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Motivation

Unknown image

No meta information

How to determine, what is in
the image?
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Motivation

Results of a Google search for keyword ‘obama’
(from Nov. 2011)
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Motivation

Results of searching for visually similar images of the official photo of
president Obama (from Nov. 2011)

D. Svoboda and T. Majtner (CBIA@FI) Filters in Image Processing autumn 2019 6 / 58

Basic idea for image descriptors

What are image descriptors?

a smaller (a shorter) form of an image, which encodes some
important image characteristics

this image form is used in image recognition tasks including

comparing images
finding similar images
distinguish images

Desired properties

fast computation (real-time tasks)

invariance to scale, rotation, and distortion changes
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Basic idea for image descriptors
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Image classification

Image classification

includes a broad range of approaches to the identification of images.

analyses the numerical properties of various image features and
organizes data into categories – image classes (clusters).

compares the feature vectors using a chosen metric ⇒ close objects in
feature space are considered visually similar and form clusters.

Image classes may be

specified a priori by an analyst – supervised classification

clustered automatically – unsupervised classification

Classification algorithms typically employ two phases

training phase – a unique description of each classification category
(training class) is created

testing phase – feature-space partitions are used to classify image
features
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Image classification

Most common classification methods

Cluster Analysis – unsupervised method k-means clustering

Decision Trees – non-parametric supervised method

Neural Networks – statistical learning algorithms for supervised
classification

Support Vector Machine (SVM) – supervised classification, very
popular

k-Nearest Neighbours algorithm (k-NN) – simple, non-parametric,
supervised method

Convolutional Neural Networks (CNN) – learning based method
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Image classification

Simple example: feature vector has 2 components

1 Roundness – x-axis

2 # of red pixels – y -axis

Roundness 

#
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f 
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What would be the
feature vector of this
query image?
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Haralick features

introduced in 1973 by Professor Haralick (see photo)
from City University of New York

popular approach for texture analysis

Haralick features are still used in research

based on so called co-occurrence matrix
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Haralick features
Co-occurrence matrix

Co-occurrence matrix

is the distribution of co-occurring values at a given offset

mathematically, the co-occurrence matrix C is defined as

C∆x,∆y (i ,j)=

n∑
p=1

m∑
q=1


1, if I (p, q) = i ∧ I (p + ∆x , q + ∆y) = j

or I (p, q) = i ∧ I (p −∆x , q −∆y) = j

0, otherwise

i and j are the image intensity values of the image

p and q are the spatial positions in the n ×m image I

the offset (∆x ,∆y) depends on the used direction θ and the distance
d at which the matrix is computed
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Haralick features
Co-occurrence matrix

(∆x ,∆y) represents the separation vector

4 orientations are usually considered

horizontal – separation vector (1, 0) for distance 1
vertical – separation vector (0, 1) for distance 1
main diagonal – separation vector (1, 1) for distance 1
minor diagonal – separation vector (1,−1) for distance 1

0 3 3 

0 0 1 

2 2 1 

#(0, 0) #(0, 1) #(0, 2) #(0, 3) 

#(1, 0) #(1, 1) #(1, 2) #(1, 3) 

#(2, 0) #(2, 1) #(2, 2) #(2, 3) 

#(3, 0) #(3, 1) #(3, 2) #(3, 3) 

Original image I 
General form of co-occurrence matrix for image I 
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Haralick features
Co-occurrence matrix

2 1 0 1 

1 0 1 0 

0 1 2 0 

1 0 0 2 

C1, 0 = 

2 0 2 1 

0 2 0 1 

2 0 0 0 

1 1 0 0 

C0, 1 = 

2 1 1 0 

1 0 0 1 

1 0 0 0 

0 1 0 0 

C1, 1 = 

0 0 1 2 

0 0 1 0 

1 1 0 0 

2 0 0 0 

C1, -1 = 

0 3 3 

0 0 1 

2 2 1 

Original image I 
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Haralick features
Co-occurrence matrix

because simple 8-bit images could have 256 intensity values,
corresponding co-occurrence matrices will be very large

solution is to use quantization prior to the extraction process

co-occurrence matrices are in the end normalized and averaged to
form the final co-occurrence matrix C

Note: All co-occurrence matrices are symmetric (why?)
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Haralick features

Haralick suggested 14 features that could be derived from the matrix and
form the feature vector of Haralick features

entropy: −
q∑

i=1

q∑
j=1

C (i , j) log C (i , j)

texture correlation:

q∑
i=1

q∑
j=1

|i − j |C (i , j)

texture homogeneity:

q∑
i=1

q∑
j=1

C (i , j)

1 + |i − j |

and the others ... (q is the maximal intensity present in the image)
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Haralick features
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L. Tesǎr, D. Smutek, A. Shimizu, and H. Kobatake. 3D Extension of
Haralick Texture Features for Medical Image Analysis. In Proceedings
of the Fourth IASTED International Conference on Signal Processing,
Pattern Recognition, and Applications, SPPRA ’07, pages 350–355.
ACTA Press, 2007.

D. Svoboda and T. Majtner (CBIA@FI) Filters in Image Processing autumn 2019 21 / 58

Local binary patterns (LBP)

introduced in 1994 by Ojala (upper photo) and
Pietikäinen (lower photo) from University of Oulu,
Finland

descriptor became famous after generalization in 2002

originally proposed for face recognition

currently used also in (bio)medical image analysis,
motion analysis, eye localization, fingerprint
recognition, and many others
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Local binary patterns (LBP)
Original approach (1994)

Idea: Texture can be described by the pattern and its strength

LBP pattern

1 each pixel is compared with its 8 neighbours

2 if the intensity value of neighbouring pixel is greater than or equal to
the value of examined pixel’s intensity, write 1 (otherwise, write 0)

7 1 9 

2 5 5 

6 0 3 

1 0 1 

0 1 

1 0 0 

Example Threshold 
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Local binary patterns (LBP)
Original approach (1994)

Idea: Texture can be described by the pattern and its strength

LBP pattern

3 take the digits from top-left corner in clockwise order and interpret
them as decimal number

4 this decimal number represents the pattern

7 1 9 

2 5 5 

6 0 3 

1 0 1 

0 1 

1 0 0 

Example Threshold 

Binary: 10110010 

LBP = 178 
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Local binary patterns (LBP)
Original approach (1994)

Idea: Texture can be described by the pattern and its strength

Strength of the pattern

5 decimals from entire image are used to form histogram
(256 bins – why?)

6 concatenation of the normalized histogram values gives us the feature
vector

7 1 9 

2 5 5 

6 0 3 

1 0 1 

0 1 

1 0 0 

Example Threshold 

Binary: 10110010 

LBP = 178 
----- 

Feature vector 
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Local binary patterns (LBP)
Generalization of LBP (2002)

Idea: No limitation to the size of the neighbourhood and the number of
sampling points

parameter P - number of sampling points

parameter R - size of the neighbourhood

P = 8, R = 1 P = 8, R = 2 P = 4, R = 2 

when the sampling point is not in the centre of the pixel, bilinear
interpolation is used
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Local binary patterns (LBP)

LBP descriptor has many variants and modifications

Median binary patterns – thresholding against the median within the
neighbourhood

Local ternary patterns – solving problem of nearly constant areas

and the others . . .
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Local binary patterns (LBP)
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MPEG in general

Motion Picture Experts Group (MPEG) – developed digital
audiovisual compression standards (in 1988)

MPEG-1 (1993) – the first standard for audio and video MP3

MPEG-2 (1995) – generic coding of moving pictures and associated
audio information

MPEG-4 (1998) – coding of audio-visual objects

MPEG-7 (2002) – multimedia content description interface (including
Visual descriptors)
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MPEG-7 descriptors

part of MPEG-7 visual standard

standardized low-level descriptors for different domains

many contributors, joining editor B. S. Manjunath (see
photo)

first public release in 2002
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MPEG-7 descriptors
Division

MPEG-7 visual descriptor are divided to 4 groups

Colour descriptors – robust to viewing angle, translation, and rotation
of the regions of interest (ROI),
6 features are included here

Texture descriptors – contain important structural information of
intensity variations and their relationship to the surrounding
environment, 3 features are included here

Shape descriptors – techniques for describing and matching shape
features of 2D and 3D, 3 features are included here

Motion descriptors – description of motion features in video
sequences, 4 features are included here
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MPEG-7 descriptors
Texture descriptors

MPEG-7 texture descriptors consist of three feature extractors

Homogeneous Texture Descriptor (HTD) – characterizes the region
texture using the mean energy and the energy deviation from the set
of frequency channels

Texture Browsing Descriptor (TBD) – specifies the perceptual
characterization of the texture, which is similar to human perception

Edge Histogram Descriptor (EHD) – spatial distribution of edges in
the image

Notice: We will briefly describe HTD and EHD.
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MPEG-7 descriptors
Homogeneous Texture Descriptor (HTD)

2D frequency plane is partitioned into 30 channels

partitioning uniform along the angular direction and not uniform
along the radial direction (in octave scale)
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MPEG-7 descriptors
Homogeneous Texture Descriptor (HTD) – Gabor filters

The individual channels are convolved using Gabor filters

introduced in 1946 by Dennis Gabor (see photo) for
1D signal

the filter is obtained by modulating a sinusoid with a
Gaussian function

it responds to some frequency in a localized part of the
signal
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MPEG-7 descriptors
Homogeneous Texture Descriptor (HTD) – Gabor filters

Extension of Gabor filters to 2D
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MPEG-7 descriptors
Homogeneous Texture Descriptor (HTD) – Gabor filters

The (s, r)-th channel, where s is radial index and r is angular index, is
modelled in frequency domain as

Gs,r (ω, θ) = exp
[
−(ω−ωs)2

2σ2
s

]
.exp

[
−(θ−θr )2

2τ2
r

]
σs and τr are standard deviation of the Gaussian in radial and angular
direction, respectively

θr = 30◦ × r , where r ∈ {0, 1, 2, 3, 4, 5}
ωs = ω0 × 2−s , where s ∈ {0, 1, 2, 3, 4} and ω0 is the highest
frequency
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MPEG-7 descriptors
Homogeneous Texture Descriptor (HTD)

The syntax of the HTD is as follows:

HTD = [fDC , fSD , e1, e2, ..., e30, d1, d2, ..., d30]

fDC is the mean of the image

fSD is the standard deviation of the image

ei and di are non-linearly scaled and quantized mean and standard
deviation of the i th channel (i ∈ {1, 2, .., 30})
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MPEG-7 descriptors
Edge Histogram Descriptor (EHD)

EHD represents the local edge distribution in the image

divide image space in 4× 4 sub-images

each sub-image divided into non-overlapping squared image blocks
(1100 image blocks)
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MPEG-7 descriptors
Edge Histogram Descriptor (EHD)

EHD represents the local edge distribution in the image

each image block is classified into one of the 5 edge categories or as
non-edge block

classification is done by applying corresponding edge detector and
thresholding
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MPEG-7 descriptors
Edge Histogram Descriptor (EHD)

Feature vector of EHD consists of three types of bins

local – 4× 4 sub-images × 5 types of edges

semi-global – grouping of sub-images in predefined way (horizontal,
vertical, ...)

global – 1 bin for every type of edges

1 80 81 145 146 150 

local semi-global global 

-------------- -- ------- 
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MPEG-7 descriptors
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Scale-invariant feature transform (SIFT)

presented in 2004 (first article in 1999) by David Lowe
(see photo) from University of British Columbia
(UCB), Canada

patented by UCB for commercial purposes

local feature extraction (robust to occlusion)

similar to human visual system

extracting distinctive invariant features
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Scale-invariant feature transform (SIFT)

demonstration of SIFT descriptor

finding corresponding parts of the image

query image (in the right) is identified as a part of the image in the
left
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Scale-invariant feature transform (SIFT)

SIFT consists of key point detection and key point descriptor

Key point detection

location of the peaks in scale space

key point localization

orientation assignment

Key point descriptor

describing the key point as a vector

could be used with other key point detections
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Scale-invariant feature transform (SIFT)
Key point detection

Key points are derived as local extreme point in scale space of
Laplacian-of-Gaussian (LoG)

derive LoG with various σ values

for each point, compare it in 3× 3× 3 neighbourhood
(3D image from the scale spaces)

if central point is an extreme point (maxima or minima), consider it
as a key point
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Scale-invariant feature transform (SIFT)
Key point detection

Key points are derived as local extreme points in scale space of
Laplacian-of-Gaussian (LoG)
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Scale-invariant feature transform (SIFT)
Key point detection

Key point localization consists of

eliminating outliers (poorly localized along the edges)

searching for best scales for all extreme points

comparing to some threshold
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Scale-invariant feature transform (SIFT)
Key point detection

Orientation assignment to key points

to achieve rotation invariance

at each point compute central difference
(magnitude and direction)

for each key point, build the weighted histogram of directions
(36 bins =⇒ per 10◦), weights are gradient magnitudes

select the peak as the direction of the key point (could be more,
within 80% of max peak)

any further calculations are done relative to this orientation
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Scale-invariant feature transform (SIFT)
Key point descriptor

Extracting of local image descriptors at key points

compute relative orientation! and magnitude in 16× 16 (depicted
only 8× 8) neighbourhood at key point

form weighted histogram (8 bins) for 4× 4 regions

concatenate 16 histograms in one vector of 128 dimensions which
represents the SIFT feature vector
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Scale-invariant feature transform (SIFT)

Bibliography
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Zernike Features

Zernike polynomials in 2D

Vnl(x , y) =

n−l
2∑

m=0

(−1)m
(n −m)!

m!
(
n−2m+l

2

)
!
(
n−2m−l

2

)
!

(
x2 + y2

) n
2
−m

e ilθ,

where

0 ≤ l ≤ n

(n − l) is even

θ = tan−1
( y
x

)
x2 + y2 ≤ 1

individual Vnl are orthogonal.

Frederik Zernike (1888-1966)
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Zernike Features

Zernike polynomials in 2D – Examples
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http://www.youtube.com/watch?v=NPcMS49V5hg


Zernike Features

Definition

Let be given an inner product

Znl =
n + 1

π

∑
x

∑
y

V ∗
nl(x , y)f (x , y),

where

f (x , y) is an analyzed image a

Vnl is a selected Zernike polynomial.

Then scalar |Znl | is called a Zernike feature/descriptor.

Notice: Znl ∈ C
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Zernike Features in 3D

3D Zernike polynomial

Novotni, M., Klein, R. Shape retrieval
using 3D Zernike descriptors,
Computer-Aided Design, Volume 36,
Issue 11, Solid Modeling Theory and
Applications,r 2004, 1047–1062

Grandison, S., Roberts, C., Morris, R. J.
The Application of 3D Zernike Moments
for the Description of Model-Free
Molecular Structure, Functional Motion,
and Structural Reliability, Journal of
Computational Biology. March 2009,
16(3): 487-500
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Moment Invariants
Definition

The 2-D moment of order (p + q) of a digital image f (k , l) of size
M × N is defined as:

mpq =
M−1∑
k=0

N−1∑
l=0

kp lqf (k , l)

where p = 0, 1, 2, . . . and q = 0, 1, 2, . . . are integers.

The central moment of order (p + q) is defined as

µpq =
M−1∑
k=0

N−1∑
l=0

(k − k)p(l − l)qf (k , l)

where
k =

m10

m00
and l =

m01

m00
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Moment Invariants

Definition (cont.)

The normalized central moments are defined as

ηpq =
µpq
µc00

where

c =
p + q

2
+ 1 for p + q = 2, 3, . . .

Now, let us define several moment invariants that are insensitive to

translation

scale

change

mirroring

rotation
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Moment Invariants
Seven invariants

φ1 = η20 + η02

φ2 = (η20 − η02)2 + 4η2
11

φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 + η12)2 + (η21 + η03)2

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)2 − 3(η21 + η03)2

]
+(3η21 − η03)(η21 + η03)

[
3(η30 + η12)2 − (η21 + η03)2

]
φ6 = (η20 − η02)

[
(η30 + η12)2 − (η21 + η03)2

]
+4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)
[
(η30 + η12)2 − 3(η21 + η03)2

]
+(3η12 − η30)(η21 + η03)

[
3(η30 + η12)2 − (η21 + η03)2

]
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You should know the answers . . .

Build your own 10B descriptor for any grayscale image. Explain the
maning of individual parts of the feature vector.

Explain the way of efficient comparsion of two randomly chosen RGB
color images.

Describe the construction of so called co-occurrence matrix. How
would you observe large scale (spanned over more than 3 pixels)
texture details?

Why do LBP feature vectors possess histograms with 256 bins?

Which way may we compute the mean gradient direction of a selected
4×4 region?

Propose an extension of standard Haralick features to work with 3D
image data.

How would you apply Zernike polynomial to an incoming image of any
size so that you could compute the corresponding Zernike feature?
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