
Filters in Image Processing
When standard convolution comes short . . .

David Svoboda

email: svoboda@fi.muni.cz

Centre for Biomedical Image Analysis
Faculty of Informatics, Masaryk University, Brno, CZ

November 22, 2019

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 1 / 49

Outline

1 Linear Recursive Filters
Motivation
Filter Analysis
Filter Design
Applications
Conclusion

2 Steerable Filters
Motivation
Filter Design
Conclusion

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 2 / 49

1 Linear Recursive Filters
Motivation
Filter Analysis
Filter Design
Applications
Conclusion

2 Steerable Filters
Motivation
Filter Design
Conclusion

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 3 / 49

Linear Recursive Filters
Motivation

Common properties of linear filters based on convolution

defined via convolution kernel

naive convolution complexity: O(n2)

FFT based convolution complexity: O(n log n)

Idea of an improvement

do not evaluate the convolution process separately for each pixel

include the already convolved neighbouring values into the
convolution at the next pixel

complexity: o(n log n)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 4 / 49

Linear Recursive Filters
An example

Let be given a simple recursive filter:

g : h(n) = αh(n − 1) + (1− α)f (n)

where α is a real constant, typically α ∈ 〈0; 1〉.

filter takes the fraction α from the previously calculated value

filter works in certain direction

left to right – causal filter (this case)
right to left – anti-causal filter
both side – non-causal filter

no convolution kernel is defined, recursion formula is used instead

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 5 / 49

Linear Recursive Filters
An example

Impulse response (PSF) for filter g : h(n) = αh(n − 1) + (1− α)f (n)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

α = 0.5
0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

α = 0.875

Notice: PSF can be generated by passing a brief signal
f (n) = δ(n) = [1, 0, 0, . . .] through the filter.

Question: What happens if α > 1?

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 6 / 49

Linear Recursive Filters
Transfer Function

Impulse response (PSF)

filter output when accepting
a very brief signal
(δ impulse)

usually represented by
convolution kernel
(g(n))

expresses how the input
signal is modified when
passed through the filter

h(n) = f (n) ∗ g(n)

(Optical) Transfer function

Fourier transform of PSF
(G(k))

G(k) = H(k)
F(k)

H(k) = F(k) · G(k)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 7 / 49

Linear Recursive Filters
Definition

Finite Impulse Response (FIR) filters

defined via finite convolution kernel

g =
1

4

(
1 2 1

)
⇒ h(k) =

∑
i

f (k − i)g(i)

Infinite Impulse Response (IIR) filters

defined via recursion formula

h(k) =
m∑
j=1

bjh(k − j)+
n∑

i=0

ai f (k − i)

Notice: Any recursive filter can be replaced by a nonrecursive filter (with
a mask of infinite size). Its mask is given by the PSF of the recursive filter.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 8 / 49

Linear Recursive Filters

Common properties

causal – recursion formula uses only previously computed values

h(k) =
m∑
j=1

bjh(k − j)+
n∑

i=0

ai f (k − i)

anti-causal – recursion formula goes from right to left

h(k) =
m∑
j=1

bjh(k + j)+
n∑

i=0

ai f (k − i)

non-causal – filter “looks” both sides

impulse response is infinite
(we do not have to crop Gaussian hat when smoothing the image)

recursive filters need not be stable in general
(recursion may cumulate small errors)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 9 / 49

Linear Recursive Filters

Tasks to solve

1 How to efficiently design any recursive filter?

2 How to guarantee its stability?

3 It is possible to design a recursive version of standard non-recursive
filters like Gaussian, Sobel, Laplace, . . . ?

Notice: We can find answers for all the questions above, but we need to
be familiar with Z-transform.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 10 / 49

Filter Analysis

Given a general recursive filter:

h(n) = a0f (n) + a1f (n − 1) + a2f (n − 2) + · · ·+
b1h(n − 1) + b2h(n − 2) + b3h(n − 3) + . . .

where

f (n) . . . input signal
h(n) . . . output signal

Applying the substitution

a0 = 0.389
a1 = −1.558 b1 = 2.161
a2 = 2.338 b2 = −2.033
a3 = −1.558 b3 = 0.878
a4 = 0.389 b4 = −0.161

we get the following formula:

h(n) = 0.389f (n)− 1.558f (n − 1) + 2.338f (n − 2)− 1.558f (n − 3) + 0.389f (n − 4) +

2.161h(n − 1)− 2.033h(n − 2) + 0.878h(n − 3)− 0.161h(n − 4)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 11 / 49

Filter Analysis

Let us apply Z-transform to the recursion formula

h(n) = a0f (n) + a1f (n − 1) + a2f (n − 2) + · · ·+
b1h(n − 1) + b2h(n − 2) + b3h(n − 3) + . . .

/Z{.}/
H(z) = a0F(z) + a1z

−1F(z) + a2z
−2F(z) + · · ·+

b1z
−1H(z) + b2z

−2H(z) + b3z
−3H(z) + . . .

If we state H(z) = F(z) · G(z) then:

G(z) =
H(z)

F(z)
=

a0 + a1z
−1 + a2z

−2 + a3z
−3 + . . .

1− b1z−1 − b2z−2 − b3z−3 − . . .

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 12 / 49

Filter Analysis

Let us substitute the particular values:

G(z) =
a0 + a1z

−1 + a2z
−2 + a3z

−3 + . . .

1− b1z−1 − b2z−2 − b3z−3 − . . .

=
0.389− 1.558z−1 + 2.338z−2 − 1.558z−3 + 0.389z−4

1− 2.161z−1 + 2.033z−2 − 0.878z−3 + 0.161z−4
/
z4

z4
/

=
0.389z4 − 1.558z3 + 2.338z2 − 1.588z + 0.389

z4 − 2.161z3 + 2.033z2 − 0.878z + 0.161
/factoring/

=
(z − z1)(z − z2)(z − z3) . . .

(z − p1)(z − p2)(z − p3) . . .

pi . . . poles of transfer function G
zi . . . zeros of transfer function G

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 13 / 49

Filter Analysis

Transfer function properties:

poles and zeros are complex numbers

each pole must lie within the unit circle of the z-plane in order to
guarantee filter stability, i.e. |pi | ≤ 1

poles and zeros uniquely define the shape of transfer function G
factoring polynomials of higher degrees is non-trivial task

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 14 / 49

Filter Design

From scratch

design a completely new filter with specific conditions

rather complicated

Approximation of an existing filter (e.g. Gauss, Sobel, Laplace, . . .)

analytical approach – direct computation of recursive coefficients
[Jin & Gao, 1997]

numerical approach – search for recursive coefficients by iterative
minimization
[Deriche, 1987], [Young & Vliet, 1995]

Notice: We will focus on Jin’s approach. We will try to a design recursive
version of Gaussian filter.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 15 / 49

Filter Design
Jin’s Approach

The design consists of the following three steps:

1 guarantee of stability
– specify the pole-zero placement in the z-plane;
– the position of poles defines whether the filter converges or diverges.

G(z) =
(z − z1)(z − z2)(z − z3) . . .

(z − p1)(z − p2)(z − p3) . . .

2 guarantee of accuracy
– design the filter transfer function;
– Z-transform of a recursive filter is a rational function. The accuracy
corresponds to the degree of both polynomials.

G(z) =
a0 + a1z−1 + a2z−2 + a3z−3 + . . .

1− b1z−1 − b2z−2 − b3z−3 − . . .

3 compute the recursion coefficients of the filter

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 16 / 49

Filter Design
Jin’s Approach

Task

Let be Gaussian filter

gσ(n) =
1

σ
√

2π
e−

n2

2σ2 = k · αn2

where k = 1
σ
√

2π
and α = e−

1
2σ2 fixed terms. The Z-transform pair of

gσ(n) is:

Gσ(z) = k
+∞∑

n=−∞
αn2

z−n

The task is to design a recursive version of gσ(n) and Gσ(z).

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 17 / 49

Filter Design
Jin’s Approach

non-recursive version recursive version

Gσ(z) = k
+∞∑

n=−∞
αn2

z−n Jσ(z) = k
+∞∑

n=−∞
?

Notice: Without lost of generality, let us split bilateral sequence Jσ(z)
into two unilateral sequences (causal & anti-causal):

Jσ(z) = J +
σ (z) + J −σ (z),

i.e.

J +
σ (z) = k

+∞∑
n=0

? and J −σ (z) = k
0∑

n=−∞
?

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 18 / 49

Filter Design
Jin’s Approach

How to design J +
σ (z), which should be a transfer function, i.e. rational

function?

1 Let us use the second and third order polynomial. We get

J +
σ (z) = k

1 + a1z
−1 + a2z

−2

(1− pz−1)3

The denominator has a unique pole of order 3 which should guarantee
(|p| ≤ 1) filter stability.

2 Using polynomial division the function J +
σ (z) can be simply

converted into infinite series in power of z :

J+
σ (z) = k

1 + a1z−1 + a2z−2

(1− pz−1)3
/·
z3

z3
/

= k
z3 + a1z2 + a2z

z3 − 3pz2 + 3p2z + p3
/polynomial division/

= k[z0 + (3p + a1)z−1 + (6p2 + 3a1p + a2)z−2 + (6a1p
2 + 3a2p + 10p2)z−3 + . . .]

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 19 / 49

Filter Design
Jin’s Approach

J+
σ (z) = k[z0 + (3p + a1)z−1 + (6p2 + 3a1p + a2)z−2 + (6a1p

2 + 3a2p + 10p2)z−3 + . . .]

Gσ(z) = k
+∞∑

n=−∞
αn2

z−n = k[· · ·+ αz−1 + α4z−2 + α9z−3 + . . .]

3 Comparing z-coefficients between J +
σ (z) and Gσ(z)

z−1 : 3p + a1 = α
z−2 : 6p2 + 3a1p + a2 = α4

z−3 : 6a1p
2 + 3a2p + 10p2 = α9

we finally get:

p =
α

2

(
3− α2 −

√
9− 6α2 − 3α4

)
,

where α = e−
1

2σ2 .
David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 20 / 49

Filter Design
Jin’s Approach

Solution – Causal Part

J +
σ (z) = k

1 + a1z
−1 + a2z

−2

(1− pz−1)3
= k

1 + a1z
−1 + a2z

−2

1 + b1z−1 + b2z−2 + b3z−3

⇓ /inverted Z-transform/

h+(n) = k{f (n) + a1f (n − 1) + a2f (n − 2)}
−{b1h+(n − 1) + b2h+(n − 2) + b3h+(n − 3)}

where

b1 = −3p

b2 = 3p2

b3 = −p3

a1 = α− 3p

a2 = α4 − 3αp + 3p2

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 21 / 49

Filter Design
Jin’s Approach

When dealing with (anti)symmetrical filters, it is unnecessary to apply two
times the design procedure. We can simply mirror the causal part and
eliminate the central point to avoid counting it twice.

Solution – Anti-Causal Part

J−
σ (z) = k

[
1 + a1z

+1 + a2z
+2

1 + b1z+1 + b2z+2 + b3z+3
− 1

]
= k

[
1 + a1z

+1 + a2z
+2 − (1 + b1z

+1 + b2z
+2 + b3z

+3)

1 + b1z+1 + b2z+2 + b3z+3

]
= k

[
(a1 − b1)z+1 + (a2 − b2)z+2 − b3z

+3

1 + b1z+1 + b2z+2 + b3z+3

]
/a3 = a1 − b1, . . . /

= k
a3z

+1 + a4z
+2 + a5z

+3

1 + b1z+1 + b2z+2 + b3z+3

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 22 / 49

Filter Design
Jin’s Approach

Solution – Anti-Causal Part

J−
σ (z) = k

a3z + a4z
2 + a5z

3

1 + b1z + b2z2 + b3z3

⇓ /inverted Z-transform/

h−(n) = k{a3f (n + 1) + a4f (n + 2) + a5f (n + 3)}
−{b1h−(n + 1) + b2h−(n + 2) + b3h−(n + 3)}

where

b1 = −3p

b2 = 3p2

b3 = −p3

a3 = a1 − b1

a4 = a2 − b2

a5 = −b3

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 23 / 49

Filter Design
Jin’s Approach

Final Solution

h+(n) = k{f (n) + a1f (n − 1) + a2f (n − 2)}
−{b1h+(n − 1) + b2h+(n − 2) + b3h+(n − 3)}

h−(n) = k{a3f (n + 1) + a4f (n + 2) + a5f (n + 3)}
−{b1h−(n + 1) + b2h−(n + 2) + b3h−(n + 3)}

h(n) = h+(n) + h−(n)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 24 / 49

Filter Design
Jin’s Approach

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

standard Gaussian
recursive Gaussian

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 25 / 49

Recursive Filters
Simple Exercise

A uniform averaging filter

h(k) =
n−1∑
i=0

f (k − i)

Its computational complexity depends on the width n. The same filter can
be written in the recursive form:

h(k) = h(k − 1) + f (k)− f (k − n)

Exercise: Show (using Z-transform) that it is formally equivalent!

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 26 / 49

Applications
Deriche Edge Detector

Deriche used essentially the same reasoning as Canny with one
exception.

While Canny sought an optimal filter of finite width W , Deriche
derived an optimal filter of infinite width using the same optimality
criteria as Canny.

The solution is
g(x) ≈ −cxe−α|x |

−10 −5 0 5 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 27 / 49

Applications
Deriche Edge Detector (1D)

Let h+ and h− denote two 1D arrays. Deriche computes the 1D
gradient along one row using this recursive form:

h+(m) = f (m − 1)− b1h
+(m − 1) + b2h

+(m − 2)

h−(m) = f (m + 1)− b1h
+(m + 1) + b2h

−(m + 2)

|∇f (m)| = −ce−α(h+(m) + h−(m))

with

b1 = −2e−α and b2 = e−2α

The computational load is much smaller than that of the Canny filter.

The computational time is independent of the size of the smoothing
parameter α.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 28 / 49

Applications
Deriche Edge Detector (2D)

Horizontal Edge Map

gv1(x , y) = f (x , y − 1)− b1gv1(x , y − 1)− b2gv1(x , y − 2)

gv2(x , y) = f (x , y + 1)− b1gv2(x , y + 1)− b2gv2(x , y + 2)

ghv (x , y) = a(gv1(x , y)− gv2(x , y))

gh1(x , y) = a0ghv (x , y) + a1ghv (x − 1, y)− b1gh1(x − 1, y)

−b2gh1(x − 2, y)

gh2(x , y) = a2ghv (x + 1, y) + a3ghv (x + 2, y)− b1gh2(x + 1, y)

−b2gh2(x + 2, y)

V (x , y) = gh1(x , y) + gh2(x , y)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 29 / 49

Applications
Deriche Edge Detector (2D)

Vertical Edge Map

gv1(x , y) = f (x − 1, y)− b1gv1(x − 1, y)− b2gv1(x − 2, y)

gv2(x , y) = f (x + 1, y)− b1gv2(x + 1, y)− b2gv2(x + 2, y)

ghv (x , y) = a(gv1(x , y)− gv2(x , y))

gh1(x , y) = a0ghv (x , y) + a1ghv (x , y − 1)− b1gh1(x , y − 1)

−b2gh1(x , y − 2)

gh2(x , y) = a2ghv (x , y + 1) + a3ghv (x , y + 2)− b1gh2(x , y + 1)

−b2gh2(x , y + 2)

H(x , y) = gh1(x , y) + gh2(x , y)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 30 / 49

Applications
Deriche Edge Detector (2D)

Final solution:

|∇f (x , y)| =
√

H(x , y)2 + V (x , y)2

Where the constants in use are:

a = −(1− e−α)2

b1 = −2e−α

b2 = e−2α

a0 =
−a

1− αb1 − b2

a1 = a0(α− 1)e−α

a2 = a1 − a0b1

a3 = −a0b2

and α is the only one parameter.
David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 31 / 49

Conclusion

When designing recursive filter one meets the following tasks:

replication – given slow (but nice) non-recursive filter, how to design
its recursive counterpart

stability – whether the new filter diverges (poles |pi | > 1) or
converges (poles |pi | ≤ 1)

accuracy

polynomial degree
numerical method error

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 32 / 49

Conclusion
Replication

non-recursive filter PSF g(n) with its Z-transform transfer function:

G(z) =
∞∑
i=0

g(i)z−i

we want to design recursive filter defined using its transfer function

G(z) =
∞∑
i=0

g(i)z−i =

n∑
i=0

aiz
−i

1−
m∑
j=1

bjz−j

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 33 / 49

Conclusion
Stability

Given a simple recursive filter:

h(n) = αh(n − 1) + f (n)

→ Z-transform (applied on both sides of the equation):

H(z) =
1

1− αz−1
F(z)

→ Z-transform based transfer function:

G(z) =
z

z − α
Let us analyze the problem:

G(z) has one pole at z = α

checking the filter against δ impulse f (n) = [1, 0, 0, 0, . . .] we get
h(n) = 1, α, α2, α3, α4, . . .

for |α| < 1 the filter is stable (series converges)

for |α| > 1 the filter is unstable (series diverges)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 34 / 49

Conclusion
Accuracy

Given

G(z) =

n∑
i=0

aiz
−i

1−
m∑
j=1

bjz−j

we search for ai and bi :

directly – analytical approach (see the example)

iteratively – numerical minimization:

E =

∮
c

∣∣G(z)− G(z)
∣∣2 dz

2πiz
= /energy theorem/ =

∑
n

|g(n)−g(n)|2

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 35 / 49

1 Linear Recursive Filters
Motivation
Filter Analysis
Filter Design
Applications
Conclusion

2 Steerable Filters
Motivation
Filter Design
Conclusion

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 36 / 49

Steerable Filters
Motivation

Let us recall template-based edge detection:

The specified filter is rotated and applied n-times

We perform n convolutions

Each subsequent convolution uses kernel rotated by n/360 degrees.

Can we decrease the task complexity?

clockwise rotation clockwise rotationclockwise rotation

A A A A
A

A A
A
A A A

A

A A A A A
A

A
A
A A

A
A

B B B B B
B

B
B
B

B
BB

BB
B
B B

B
B

B

B

B

B
B

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 37 / 49

Steerable Filters
Motivation

Gabor filters

Gabor(x , y) = Gaussσ(x , y) · FourierBasisθω(x , y)

where

ω . . . speed of waving

θ . . . orientation of the filter

σ . . . width of Gaussian envelope

The use of Gabor filters

optical flow detection

feature extraction

. . .

How to optimize their computation?

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 38 / 49

Steerable Filters

Definition

A steerable filter f θ(x , y) is an orientation-selective convolution kernel
used for image enhancement and feature extraction that can be expressed
via a linear combination of a small set of rotated versions of itself:

f θ(x , y) =
M∑
j=1

kj(θ)f θj (x , y)

where f θj (x , y) are called basis functions and kj(θ) are interpolation functions.

Notice: We wish the value of M to be the lowest possible.
David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 39 / 49

Steerable Filters
Example (1st derivative)

Task

We are looking for arbitrary oriented 1st derivative of Gaussian G θ
1 (x , y).

Consider simple 2D Gaussian function G :

G (x , y) = e−(x2+y2)

Let us perform the two first-order axis-oriented derivatives:

G 0◦
1 (x , y) =

∂

∂x
e−(x2+y2) = −2xe−(x2+y2)

G 90◦
1 (x , y) =

∂

∂y
e−(x2+y2) = −2ye−(x2+y2)

supscript . . . orientation of derivative

subscript . . . derivative order

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 40 / 49

Steerable Filters
Example (1st derivative – cont’d)

The first derivative of Gaussian G at any arbitrary orientation θ can be
expressed as:

G θ
1 (x , y) = cos (θ)G 0◦

1 (x , y) + sin (θ)G 90◦
1 (x , y)

G 0◦
1 and G 90◦

1 are called basis functions

Detection of edges in image I at any orientation can be obtained by:

R0◦
1 = G 0◦

1 ∗ I
R90◦

1 = G 90◦
1 ∗ I

Rθ1 = cos (θ)R0◦
1 + sin (θ)R90◦

1

Notice: A whole family of filters can be evaluated with very little cost by
first convolving the image with basis functions.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 41 / 49

Steerable Filters
Example (1st derivative – cont’d)

G 60◦
1 =

1

2
G 0◦

1 (x , y) +

√
3

2
G 90◦

1 (x , y)

R60◦
1 =

1

2
R0◦

1 (x , y) +

√
3

2
R90◦

1 (x , y)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 42 / 49

Steerable Filters
Example (2nd derivative)

Task

We are looking for arbitrary oriented 2nd derivative of Gaussian G θ
2 (x , y).

2nd derivative of Gaussian (≈ Laplacian): G 0◦
2 (x , y) = (4x2 − 2)e−(x2+y2)

G 0◦
2 (x , y) G 60◦

2 (x , y) G 120◦
2 (x , y)

G θ
2 (x , y) = k1(θ)G 0◦

2 (x , y) + k2(θ)G 60◦
2 (x , y) + k3(θ)G 120◦

2 (x , y)

where

kj(θ) =
1

3
[1 + 2 cos (2 (θ − θj))]

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 43 / 49

Filter Design
Algorithm

Task

Given a function f (x , y) we wish to derive its steerable version when using
the least possible number of basis functions.

1 Assume f (x , y) = W (r)PN(x , y) /r =
√
x2 + y2/

W (r) . . . an arbitrary windowing function (e.g. Gaussian, Hamming)
PN(x , y) . . .N th order polynomial in x and y

2 Function f (x , y) rotated to any angle can be synthesized as a linear
combination of 2N + 1 basis functions

PN(x , y) contains only even/odd order terms → N + 1 basis function
are sufficient for synthesis.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 44 / 49

Filter Design
Algorithm

3 The interpolation functions kj(θ) must hold the following:
1
e iθ

...
e iNθ

 =

1 1 . . . 1

e iθ1 e iθ2 . . . e iθM
...

...
. . .

...
e iNθ1 e iNθ2 . . . e iNθM

k1(θ)
k2(θ)
...
kM(θ)

Use only the lines corresponding to the degree of non-zero coefficients
from PN(x , y)

4 Solve the above system. For reasons of symmetry and robustness
against noise, the angles are equally sampled in the range 0 to π.

5 f θ(x , y) =
∑M

j=1 kj(θ)f θj (x , y), where θ = {0, πM ,
2π
M , . . . , (M−1)π

M }

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 45 / 49

Filter Design
Example

Task

Assume we want to make the 1st order derivative of 2D Gaussian steerable:

1 G 0◦
1 (x , y) = −2xe−(x2+y2)

W (r) = e−(x2+y2) . . . windowing function
PN(x , y) = −2x . . . first order odd polynomial

2 N = 1→ we need 2(= N + 1) basis functions
3 Use only the complex exponential constraints corresponding to the

degree of non-zero coefficients from PN(x , y)(
e iθ

)
=
(

e iθ1 e iθ2
)(k1(θ)

k2(θ)

)
4 Solving the system pro particular values θ1 = 0◦ and θ2 = 90◦ we

obtain:
k1(θ) = cos (θ)
k2(θ) = sin (θ)

5 G θ
1 (x , y) = cos (θ)G 0◦

1 (x , y) + sin (θ)G 90◦
1 (x , y)

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 46 / 49

Conclusion

All functions that are bandlimited in angular frequency, are steerable,
given enough basis functions.

The most useful functions require small number of basis functions.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 47 / 49

Bibliography

Smith S. W. ”The Scientist and Engineer’s Guide to Digital Signal
Processing, 1998, www.DSPguide.com

Jin, J. S., Gao Y. Recursive Implementation of LoG Filtering,
Real-Time Imaging 3, 59-65 (1997)

Deriche R. Separable recursive filtering for efficient multi-scale edge
detection, in Proc. Int. Workshop Machine Vision and Machine
Intelligence, Tokyo, Japan, 1987, pp. 18-23

Young I. T., Vliet L. J. van. Recursive implementation of the
Gaussian filter. Signal Process. 44, 2 (Jun. 1995), 139-151

Freeman W. T., Adelson E. H. ”The Design and Use of Steerable
Filters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 13, no. 9, pp. 891-906, September, 1991

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 48 / 49

You should know the answers . . .

Check, how the filter g : h(n) = αh(n − 1) + (1− α)f (n) behaves for
α ∈ {0, 0.5, 1, 1.5}.
Describe the difference between the transfer function of FIR and IIR
filters.

What is the direction of computation of causal filters?

How do we check the stability of an existing filter?

Prove that h(k) =
n−1∑
i=0

f (k − i) is equal to

h(k) = h(k − 1) + f (k)− f (k − n)

What is the time-complexity of recursive filters (compared to standard
FIR filters)?

How do the steerable filters speed up the computation?

Show, how to make the steerable version of the first derivative of 2D
Gaussian.

David Svoboda (CBIA@FI) Filters in Image Processing autumn 2019 49 / 49

	Linear Recursive Filters
	Motivation
	Filter Analysis
	Filter Design
	Applications
	Conclusion

	Steerable Filters
	Motivation
	Filter Design
	Conclusion

