Module Integrity & Temporary
Files

Petr Rockai

November 11, 2019



Overview

e Part 1: Dynamic Linking

Part 2: Signatures and Trust

Part 3: Temporary Files

Part 4: DRM and Code Obfuscation
Part 5: Homomorphic Cryptosystems

Module Integrity & Temporary Files 2/56 November 11, 2019



Part 1: Dynamic Linking

Module Integrity & Temporary Files 3/56 November 11, 2019



Static Linking

library code is built into the executable
distributed as .a (UNIX) or .1ib (Windows)

e library is not needed to run the program

e — easy distribution - no external dependencies

Resource Use

e disk space is taken up by many copies of the same code
* 50 is RAM when programs are loaded (executed)

Module Integrity & Temporary Files 4/56 November 11, 2019



Static Linking: Vulnerability Management

e each application ships with its own copy of the code
o what if a problem is found in the library?
e cach application needs to be updated separately

Module Integrity & Temporary Files 5/56 November 11, 2019



Detour: How a Linker Works

e programs need addresses of things
o global variables
o procedures
e the compiler often does not know the address
 object files (.0) contain relocations
 the linker replaces symbols (names) with addresses

Module Integrity & Temporary Files 6/56 November 11, 2019



Detour: Copy on Write

e multiple running programs share text

this is because fork() does not copy everything

saves a lot of RAM when many copies of a program run
implemented using a memory management unit
works on a page-by-page (4K on x86) basis

Module Integrity & Temporary Files 7/56 November 11, 2019



Dynamic Linking

« allows a single library to be shared by many programs
e stored in .so (UNIX) or .d11 files (Windows)

e UNIX: 1d.so implements runtime linking

e part of the linking process done at execution time

Module Integrity & Temporary Files 8/56 November 11, 2019



Dynamic Linker

e loads all the pieces into memory
e performs relocation in memory
hands off execution to the program

this is actually naive and inefficient
in practice

o position-independent code

o lazy binding

Module Integrity & Temporary Files 9/56

November 11, 2019



Position-Dependent Code

» normal code must be loaded at a fixed address
o e.g. absolute jump and call instructions
o direct references to global data
e runtime linker can rewrite those addresses
o takes too much time
o we lose sharing

Module Integrity & Temporary Files 10/56 November 11, 2019



Position-Independent Code

* we want to confine relocations to a small area
o thisisthe global offset table (GOT)
o holds both data and code relocations

e compilers can emit position-independent code
o use relative addresses when possible
o use address tables for indirection (GOT, PLT)

Module Integrity & Temporary Files 11/56 November 11, 2019



Lazy Binding

e do not relocate at load time

replace inter-library calls with stubs

the stub asks the linker to relocate

the linker rewrites the stub with a jump
unused parts of the code are never relocated

Module Integrity & Temporary Files 12/56 November 11, 2019



Library Preloading

e the runtime linker can load additional libraries
o via LD_PRELOAD on UNIX
o AppInit_DLLs on Windows
o DYLD_INSERT_LIBRARIES on OS X
e those extra libraries can override functionality
o useful for hooking into library calls
o but also compromises the integrity of the application

Module Integrity & Temporary Files 13/56 November 11, 2019



Plugins

often implemented using shared libraries

not linked into the application

explicitly loaded at runtime

o using dlopen (UNIX) or LoadLibrary (Windows)
o based on the filename

used via function pointers obtained by name

o dlsymor GetProcAddress

Module Integrity & Temporary Files 14/56 November 11, 2019



Search Path Attacks

e the system needs to find shared libraries to load
« it isusually possible to extend or override this path
o LD_LIBRARY_PATH on UNIX, PATH on Windows
o current directory is also searched on Windows
e only a problem in special circumstances
o the library is missing in system locations
o loading based on the SearchPath API on Windows

Module Integrity & Temporary Files 15/56 November 11, 2019



Library Injection

» arrange for your library to be loaded

o either via preloading

o or use the same name as a system library

o and place it where it’s found
» hard to dounless the library is missing on the system
e may be easier with plugins

Module Integrity & Temporary Files 16/56 November 11, 2019



Interposing Calls

e assume your library has been loaded
e thecodeinthelibrary runswith privileges of the process
e your implementation of the API can do anything
o log and exfiltrate arguments and return values
o modify either of those things
o completely hijack the application
e you can also dlopen the correct library
o and forward calls to the original

Module Integrity & Temporary Files 17/56 November 11, 2019



Implications

» always make sure you are loading the correct library
e libraries have to be trusted by the application
» malicious library can do anything the process can do
o e.g. by using global constructors or D11Main
o those get to run before the main app even starts
e it can also turn the app into a trojan and steal secrets

Module Integrity & Temporary Files 18/56 November 11, 2019



Use Secure Paths

e the default paths are quite secure
e donot try to outsmart the system

o e.g. by looking up the library yourself

o especially bad is using SearchPath on Windows

o do not use LoadlLibrary to check Windows version
e you can explicitly remove the working directory

o only an issue on Windows use SetD11Directory("")

Module Integrity & Temporary Files 19/56 November 11, 2019



Side-by-Side with Checksums (Windows)

the application ships its own copies of DLLs
designed to avoid “DLL hell”

lists DLL checksums — avoids injection
problem: partially defeats code sharing
problem: vulnerability management again

Module Integrity & Temporary Files 20/56 November 11, 2019



Part 2: Signatures and Trust

Module Integrity & Temporary Files 21/56 November 11, 2019



Signatures: Why?

» executable code is very powerful
o often downloaded from the internet

o aman in the middle is a possibility

o they could tamper with the application code

o instant arbitrary code execution / compromise
e it isvery important to establish authenticity

Module Integrity & Temporary Files 22/56 November 11, 2019



Signatures: Hash Functions

standard cryptographic hash functions (SHA-1 &c.)
easy to compute for the package you have

possibly hard to obtain the expected value

o maybe fetch using HTTPS

o but web servers are easy to compromise

o better if you can get it from multiple sources
usually needs manual verification

o users are often lazy and generally unreliable

o almost as bad as no signature at all

Module Integrity & Temporary Files 23/56 November 11, 2019



Signatures: Keyed Hashes

e Message Authentication Code (HMAC &c.)

e needs a shared secret

e not suitable for standard distribution models
¢ could be used in per-customer distribution

« also possibly for subsequent updates

Module Integrity & Temporary Files 24/56 November 11, 2019



Signatures: Asymmetric Crypto

this is the standard approach

problem: PKI / trust management

e reduces one problem to another problem

o software distribution to key distribution

o but keys are smaller

o and once obtained, can be used for many packages
initial keys can be distributed as hardcopies

o e.g. on read-only installation media

o or pre-installed on the computer with the OS

Module Integrity & Temporary Files 25/56 November 11, 2019



Code Signing: Commercial Examples

e Secure Boot

Java certificates (includes Android)
Microsoft Authenticode

Adobe Air certificates

Microsoft Office and VBA certs
Apple Developer Program

Module Integrity & Temporary Files 26/56

November 11, 2019



Example: MS Authenticode

» based on RSA 2048 and SHA-1

e covers Active-X, plugins, executables

» software vendors need to obtain an X.509 certificate

o also known as Code Signing Digital ID

o many different CAs issue those

the signature is embedded in the application

when downloaded, the system checks the signature

o any mismatches are reported but may be overridden
o kernel code (drivers) are refused

Module Integrity & Temporary Files 27/56 November 11, 2019



Microsoft WHQL

o Windows Hardware Quality Labs

e stricter requirements than generic Authenticode
testing logs must be submitted to MS

however: no code review is done by MS

o WHQL does not imply the drivers are secure

o it does imply a certain level of quality

allows distribution through Windows Update

Module Integrity & Temporary Files 28/56 November 11, 2019



Code Signing: Open Source
e OpenBSD binary distribution & packages
e FreeBSD and NetBSD likewise
e binary Linux distributions
o Fedora, Debian, Ubuntu, RHEL, CentOS
o almost every package manager
e source code is also often signed

Module Integrity & Temporary Files 29/56 November 11, 2019



Trust

* signed # secure # trustworthy
e you need to trust the vendor
o possibly backed by a legal contract
o but usually not for off-the-shelf software
» even honest vendors make mistakes
o vulnerabilities are widespread
e reviewing source code is the only reliable option

Module Integrity & Temporary Files 30/56 November 11, 2019



Open Source: Collaborative Trust

e many people look at different bits

« if you find something bad, you speak up
e assume it is OK if everyone is silent

» seems to be working well in practice

Module Integrity & Temporary Files 31/56 November 11, 2019



Open Source: Which Source?

e how to ensure everyone is looking at the same source?
o source in git or similar
o signed source distribution tarballs

» rate of change: can the readers keep up?

Module Integrity & Temporary Files 32/56 November 11, 2019



Reproducible Builds

how to check the binary came from given source?
rebuilding may change the checksum of the result
essential for collaborative trust for binary distributions
<https://reproducible-builds.org>

alternative: build everything yourself

Module Integrity & Temporary Files 33/56 November 11, 2019



Security

e assume we trust the vendor
* when are signatures verified?
o do we need to decompress the package first?
o maybe even unpack the content
« trust OK only after the signature is verified
o the header may be malicious if signature is bad

Module Integrity & Temporary Files 34/56 November 11, 2019



Part 3: Temporary Files

Module Integrity & Temporary Files 35/56 November 11, 2019



Why Temporary Files?

e data too large to fit in memory

o transferring data to other programs

e named pipes and UNIX domain sockets
o usually not persistent

Module Integrity & Temporary Files 36/56 November 11, 2019



Creationin C/ C++: ISO C

o FILE *tmpfile()
o created in the default system location
o deleted on close / program exit
o unique file name (or no file name at all)
o opened for reading and writing
e tmpnam() and tempnam()
o do not use those functions
o only for compatibility with very old programs

Module Integrity & Temporary Files 37/56 November 11, 2019



Creation in C / C++: Windows

o tmpnam_s() from secure C library
o not actually secure
o never use this function with fopen
o tmpfile_s()
o like tmpfile but different calling convention
o neither is very useful on Windows (needs admin)

Module Integrity & Temporary Files 38/56 November 11, 2019



Creation in C / C++: Windows

e use CREATE_NEW in CreateFile()

e also specify FILE_FLAG_DELETE_ON_CLOSE
possibly also FILE_ATTRIBUTE_TEMPORARY
you can get the filename by using tmpnam_s
try with a new name if CreateFile fails

Module Integrity & Temporary Files 39/56 November 11, 2019



Creation in C / C++: POSIX

e always use mkdtemp and mkstemp
e both are secure against race attacks
o mkostemp on newer systems
o allows 0_SYNC and 0_CLOEXEC to be specified
« unlink() the file to get erase-on-exit

Module Integrity & Temporary Files 40/56 November 11, 2019



Creation in Java

e File tmp = File.createTempFile

« do not leave garbage around: tnp.deleteOnExit()
e about as secure as mkstemp() in C

» needs at least Java 7

Module Integrity & Temporary Files 41/56 November 11, 2019



Creation in Python
e import tempfile
o then help(tempfile) or check online
e how to tell if the API is good?
o read the documentation
o does it mention security? race conditions?
o isit deprecated? is there a warning?

Module Integrity & Temporary Files 42/56 November 11, 2019



Temporary File Checklist (1)

e do not use them if not necessary
e never store secrets in temporary files
e do not use standard C functions

o tmpnam, mktemp, tempname are bad

o tmpfile is sometimes OK on UNIX

Module Integrity & Temporary Files 43/56 November 11, 2019



Temporary File Checklist (2)

e use platform APIs to prevent races
o mkstemp, mkdtemp
o open with 0_CREAT and 0_EXCL
o CreateFile with appropriate flags
e ensure proper permissions
o set a restrictive ACL when calling CreateFile
o already taken care of with mkstemp

Module Integrity & Temporary Files 44/56 November 11, 2019



Part 4: DRM and Code Obfuscation

Module Integrity & Temporary Files 45/56 November 11, 2019



What is DRM?

» Digital Rights Management

» essentially just copy protection
e asold as commercial software
o usually not very successful

Module Integrity & Temporary Files 46/56 November 11, 2019



Naive DRM

* embed a secret key in the official viewer
encrypt all content with the secret key
distribute the encrypted content

only the official viewer can play it

but the key is easy to recover

Module Integrity & Temporary Files 47/56 November 11, 2019



DRM is Hard

o the attacker has complete control over execution
e can use debuggers, analysers, fuzzers, etc.

e embedded keys are easy to spot (high entropy)

« obfuscation can help, but only a little

e once the key is compromised, so is all the content

Module Integrity & Temporary Files 48/56 November 11, 2019



White-Box Cryptography
« all of the black-box assumptions
o mainly chosen plaintext attacks
 the attacker can also look at execution
o even perturb data while the algorithm runs
o can see the entire memory
o including any key material
e hard but (maybe) not impossible

Module Integrity & Temporary Files 49/56 November 11, 2019



2002: White-Box Cryptography, AES Implementation
o initial proposal by Chow et al.

o based on encrypted networks, broken in 2004
2006: White Box Cryptography: A New Attempt

o Bringer et al., added perturbations

o broken in 2010

2009: A Secure Implementation of White-Box AES

o different approach by Xiao et al., broken in 2012
2011: Protecting White-Box AES with Dual Ciphers

o broken in 2013 by CRoCS

Module Integrity & Temporary Files 50/56 November 11, 2019



Summary

e unless you do DRM, do not put secrets in binaries
» offload sensitive computations

o smart cards, hardware security modules
» white-box cryptography is hard

o we don't even know if it's actually possible

o long history of failed attempts

Module Integrity & Temporary Files 51/56 November 11, 2019



Part 5: Homomorphic Cryptosystems

Module Integrity & Temporary Files 52/56 November 11, 2019



Why Homomorphic Crypto?

e inverse problem to DRM
 private data in the public cloud

o reminder: cloud = someone else’'s computer

o “someone else” has full control over execution
e how to do useful things without decrypting?

Module Integrity & Temporary Files 53/56 November 11, 2019



Homomorphism?

o fle() e() = e(f(x,))
o e isthe encryption function
o fis some useful operation

e example: f is multiplication, e is RSA
o xk.y¥modm = (x - y)*modm
o does not work for addition

e RSA isonly partially homomorphic

Module Integrity & Temporary Files 54/56 November 11, 2019



Fully Homomorphic Encryption

« allows arbitrary computation
e needs unlimited addition and multiplication
o the rest can be built from those
e first plausible system: Gentry’s Cryptosystem
o proposed in 2009
o extremely slow: 30 minutes per 1 bit operation

Module Integrity & Temporary Files 55/56 November 11, 2019



Second Generation Systems

» based on the learning with errors problem
o need to reconstruct a linear function
o from a finite number of noisy samples
o AES-128 circuit as a benchmark
o about 36 hours per block initially
o down to 4 minutes by 2014
» amenable to SIMD-like evaluation
o brings down AES-128 to 2s per block
o by processing 120 blocks at once

Module Integrity & Temporary Files 56/56 November 11, 2019



