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Image Compression
Introduction

What is an image compression?

reduction of the amount of data required to represent a digital image

Application

TV conferencing

remote sensing (satellite imagery)

medical imaging

facsimile transmission (fax)

. . .

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 4 / 45

Image Compression
Definitions

Some theory

⇒ Information – what we want to store or transmit

⇒ Data – the mean by which information is conveyed

⇒ Data redundancy – two distinct sources use a different type of data to
give the same information

There are three main data redundancy types

coding redundancy

interpixel redundancy

psychovisual redundancy
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Coding Redundancy

Average number of bits

Let h be a intensity histogram of an inspected image I . The probability of
the occurrence of level i :

p(i) =
h(i)

n
,

where n is total number of image pixels.

If len(k) is number of bits needed to represent the value k then

Lavg =
2bit depth−1∑

i=0

len(i)p(i)

is the average number of bits required to represent each pixel in image I .

Notice: The total number of bits needed to code M×N image is MNLavg .
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Coding Redundancy
An example

We have 8-level image with 3-bit binary code

i p(i) 3-bit code len(i) new code new len(i)

l0 = 0 0.19 000 3 11 2
l1 = 1 0.25 001 3 01 2
l2 = 2 0.21 010 3 10 2
l3 = 3 0.16 011 3 001 3
l4 = 4 0.08 100 3 0001 4
l5 = 5 0.06 101 3 00001 5
l6 = 6 0.03 110 3 000001 6
l7 = 7 0.02 111 3 000000 6

Using new code brings better (lower) average number of bits per pixel:

Lavg = 2(0.19) + 2(0.25) + 2(0.21) + 3(0.16) + 4(0.08) +

5(0.06) + 6(0.03) + 6(0.02) = 2.7 bits
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Coding Redundancy

The meaning:

coding redundancy . . . the phenomenon when we use more code
symbols (bits) than it is necessary

The aim:

the functions “bit length” and “appearance probability” are inversely
proportional

the assignment of fewer bits to the more probable gray level and vice
versa leads to image compression
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Interpixel Redundancy

correlation of pixels within an image

the value of certain pixel in the image can be reasonably predicted
from the values of group of other pixels in the image

the gray levels of neighboring pixels are roughly the same, for example

An example: chessboard

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
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Interpixel Redundancy
Sample solution

Repetitious pixels may be grouped together:

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 → (5,1)(5,0)(5,1)

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 → (5,1)(5,0)(5,1)

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 → (5,1)(5,0)(5,1)

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 → (5,1)(5,0)(5,1)

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 → (5,1)(5,0)(5,1)

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 → (5,0)(5,1)(5,0)

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 → (5,0)(5,1)(5,0)
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Psychovisual Redundancy

⇒ The eye does not respond with equal sensitivity to the whole visual
information.

⇒ Small intensity variations can be perceived in an area of constant
intensity.

⇒ Certain information has less relative importance than other
information → is psychovisually redundant.

Some examples:

We are more sensitive to differences between dark intensities than
bright ones.

We are more sensitive to differences of intensity in green than red or
blue.
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Psychovisual Redundancy
An example

24-bit RGB color image 4-bit color image

Notice: Elimination of psychovisual redundant data results in a loss of
(nonimportant) information→ quantization→ lossy compression methods.
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General Compression Model

f(x,y) source encoder data transmission data decoder f’(x,y)

f (x , y) . . . original input image

f ′(x , y) . . . input image after compression followed by decompression

f (x , y) 6= f ′(x , y) in general

encoder . . . image filter responsible for image compression

decoder . . . image filter responsible for image decompression
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Lossless Compression

Request for error-free compression:

archival documents

medical imaging

business documents

digital radiography

Common error-free compression methods:

variable-length coding (Huffman, arithmetic)

LZW coding

bit-plane coding

Lossless predictive coding

run length encoding (RLE)
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Huffman coding
An example

symbol A1 A2 A3 A4 A5 A6

probability 0.1 0.4 0.07 0.1 0.04 0.29

A3 A5A4A1

A6

A2

001

0000 0001 0010 0011

000

01

0 1

00
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Huffman coding

Variable-length coding ≈ reduction of coding redundancy

Algorithm

1 order the source symbol probabilities of appearance

2 reduce/merge the two lowest probable symbols into a new single
symbol

3 repeat the reductions until it is possible

4 get the coding tree

5 mark the tree nodes with binary code (O – left, 1 – right)

6 use the path code to code the individual symbol in the leaves
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Huffman coding

Huffman coding creates the optimal code for a set of source symbols but it
is difficult to construct Huffman code tree for larger sets.

Alternative solutions:

Truncated Huffman – using Huffman coding only for the most
probable source symbols. A prefix code followed by a suitable
fixed-length code is used to represent all lower probable symbols.

B2-Code

Binary shift

Huffman shift

Notice: Alternative solution reduces the computational complexity with
sacrificing coding efficiency.
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Arithmetic Coding
An example of encoding process

Table of available symbols:

symbol N I O S X W

probability 0.35 0.2 0.2 0.15 0.05 0.05

Input sequence: ’ONION’

0.55

0.90

0.95

0.75

0.35

0.55

0.75

0.55

0.62

0.5745

0.5885

0.5822

0.585

0.5822

0.583180

0.0

1.0

S

X

W

N

O

S

X

W

N

I

O

S

X

W

N

I

O

S

X

W

N

I

O

S

X

W

N

I

O

0.583

I

Output code word: 0.583
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Arithmetic Coding
An example of decoding process

Table of available symbols:

symbol N I O S X W

probability 0.35 0.2 0.2 0.15 0.05 0.05

Input code word: 0.583

0.55

0.90

0.95

0.75

0.35

0.55

0.75

0.55

0.62

0.5745

0.5885

0.5822

0.585

0.0

1.0

S

X

W

N

O

S

X

W

N

I

O

S

X

W

N

I

O

S

X

W

N

I

O

S

X

W

N

I

O

I

0.583

0.583

0.583

0.583

0.583

Output sequence: ’ONION’
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Arithmetic Coding

In arithmetic coding the whole sequence of source symbols is assigned
a single arithmetic code word.

The sequence is usually very short. The data block is therefore split
into several sequences.

Code word itself defines an interval of real number between 0 and 1.

The number of symbols increases → the code interval is smaller →
number of bits required becomes larger.
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LZW Coding
An example

Given this sequence for encoding

TOBEORNOTTOBEORTOBEORNOT#

and simple dictionary containing only single characters:

Dictionary (5-bit) Entries:

---------------------------

0: # = 00000

1: A = 00001

2: B = 00010

3: C = 00011

...

27: Z = 11011

The length of sequence = 25 symbols × 5b = 125 b
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LZW Coding
An example of encoding process

Input: Bit Code (Output): New Dictionary Entry:
----------------------------------------------------

T 20 = 10100
O 15 = 01111 28: TO
B 2 = 00010 29: OB
E 5 = 00101 30: BE
O 15 = 01111 31: EO (full dictionary!)
R 18 = 010010 32: OR
N 14 = 001110 33: RN
O 15 = 001111 34: NO
T 20 = 010100 35: OT
TO 28 = 011100 36: TT
BE 30 = 011110 37: TOB
OR 32 = 100000 38: BEO
TOB 37 = 100101 39: ORT
EO 31 = 011111 40: TOBE
RN 33 = 100001 41: EOR
OT 35 = 100011 42: RNO
# 0 = 000000 43: OT#

Coded length = 5 × 5b + 12 × 6b = 97b.
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LZW Coding
An example of decoding process

Before we start decoding, the only original dictionary (A,B,...,Z) is available!

Input (BitCode): Output: New Dictionary Entry:
----------------------------------------------------

20 ( 10100) T
15 ( 01111) O 28: TO
2 ( 00010) B 29: OB
5 ( 00101) E 30: BE
15 ( 01111) O 31: EO (full dictionary!)
18 (010010) R 32: OR
14 (001110) N 33: RN
15 (001111) O 34: NO
20 (010100) T 35: OT
28 (011100) TO 36: TT
30 (011110) BE 37: TOB
32 (100000) OR 38: BEO
37 (100101) TOB 39: ORT
31 (011111) EO 40: TOBE
33 (100001) RN 41: EOR
35 (100011) OT 42: RNO
0 (000000) # 43: OT#

Output: TOBEORNOTTOBEORTOBEORNOT#
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LZW Coding

Covers the problem of coding as well as interpixel redundancy.

LZW = Lempel-Ziv-Welch:

assigns fixed length code words to variable length sequences

is dictionary (codebook)-based coding

its dictionary is built during the coding process

does not require any apriori knowledge of the probability of
occurrence of the source symbols

integrated in GIF, TIFF, PDF

when the dictionary is full, we flush it and start with empty one
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Bit-plane coding

Bit-plane decomposition . . . gray level of an m-bit pixel in gray scale image
can be represented in the form of the base 2 polynomial:

am−12m−1 + am−22m−2 + · · ·+ a121 + a020

Therefore, the image can be simply decomposed into m 1-bit bit planes:

zeroth-order bit plane . . . a0 bits of each pixel

first-order bit plane . . . a1 bit of each pixel
...

(m − 1)st-order bit plane . . . am−1 bit each pixel

Question: Is it a good representation? Imagine neighbouring graylevels
127 and 128.
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Bit-plane coding

An alternative decomposition approach: m-bit Gray code

gi = ai ⊕ ai+1 0 ≤ i ≤ m − 2

gm−1 = am−1

where ⊕ denotes the exclusive OR operation:

small changes in gray level are less likely to affect all m bit planes

neighbours 127 and 128 in Gray code are 11000000 and 01000000
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Bit-plane coding

Bit-plane properties:

high-order bit-plane . . . large uniform areas

low-order bit-plane . . . quite complex

Bit-plane compression:

Constant Area Coding (CAC) . . . binary image is split into tiles

White Block Skipping (WBS) . . . only black area is stored

Run-Length Coding (RLE) . . . codes the length and the value of each
uniform run
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Lossless Predictive Coding

Intended to eliminate the interpixel redundancy of closely spaced pixels.

An idea: encoded value of the pixel is the difference between the actual
and predicted value of that pixel.

predictor

symbol encoder

compressed outputplain input

p(f)

+
−
Σ

f e

nearest integer

e(n) = f (n)− p(f (n))
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Lossless Predictive Coding

Some types of predictors:

p(f (n)) = round

[
M∑
i=1

α(i)f (n − i)

]
p(f (m, n)) = round

[
M∑
i=1

α(i)f (m, n − i)

]
p(f (m, n)) = round [αf (m, n − 1)]

Notice: Predictor is typically linear combination of few previous pixels.
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Lossless Predictive Coding

Decompression

predictor

+
+
Σsymbol decoder

decompressed
output

compressed
input f

p(f)

e
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Lossy compression

By now f (x , y) = f ′(x , y) was valid.

Now:
f (x , y) 6= f ′(x , y)

Why lossy compression?

compression ratio is higher . . . 10:1 to 50:1

What is the main difference?

quantizer (see psychovisual redundancy) is present
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(Lossy Predictive Coding)

Encoder & Decoder

+
−
Σ

plain input

f

+
+
Σ

q(e)e

q(f)p(f)

q(e)input
compressed

+Σ
+

f’

p(f’)

symbol decoder

quantizer

predictor

predictor

symbol encoder

decompressed

compressed output

output
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(Lossy Predictive Coding)
An example

Delta modulation (DM)

p(f (n)) = αf (n − 1)

q(e(n)) =

{
+ξ for e(n) > 0
−ξ otherwise

where:

α . . . prediction coefficient (≤ 1)

ξ . . . positive constant
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(Lossy Predictive Coding)
An example

Delta modulation (DM)
α = 1; ξ = 6.5

n f p(f) e q(e) q(f)

0 14 – – – 14.0
1 15 14.0 1.0 6.5 20.5
2 14 20.5 -6.5 -6.5 14.0
3 15 14.0 1.0 6.5 20.5
...

...
...

...
...

...
14 29 20.5 8.5 6.5 27.0
15 37 27.0 10.0 6.5 33.5

...
...

...
...

...
...
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Transform Coding

All the previous compression techniques operate directly on the pixels of
an image → are spatial domain methods.

Transform coding . . . compression is realized in another domain (e.g.
Fourier domain)

n x n
subimages

construct

n x n
subimages

merge

quantizer
symbol
encodertransform

forward

symbol
decoder transform

inverse

input image

decompressed imagecompressed image

image
compressed
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Transform Coding

Three main issues:

subimage size
dimensions are typically power of 2, i.e. 8× 8 or 16× 16

transform selection
(Fourier, DCT, Walsh-Hadamard, KLT, Wavelet, . . . )

bit allocation
select which part of transformed domain is less important (redundant)
and hence can be eliminated
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Transform Coding
Subimage Size

The individual transforms are supposed to be applied to subimages.

The image size affects:

transform coding error

computational complexity
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Transform Coding
Transform Selection

The selected transform should be

able to decorrelate the input signal (≈ energy compaction)

easy to implement and fast (computational complexity)

orthogonal (reversible)

The most common transforms

Optimal decorrelation

PCA transform

Approximations

Discrete Fourier transform
DCT
Walsh-Hadamard
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Transform Coding
Bit Allocation ≈ Quantization

An idea

remove/suppress less important (redundant) part of transform domain

The process of less important pixels removal is called bit allocation:

zonal coding . . . based on variance
coefficients of maximum variance carry the most image information
and should be retained

threshold coding . . . based on magnitude
coefficients which are high enough are retained – very simple for
evaluation

Notice: In Fourier domain, the less important pixels correspond to high
frequency coefficients.
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Transform Coding
Bit Allocation

Example – Zonal coding

The transformed coefficients are masked (multiplied by 0/1) with
zonal mask.

Coefficients of maximum variance usually are located around the low
frequencies.

An example of subimage 8× 8 and corresponding zonal mask:
k

l

1 1 1 1 1

1 1 1 1

1 1 1

11

0 0

0 0

00

0 0 0

0

0

0

0 0

0 0 0 0 0

0

000

00 0

000 0

00000

0 0 0 0 0

00000

0 0 0 0 0

Transformed image
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Transform Coding
Bit Allocation

Example – Threshold coding

The transformed coefficient are quantized using point-wise division
with normalization array Z .

The least important coefficients are suppressed:

T (k, l) = round

[
T (k , l)

Z (k , l)

]
An example of normalization array:

16 11 10 16 24

12 12 14 19

14 13 16

1714

18 22

24 35

6449

72 92

78

55

37

22 29

24 40 57 69 56

55

615140

5826 60

808751 62

776856

64 81 92

87

98 99

109 103

95

103

112

121120 101

103100

113104
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You should know the answers . . .

Explain the difference among coding redundancy, interpixel
redundancy, and psychovisual redundancy.

What does quantizer do?

Which type of data cannot be compressed by using lossy compression
methods?

Show the construction of Huffman coding tree.

How does the arithmetic decoder know when it should stop decoding
one codeword?

How does the encoder deliver the dictionary to the receiver’s decoder
in LZW compression scheme?

Explain the meaning of predictor and error in lossless predictive
coding scheme.

Why do we split the 2D images into tiles of size 8×8 or 16×16 pixels?

Which compression scheme would you use for coding of chessboard
image of size 64×64 pixels. Assume that each tile is defined as a
homogeneous square area.
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