	Outline
Filters in Image Processing	1 Motivation
2 nd Generation of Wavelets – Lifting Scheme	2 Introduction to Z-transform
David Svoboda	3 Analysis of FWT
email: svoboda@fi.muni.cz Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno, CZ	Lifting scheme (LS)
CBIA	5 Integer Wavelet transform
October 21, 2019	6 Applications
David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 1 / 40	David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 2 / 4
Motivation	Z-Transform Definition
Practical use of DWT or FWT?	
 Complexity of: DWT: O(n²) 	(bilateral) Z-Transform
• FWT: O(n) • FWT: O(cn) Can we do it faster?	$\mathcal{F}(z) = \sum_{n=-\infty}^{\infty} f(n) z^{-n}$
 DWT/FWT are computed in floating point arithmetic. Can we restrict ourselves to integer number? 	(unilateral) Z-Transform
 DWT/FWT are computed <i>out-of-place</i>. Can we reduce the memory usage? 	$\mathcal{F}(z) = \sum_{n=0}^{\infty} f(n) z^{-n}$
 Some basis functions in DWT are not orthogonal → dual basis must be found. Can we avoid this issue? 	Notice: Here $z \in \mathbb{C}$, i.e. for $z = e^{i\omega}$ we get a special case of Z-transform, which is DFT.
David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 4 / 40	David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 6 / 4

2 / 40

6 / 40

Z-Transform

Definition

Forward transform

• converts discrete series into continuous signal (Z-plane)

$$\mathcal{F}(z) = \sum_{n=0}^{\infty} f(n) z^{-n}$$

Inverse transform

• maps continuous signal into discrete series

$$f(n) = Z^{-1}(\mathcal{F}(z)) = \frac{1}{2\pi i} \oint_C \mathcal{F}(z) z^{n-1} dz$$

where C is a counterclockwise closed path encircling (with radius 1) the origin

David Svoboda (CBIA@FI)

Filters in Image Processing autumn 2019

Z-Transform

Properties

List of the most important properties

• linearity:

$$Z\{af(n) + bg(n)\} = a\mathcal{F}(z) + b\mathcal{G}(z)$$

• delay (shift):

$$Z\{f(n-k)\} = \mathcal{F}(z)z^{-k}$$

• convolution theorem:

$$Z\{f(n) * g(n)\} = \mathcal{F}(z) \cdot \mathcal{G}(z)$$

• symmetry:

$$Z\{f(-n)\}=\mathcal{F}(z^{-1})$$

David Svoboda	(CBIA@FI)	

Filters in Image Processing

autumn 2019

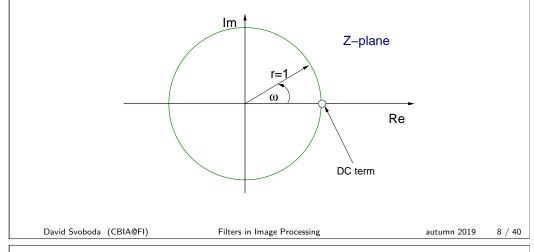
9 / 40

Z-Transform

Properties

Important notes:

- green circle ($z = e^{i\varphi} \Rightarrow |z| = 1$) reduces Z-transform simply to discrete Fourier transform
- DC (direct current) term is DC term from DFT



Z-Transform

Some examples

7 / 40

• Z-transform of a constant signal:

$$f(n) = [1, 1, 1, 1, ...]$$

$$\mathcal{F}(z) = 1 + z^{-1} + z^{-2} + z^{-3} + \dots = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$

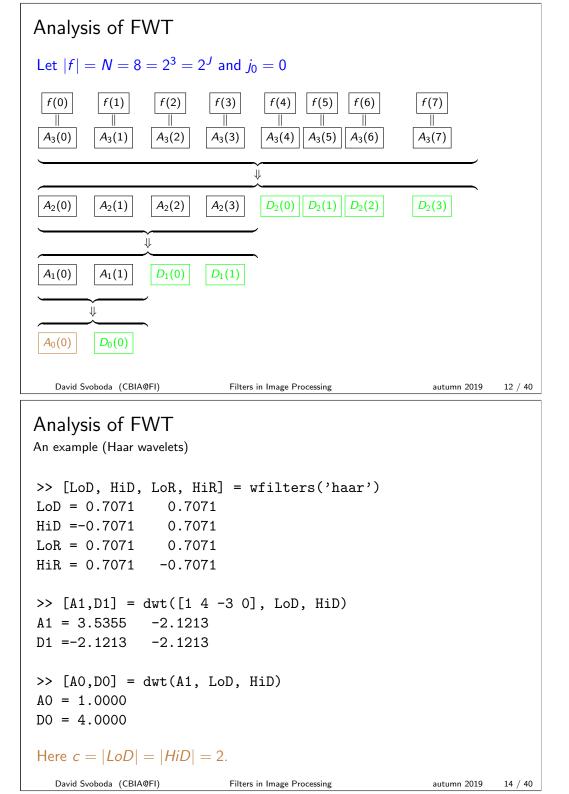
• Z-transform of a linear filter:

$$filter(f(k)) = (-2)f(k-1) + 3f(k) + 5f(k+2)$$

= [-2,3],0,5] /written as a kernel/
Filter(z) = (-2)z^{-1} + 3z^{0} + 5z^{2}

Notice: Inverse for linear filters is straightforward.

David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019	10 / 40



Analysis of FWT

An example (Haar wavelets)

Let $f = A_2 = [1 \ 4 \ -3 \ 0]$ be an input signal:

$$A_{1} = \left(f * \left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]\right) (\downarrow 2 \times)$$
$$D_{1} = \left(f * \left[\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right]\right) (\downarrow 2 \times)$$

During one transition, we perform only one averaging and difference:

$$A_{1}(k) = \left((f(k) + f(k+1))\frac{\sqrt{2}}{2} \right) (\downarrow 2 \times)$$
$$D_{1}(k) = \left((f(k+1) - f(k))\frac{\sqrt{2}}{2} \right) (\downarrow 2 \times)$$

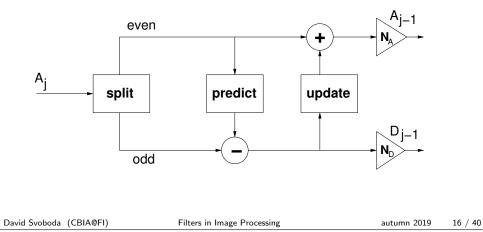
David Svoboda (CBIA@FI)

```
Filters in Image Processing
```

autumn 2019 13 / 40

Lifting scheme (LS)

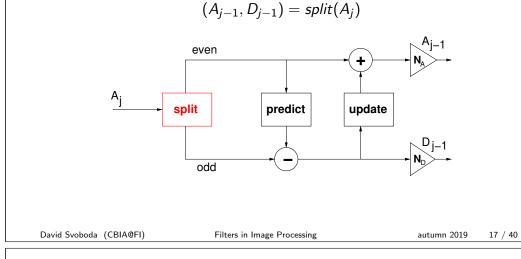
- Developed in 1996 by Wim Sweldens
- Adopted idea of FastDWT
- The transition from level j to j-1 is computed efficiently
- ${\ \bullet\ }$ Basic idea: split \rightarrow predict \rightarrow update \rightarrow normalize



Lifting scheme

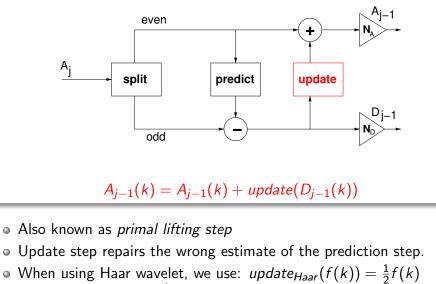
Split step

- Also known as *lazy wavelet*.
- The signal A_i is split into odd and even samples:



Lifting scheme

 $\mathsf{Update}\ \mathsf{step}$



$$A_{j-1}(k) = A_{j-1}(k) + \frac{1}{2}D_{j-1}(k)$$

David Svoboda (CBIA@FI)

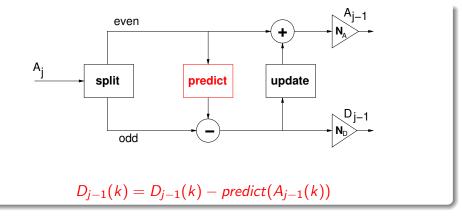
Filters in Image Processing

autumn 2019

19 / 40

Lifting scheme

Prediction step



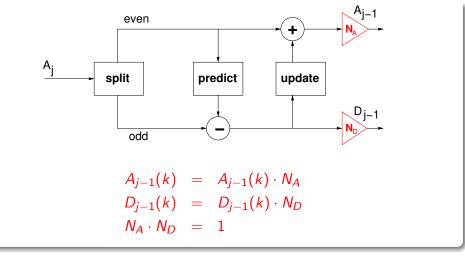
- Also known as *dual lifting step*
- When using Haar wavelets the neighbouring samples are supposed to be equal, i.e. the predictor is simple: predict_{Haar}(f(k)) = f(k) D_{j-1}(k) = D_{j-1}(k) - A_{j-1}(k)

Filters in Image Processing

autumn 2019 18 / 40

Lifting scheme

Normalization step

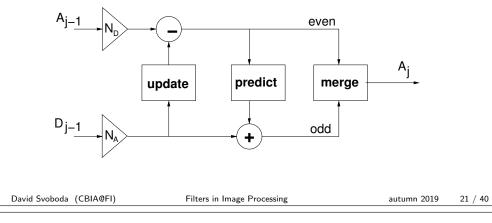


• The output signals are normalized to avoid boosting the signal.

Lifting scheme

Inverse lifting

• The forward algorithm can be simply inverted:



Lifting scheme

From Filters to Lifting

There exists algorithm invented by Wim Sweldens (1996):

- 1 Input: either 'LoD' and 'HiD' filters or ϕ and φ functions
- ② Convert both filters 'LoD' and 'HiD' to Z-domain
- 3 Create polyphase matrix (2×2)
- ④ Factorize matrix into simple (lower and upper diagonal) matrices
- ⑤ Each simple matrix correspond either to one update or prediction step
- Onvert each matrix from Z-domain to time domain

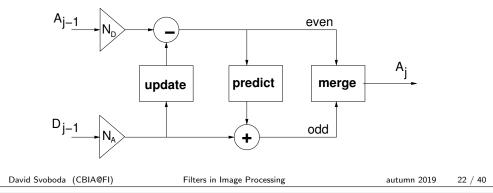
The algorithm is quite tricky \rightarrow we utilize Matlab function 'liftwave' that performs steps 1-5. All we have to do is to enjoy step 6 \odot

Lifting scheme

Inverse lifting (example)

• Namely for Haar wavelets we get:

$$\begin{array}{rcl} A_{j-1}(k) &=& A_{j-1}(k) \cdot N_D \\ D_{j-1}(k) &=& D_{j-1}(k) \cdot N_A \\ A_{j-1}(k) &=& A_{j-1}(k) - (D_{j-1}(k)/2) \\ D_{j-1}(k) &=& D_{j-1}(k) + A_{j-1}(k) \\ A_j &=& merge(A_{j-1}, D_{j-1}) \end{array}$$



Lifting scheme From Filters to Lifting (Haar)

>> h = liftwave('haar')			
h = 'd'	[-1]	[0]	
'p'	[0.5000]	[0]	
[1.4142]	[0.7071]	[]	

• 'd' ... dual lifting step (predict) $Predict(z) = (-1) \cdot z^0 \rightarrow predict(f(k)) = (-1) \cdot f(k)$ • 'p' ... primal lifting step (update) $Update(z) = 0.5 \cdot z^0 \rightarrow update(f(k)) = 0.5 \cdot f(k)$ • [1.4142] ... N_A • [0.7071] ... N_D

David Svoboda (CBIA@FI)

Lifting scheme From Filters to Lifting (Daubechies-2) In general, there may appear two or more <i>predict</i> (.) and <i>update</i> (.) steps:					
>> h = liftwave('db	2')		1		
h = {					
'd'	[-1.732]	[0]			
'n,	[-0.067 0.433]	[1]			
'd'	[1.000]	[-1]			
[1.932]	[0.518]	[]			
• 'd' d ual lifting step $Predict_1(z) = (-1.732)$	$\begin{array}{ll} (\text{predict}) \\ \cdot z^0 & \rightarrow & \textit{predict}_1(f(k)) = (-1.73) \end{array}$	2) · f(k)			
• 'p' primal lifting ste $Update_1(z) = (-0.067)$ $update_1(f(k)) = (-0.067)$					
 'd' dual lifting step Predict₂(z) = 1.000 · z⁻ 	$(ext{predict})$ $\stackrel{1}{\longrightarrow} predict_2(f(k)) = 1.000 \cdot f(k)$	(k-1)			
• [1.932] N _A					
• [0.518] N _D					
David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019 25	/ 40		

Lifting scheme

 ${\sf Technical}/{\sf Implementation\ notes}$

Lifting ordering (for N = 8)

f(0)	f(1)	f(2)	f(3)	f(4)	f(5)	f(6)	f(7)
$A_2(0)$	$D_2(0)$	$A_{2}(1)$	$D_2(1)$	$A_2(2)$	$D_2(2)$	$A_{2}(3)$	$D_2(3)$
$A_1(0)$		$D_1(0)$		$A_1(1)$		$D_1(1)$	
$A_0(0)$				$D_0(0)$			

Notice: The computation is performed completedly in-place.

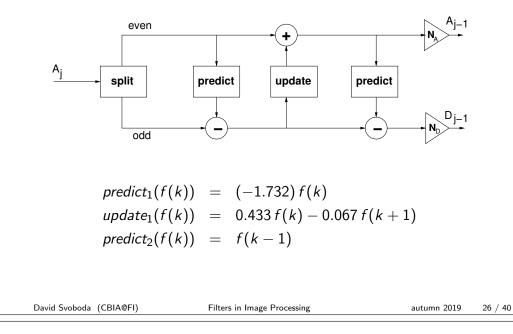
From filters to lifting scheme

- conversion 'LoD', 'HiD' \rightarrow update(·), predict(·) always exists but is not unique
- conversion is performed in frequency domain via Z-transform (decomposition of polyphase matrices)

David	Svoboda	(CBIA@FI)

Lifting scheme

From Filters to Lifting (Daubechies-2)



Lifting scheme

FWT and DWT comparison (examples)

Price of one decomposition level using DWT (|f| = N)

family of wavelets	multiplications	additions
Haar	4 <i>N</i>	2 N
Daubechies-2	8 <i>N</i>	6 <i>N</i>

Extra memory usage: one memory buffer of size O(N) needed for convolution.

Price of one decomposition level using LS (|f| = N)

family of wavelets	multiplications	additions
Haar	2 <i>N</i>	N
Daubechies-2	3 <i>N</i>	2 <i>N</i>

Extra memory usage: \emptyset

Integer Wavelet Transform

Basic idea & Properties

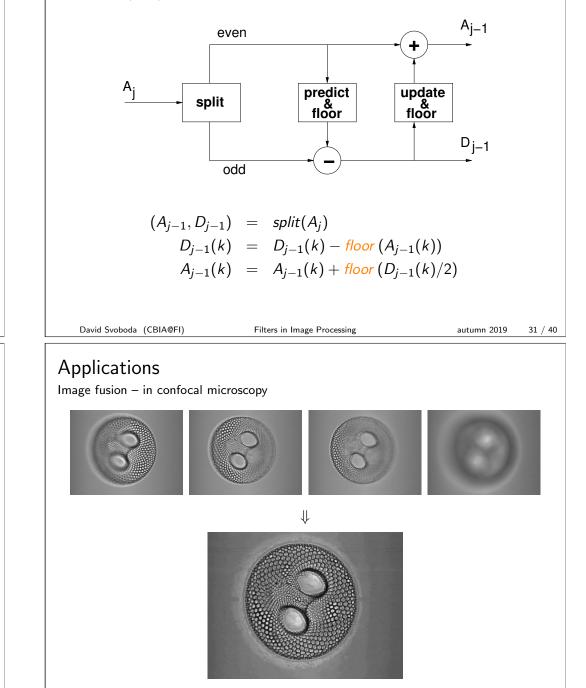
- IWT originates from lifting scheme (chain of predictions and updates).
- The fixed point arithmetic is guaranteed via 'floor' function.
- The rounding error produced in forward transform is compensated by mirror 'floor' in inverse lifting.
- The lifting is the same as the standard one but
 - each multiplication is followed but the truncation
 - no normalization is present

David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019	30 / 40
Integer Wavelet Ti An example (Haar)	ransform		
>> h2 = liftwave(']	naar', 'Int2Int')		

h2 = 'd'	[-	1] [0]
'p'	[0.500	0] [0	0]
[1.4142]	[0.707	1] ,	I,
>> [A1,D1] = lw	t([1 4 -	30], h	2)
A1 = 2 -2			
D1 = 3 3			
	0)		
>> ilwt(A1,D1,h)	2)		
ans = 1 4	-3	0	
David Svoboda (CBIA@FI)		Filters in Imag	ge Processing

Integer Wavelet Transform

An example (Haar)



source: B. Zítová, UTIA, CAS	
David Svoboda (CBIA@FI)	F

autumn 2019

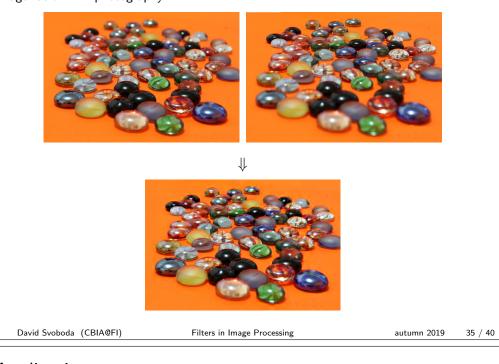
32 / 40

Filters in Image Processing

autumn 2019 34 / 40

Applications

Image fusion – in photography

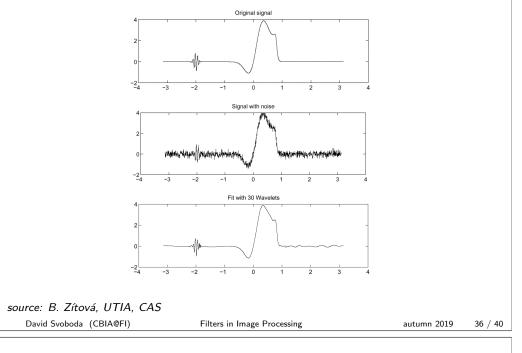


Applications Image compression

JPEG2000 (1.83 kB)

Applications

Noise removal



Applications

...and the others

- fusion of images with different resolution
- image registration
- edge detection

• . . .

Bibliography

- Li H., Manjunath B.S., Mitra S.K. Multisensor Image Fusion Using the Wavelet Transform, Graphical Models and Image Processing, Volume 57, Issue 3, May 1995, Pages 235-245, ISSN 1077-3169
- Jensen A., La Cour-Harbo A. Ripples in mathematics: the discrete wavelet transform, Springer, Berlin, 2001, ISBN 3-540-41662-5
- Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis. 1996, Vol 3, Issue 2, pp 186200

David Svoboda (CBIA@FI)

Filters in Image Processing autumn 2019

nn 2019 39 / 40

You should know the answers

- Describe the relationship between Fourier transform and Z-transform.
- Can you apply Z-transform to a given signal or a linear filter? Give an example.
- Explain three principal phases of *lifting scheme*.
- Compare the time and spatial complexity of FWT and lifting scheme.
- Compute one level of wavelet transform (using Haar's basis) via lifting scheme for signal f=[3 5 0 -1 4 2].
- What does integer wavelet transform mean?
- How does image fusion via DWT work?
- How does image denoising via DWT work?

David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019

40 / 40