bior2, bior3, . . .

Complexity of 1D-DWT

matrix multiplication – O(n2)

the whole transform matrix typically built only for Haar wavelets

other wavelets computed iteratively
(one matrix per one level of decomposition) ⇒ iterations × O(n2)

can we speed it up?
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Subband Coding
Signal Analysis

Any signal f can be decomposed into two parts:

approximation (A) . . . obtained by low-pass filtering of the original
signal

detail (D) . . . obtained by high-pass filtering of the original signal

f

DA

Filters

low−pass high−pass
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Subband Coding
Signal Analysis

The filtered signal must be downsampled (↓2×) to avoid data redundancy.

D − high frequencies

A − low frequencies
256 data points

128 data points

128 data points

2x

2x

f
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Subband Coding
Signal Analysis and Synthesis

The decomposed signal may be reconstructed:

detail (D) is upsampled (↑2×) and then high-pass filtered

approximation (A) is upsampled (↑2×) and then low-pass filtered

results are added → f ′

2x

2x

2x
A

D
2x

analysis synthesis

H’H

L’L

f f’

D

A

s
ig

n
a
l 
tr

a
n
s
m

is
s
io

n

Notice: We would like to have f = f ′
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Subband Coding
Signal Analysis and Synthesis

Filter banks

H . . . high-pass analysis filter (FIR)

L . . . low-pass analysis filter (FIR)

H ′ . . . high-pass synthesis filter (FIR)

L′ . . . low-pass synthesis filter (FIR)

2x

2x

2x
A

D
2x

analysis synthesis

H’H

L’L

f f’

D

A

s
ig

n
a
l 
tr

a
n
s
m

is
s
io

n
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Subband Coding
Signal Analysis and Synthesis

Filter banks
If f = f ′ then the filters L, L′,H,H ′ are called perfect reconstruction filters
and they must fulfill one of the following conditions:

H ′(n) = (−1)nL(n)

L′(n) = (−1)n+1H(n)

H ′(n) = (−1)n+1L(n)

L′(n) = (−1)nH(n)

2x

2x

2x
A

D
2x

analysis synthesis

H’H

L’L

f f’

D

A

s
ig

n
a

l 
tr

a
n

s
m

is
s
io

n
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Subband Coding
Signal Analysis and Synthesis

Filter banks

H and L′ are mutually cross-modulated

H ′ and L are mutually cross-modulated

H,H ′, L, L′ are called quadrature mirror filters (QMF)

2x

2x

2x
A

D
2x

analysis synthesis

H’H

L’L

f f’

D

A
s
ig

n
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l 
tr

a
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s
m
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s
io

n
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Subband Coding
Signal Analysis and Synthesis

Filter banks

Biorthogonal filters
We need to define two filters
H and L. The remaining H ′

and L′ are derived by
cross-modulation.

2x

2x

2x
A

D
2x

analysis synthesis

H’H

L’L

f f’

D

A

s
ig

n
a

l 
tr

a
n

s
m

is
s
io

n

Orthogonal filters
We define only one filter H ′. The
remaining filters fulfill:

L′(n) = (−1)nH ′(length − 1− n)

H(n) = H ′(length − 1− n)

L(n) = L′(length − 1− n)

where
length = size(H ′) &

is even(length) = true

Notice: We will focus namely on the orthogonal filters.
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Subband Coding
Recursive Signal Analysis

Once the input signal is decomposed into two parts (A and D), its
approximation (A) can be further decomposed. In the reverse order, the
same is valid for reconstruction.

2x

2x

2x

2x

f

2x

2x

f’

2x

2x

H

L

H

L

......

256
64

128

64

H’

L’

H’

L’

analysis synthesis

s
ig

n
a

l 
tr

a
n

s
m

is
s
io

n

Notice: Let us assume we have already employed (bi)orthogonal filters.
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Subband Coding
The most common orthogonal filters

. . . and their scaling and wavelet functions

Notice: Useful web-pages: http://wavelets.pybytes.com/
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From Filter Banks to Wavelets
Cascade algorithm for ϕ function (numerical solution)

Algorithm

1: L′ ← fetch low-pass synthesis filter from the selected filter bank
2: hϕ = fliplr(L′)
3: ϕ ← Dirac delta impulse
4: while (ϕ is converging) do
5: ϕ← conv(ϕ, hϕ)
6: ϕ← upsample(ϕ, 2×)
7: end while
8: OUTPUT ← ϕ

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2
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1.2

⇒
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−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

⇒
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⇒
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1.2

1.4

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 33 / 50

From Filter Banks to Wavelets
Cascade algorithm for ψ function (numerical solution)

Algorithm

1: ϕ← call Cascade algorithm to get ϕ function
2: H ′ ← fetch high-pass synthesis filter from the selected filter bank
3: hψ = fliplr(H ′)
4: ψ ← conv(ϕ, hψ)
5: ψ ← upsample(ψ, 2×)
6: OUTPUT ← ψ
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1D Fast Discrete Wavelet Transform

Definition

Dj(k) =

|Aj+1|−1∑
r=0

H ′(2k + 1− r)Aj+1(r)

Aj(k) =

|Aj+1|−1∑
r=0

L′(2k + 1− r)Aj+1(r)

AJ(k) = f (k)

Each step in FWT corresponds to convolution with high-pass and low-pass
analysis filter followed by down-sampling (↓2×).

1D-DWT ≡ Subband coding
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1D Fast Discrete Wavelet Transform
Basic scheme

Let |f | = M = 8 = 23 = 2J and j0 = 0

f (0) f (1) f (2) f (3) f (4) f (5) f (6) f (7)

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
A3(0) A3(1) A3(2) A3(3) A3(4) A3(5) A3(6) A3(7)

︸ ︷︷ ︸
⇓︷ ︸︸ ︷

A2(0) A2(1) A2(2) A2(3) D2(0) D2(1) D2(2) D2(3)

︸ ︷︷ ︸
⇓︷ ︸︸ ︷

A1(0) A1(1) D1(0) D1(1)

︸ ︷︷ ︸
⇓︷ ︸︸ ︷

A0(0) D0(0)
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Fast Wavelet Transform
An example

Given f (k) = [1, 4,−3, 0] and Haar scaling and wavelet coefficients

L′(k) =

{
1/
√

2 k = 0, 1
0 otherwise

/and/ H ′(k) =


−1/
√

2 k = 0

1/
√

2 k = 1
0 otherwise

we can evaluate the following:

level 2: A2(k) = f (k) = [1, 4,−3, 0]

level 1: A1(k) =
3∑

r=0

L′(2k + 1− r)A2(r) = [5/
√

2,−3/
√

2]

D1(k) =
3∑

r=0

H′(2k + 1− r)A2(r) = [−3/
√

2,−3/
√

2]

level 0: A0(k) =
1∑

r=0

L′(2k + 1− r)A1(r) = [1]

D0(k) =
1∑

r=0

H′(2k + 1− r)A1(r) = [4]
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Comparison of FWT and FFT
Fast Fourier Transform

complexity: O(n log n)

existence: at any time

time versus frequency
domain

Fast Wavelet Transform

complexity O(cn)
c . . . support of L′ filter (typically small)

existence: depends upon the availability
of scaling function and the
orthogonality of the scaling function

time & frequency changes
simultaneously
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2D Discrete Wavelet Transform

An extension of scaling function and wavelets to 2D in straightforward:

ϕ(x) → ϕ(x , y)

ψ(x) → ψH(x , y), ψV (x , y), ψD(x , y)

where all the 2D functions are separable in the following manner:

ϕ(x , y) = ϕ(x)ϕ(y)

ψH(x , y) = ψ(x)ϕ(y)

ψV (x , y) = ϕ(x)ψ(y)

ψD(x , y) = ψ(x)ψ(y)
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2D Discrete Wavelet Transform

What is the meaning of new wavelets?

ψH(x , y) . . . intensity variations for image columns

ψV (x , y) . . . intensity variations along rows

ψD(x , y) . . . intensity variations along diagonals

Corollary:

ϕj ,m,n(x , y) = 2j/2ϕ
(

2j
x

M
−m, 2j

y

N
− n
)

ψi
j ,m,n(x , y) = 2j/2ψi

(
2j

x

M
−m, 2j

y

N
− n
)
, i = {H,V ,D}
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2D Discrete Wavelet Transform
Definition

Forward

Aj0(m, n) =
1√
MN

M−1∑
k=0

N−1∑
l=0

f (k , l)ϕj0,m,n(k , l)

D i
j (m, n) =

1√
MN

M−1∑
k=0

N−1∑
l=0

f (k , l)ψi
j ,m,n(k , l)

Inverse

f (k , l) =
1√
MN

∑
m

∑
n

Aj0(m, n)ϕj0,m,n(k , l)

+
1√
MN

∑
i=H,V ,D

J−1∑
j=j0

∑
m

∑
n

D i
j (m, n)ψi

j ,m,n(k , l)

where i = {H,V ,D}
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2D Discrete Wavelet Transform
Practical implementation

1-level decomposition as a 2-step process

AJ(m, n)

DH
J−1(m, n)AJ−1(m, n)

DD
J−1(m, n)DV

J−1(m, n)

A′J−1(m, n)

D ′VJ−1(m, n)

n-th level decomposition as a iterative process

AJ(m, n)

DH
J−1(m, n)

DD
J−1(m, n)DV

J−1(m, n)

AJ−1(m, n)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 44 / 50

2D Discrete Wavelet Transform
An example – DWT using Haar wavelets

Level of detail: j0 = J − 3
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2D Discrete Wavelet Transform
An example

DWT → modification → IDWT
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Wavelet Packets

Problem to solve:
Traditional wavelet transform decomposes the (image) data always in the
same manner.

Solution:
Decompose those parts of the data which need it.

An example:
The lowest entropy lead to better compression. Let us split those parts of
the image (not only Aj(m, n)) which need it → which division causes
entropy reduction.
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You should know the answers . . .

Explain the difference between Fourier basis functions and scaling and
wavelet functions.

Given a signal of fixed length and given a particular scaling a wavelet
function we can perform discrete wavelet transform. The result is
however not unique. Which parameter controls the behaviour of
DWT? Demonstrate on some sample data.

Explain the meaning of A and D coefficients.

Derive the complexity for DWT and separately for FWT.

What would happen if the quadrature mirror filters are not perfect
reconstruction filters.

Describe the Cascade algorithm.

Design an algorithm for computing 2D-FWT.
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