Filte	ers in Image Processir	ng	
Im	age Compression Standards		
	0		
	David Svoboda		
	David Svoboda		
Co	email: svoboda@fi.muni.cz ntre for Biomedical Image Analysis		
	Informatics, Masaryk University, Br	no, CZ	6
	CBIA		
	02112		
	November 8, 2019		
David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019 1 / 30	
nage Compression	Standards		(
			S
 Binary image compression 	ession		
	& 4 – run length encoding		
	mittee of the International Tel	ephone and Telegraphy)	
• JBIG – arithmeti			
(Joint Bilevel Ima	aging Group)		
• Continuous tones sti	Il image compression standa	ards	
 JPEG – discrete 	cosine transform		
	hics Experts Group)		
 JPEG 2000 – dis 	crete wavelet transform		
• Video compression s	tandards		
· · · · · · · · · · · · · · · · · · ·	-2 – DCT and predictive codin	ng	
(Moving Pictures	,		
 MPEG-4 – Wave 	let based coding		
David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019 4 / 30	

Outline			
1 Introduction			
2 CCITT – Group 3 & 4			
3 JPEG			
④ JPEG2000 (J2K)			
5 MPEG			
David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019	2 / 30

CCITT Group 3 1D

Specification

- Proposed for fax machines (black-and-white bitmaps).
- For encoding a combination of Huffman and RLE is used.
- Often called *Modified Huffman coding*.
- Trained on eight documents:
 - typed business letter (English)
 - circuit diagram (hand drawn)
 - printed and typed invoice (French)
 - densely types report (French)
 - printed technical article including figures and equations (French)
 - graph with printed captions (French)
 - dense document (Kanji)
 - handwritten memo with very large white-on-black letters (English)
- Code words for lengths 1–2560 pixels are stored in publicly known table.

CCITT Group 3 1D

Specification

Part of table with CCITT Group 3 codes

run length	white code word	black code word	
0	00110101	0000110111	
0			
1	000111	010	
2	0111	11	
3	1000	10	
4	1011	011	
5	1100	0011	
6	1110	0010	
7	1111	00011	
:	:	:	
1344	011011010	0000001010011	
1408		0000001010100	
1472		0000001010101	
:		:	
:		:	
David Svoboda	(CBIA@FI)	Filters in Image Processing	autumn 2019

CCITT Group 3 2D

Specification

- 2-dimensional coding
 - Images are divided into several groups of K lines.
 - K is typically 2 or 4.
 - The first line of each group is encoded using CCITT Group 3 1D method.
 - The rest of lines is encoded using a differential scheme where new code words specific for 2D encoding are introduced.
- ${\scriptstyle \bullet }$ Typical compression ratio 1 : 10 ${\scriptstyle \sim }$ 1 : 20
- Pay attention to error propagation!
- The "K-factor" allows more error-free transmission

CCITT Group 3 1D

Specification

- The documents are scanned line by line.
- *Termination codes* ... Short run lengths (1–63 pixels)
- Make-up codes ... Long run lengths (64 and more pixels)
- Each run length (white/black) is split into sequence of code words
- Some examples:
 - 12 white pixels \rightarrow 001000
 - 76 white pixels (=64+12) \rightarrow 11011 | 001000
 - 2561 black pixels (=2560+1) \rightarrow 000000011111010
 - 8800 black pixels (=2560+2560+2560+1088+32) \rightarrow

00000001111|000000011111|00000011111|0000011110101|0000011010

• Each line end is encoded with a special EOL code word: 00000000001

David Svoboda	(CBIA@FI)
	()

Filters in Image Processing

autumn 2019 8 / 30

CCITT Group 4 2D

Specification

- $\bullet\,$ Designed for encoding data on disk drives \to no built-in transition error detection/correction.
- No EOL codes (not needed).
- K set to infinity.

Use of CCITT G3 & G4

- TIFF compression Type 2 ... G3 1D
- TIFF compression Type 3 ... G3 2D
- TIFF compression Type 4 ... G4 2D

David Svoboda (CBIA@FI)

7 / 30

David Svoboda (CBIA@FI)

JPEG

What does JPEG mean?

- JPEG = Joint Photographic Experts Group
- The popular image file format is "JPEG File Interchange Format (JFIF)"

The aims of JPEG:

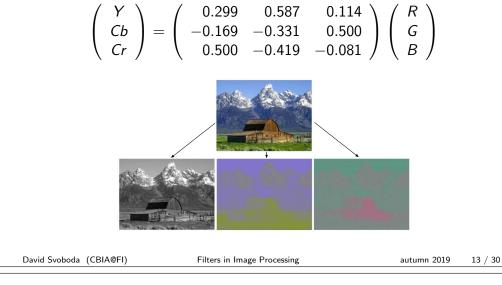
- storage of continuous tone grayscale and color images
- recognizable image at 0.083 bit/pixel
- $\bullet\,$ useful image at 0.25 bit/pixel
- feasibility of 64 kbit/s (ISDN)

David Svoboda (CBIA@FI)

Filters in Image Processing

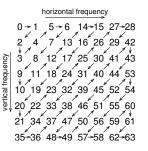
autumn 2019 12 / 30

JPEG


- 2 reduce resolution of Cr and Cb by factor 2
- 3 process Y, Cr and Cb independently
- (4) split the image into 8×8 blocks
- **(5)** apply 8×8 forward DCT on each block
- quantization using zonal thresholding
 (left luminance table; right chrominance table)

16	11	10	16	24	40	51	61	17	18	24	47	99	99	99	99
12	12	14	19	26	58	60	55	18	21	26	66	99	99	99	99
14	13	16	24	40	57	69	56	24	26	56	99	99	99	99	99
14	17	22	29	51	87	80	62	47	66	99	99	99	99	99	99
18	22	37	56	68	109	103	77	99	99	99	99	99	99	99	99
24	35	55	64	81	104	113	92	99	99	99	99	99	99	99	99
49	64	78	87	103	121	120	101	99	99	99	99	99	99	99	99
72	92	95	98	112	100	103	99	99	99	99	99	99	99	99	99

 \bigcirc compression quality is driven by Q-scale factor (1-100%) that multiplies the items from the tables given above


JPEG

 Q color component transform 8-bit RGB → YCrCb (Y is the luminance component and Cb and Cr are the blue and red chrominance components)

JPEG

- apply lossless predictive coding to quantized DC (lowest frequency) coefficients from DCT
- 0 read remaining quantized values from DCT in zigzag pattern

- Iocate sequences of zero coefficients and use RLE
- apply Huffman/arithmetic coding on zero run-lengths and magnitude of AC values

David Svoboda (CBIA@FI)

Filters in Image Processing

JPEG 2000

Preprocessing

- (1) cut the image into tiles of size greater than $[128 \times 128]$ to prevent blocking artifacts but enabling ROI selection
- 2 DC level shift for channel of s bit depth:

$$[0, 2^{s} - 1] \quad o \quad [-2^{s-1}, 2^{s-1} - 1]$$

 $\textcircled{3} \text{ color transform: } \mathsf{RGB} \to \mathsf{YCrCb}$

• irreversible component transform (lossy):

$$\left(\begin{array}{c} Y\\ Cb\\ Cr \end{array}\right) = \left(\begin{array}{c} 0.299 & 0.587 & 0.114\\ -0.169 & -0.331 & 0.500\\ 0.500 & -0.419 & -0.081 \end{array}\right) \left(\begin{array}{c} R\\ G\\ B \end{array}\right)$$

• reversible component transform (lossless):

$$Y = \left\lfloor \frac{R + 2G + B}{4} \right\rfloor$$

$$Cr = B - G$$

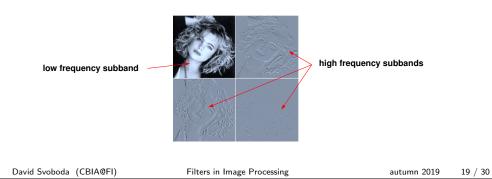
$$Cb = R - G$$

David Svoboda (CBIA@FI)

Filters in Image Processing

autumn 2019

17 / 30


JPEG 2000

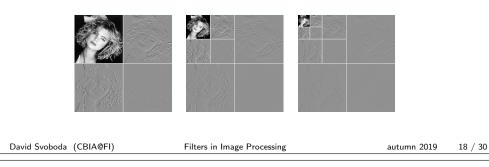
Quantization

0 quantize DWT coefficients for each subband *b* individually:

$$q_b(x,y) = sign(I_b(x,y)) \left\lfloor \frac{|I_b(x,y)|}{\Delta_b} \right\rfloor$$

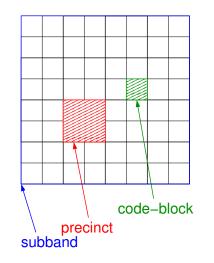
- I_b ... original intensity values in the processed subband b
- q_b ... matrix with quantized values
- Δ_b ... quantization step b (for lossless compression $\Delta_b = 1$)

JPEG 2000


Forward transform

 $\textcircled{\sc 0}$ apply DWT via lifting scheme to each tile independently

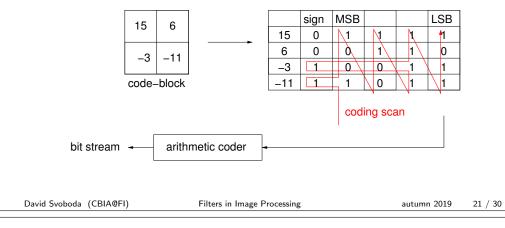
- Daubechies 9/7 filter (floating-point wavelet lossy):
 LoD = [0.027 -0.017 -0.078 0.267 0.603 0.267 -0.078 -0.017 0.027]
 HiD = [0.046 -0.029 -0.296 0.558 -0.296 -0.029 0.046]
- Le Gall 5/3 filter (integer wavelet lossless):


 $LoD = [-0.125 \ 0.25 \ 0.75 \ 0.25 \ -0.125] \\ HiD = [-0.25 \ 0.5 \ -0.25]$

$\ensuremath{\textcircled{}}$ level of detail of DWT is a parameter of compression

JPEG 2000

Precincts and code-blocks


- divide individual DWT subbands into rectangular blocks called *precincts*
- each precinct is further divided into non-overlapping rectangles called *code-blocks*

Notice: Each code-block forms the input to entropy encoder and is encoded independently

JPEG 2000

Entropy coding

- In the coefficients in a code block are separated into bitplanes and read in the order from MSB to LSB (sign bit is the second one)
- the sequence of bit is coded using arithmetic encoder (probability of each symbol is adaptively derived from its neighbours)

JPEG 2000

Comparison

original (979 kB)

JPEG (6.21 kB)

JPEG2000 (1.83 kB)

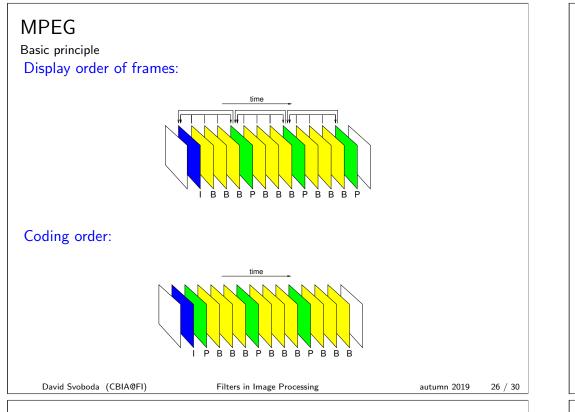
JPEG 2000

Properties

• an image is partitioned into:

 $\mathsf{tiles}-\mathsf{precincts}-\mathsf{code}\mathsf{-blocks}\leftrightarrow\mathsf{coarse}-\mathsf{medium}-\mathsf{fine}$

- memory efficient implementations
- streaming
- easy direct access to specified positions
- simple modifications (rotation, crop, ...) of an image do not require decompression of an image
- reading of ROIs instead of decompressing the whole images
- progressive access
- elimination of blocking artifacts typical for JPEG


 David Svoboda (CBIA@FI)
 Filters in Image Processing
 autumn 2019
 22 / 30

MPEG

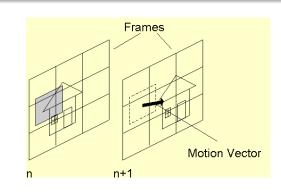
Basic principle

- I-frames ... intraframe/independent frame frame encoded using JPEG-like compression scheme (in MPEG-1 & MPEG-2)
- P-frames ... predictive frame the difference (measure of correlation) to a previous P- or I-frame; variable length coded
- B-frames ... bidirectional frame (the most common frames) difference between the current frame and a prediction of it based on the previous I- or P-frame and the next P-frame

 \rightarrow when movement of an object gradually uncovers a background area

MPEG

Motion compensation (an example)


Original frame

MPEG

Motion compensation

Motion Vector

$$(\Delta_x,\Delta_y)=(block_x^{n+1}-block_x^n,block_y^{n+1}-block_y^n)$$

Notice: Correct detection of motion vector influences the compression quality.

David Svoboda (CBIA@FI)

Filters in Image Processing

autumn 2019 27 / 30

MPEG

Motion compensation (an example)

Difference between original and the next frame

MPEG Motion compensation (an example)

Difference between original and the next frame shifted by 2 pixels to the right

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 28 / 30					
	David Svoboda	(CBIA@FI)	Filters in Image Processing	autumn 2019	28 / 30

You should know the answers

- Why do we convert RGB into YCrCb in JPEG and JPEG2000 standard?
- Explain the meaning of luminance/chrominance table.
- Explain the origin of the phenomenon called *blocking artifact*.
- How and why do we use predictive coding in JPEG standard?
- Describe the frame ordering in MPEG scheme.
- What is a difference between I, P, and B frames?
- How do we loose the information when using JPEG/JPEG2000?
- Encode the sequence [1010101010] using CCITT G3 1D scheme.

Bibliography

- Salomon, D. Data Compression, The Complete Reference, 4th edition, Springer, London, 2007, ISBN-1846286025
- Gonzalez, R. C., Woods, R. E. Digital image processing / 2nd ed., Upper Saddle River: Prentice Hall, 2002, pages 793, ISBN 0201180758
- Rabbani, M., Joshi R. An overview of the JPEG 2000 still image compression standard, Signal Processing: Image Communication, Volume 17, Issue 1, January 2002, Pages 3-48, ISSN 0923-5965

David	Svoboda	(CBIA@FI)

Filters in Image Processing

autumn 2019 29 / 30

David Svoboda (CBIA@FI)	Filters in Image Processing	autumn 2019	29 / 30