
November 11, 2019

Module Integrity & Temporary
Files

Petr Ročkai



Module Integrity & Temporary Files 2/56 November 11, 2019

Overview
• Part 1: Dynamic Linking
• Part 2: Signatures and Trust
• Part 3: Temporary Files
• Part 4: DRM and Code Obfuscation
• Part 5: Homomorphic Cryptosystems



Module Integrity & Temporary Files 3/56 November 11, 2019

Part 1: Dynamic Linking



Module Integrity & Temporary Files 4/56 November 11, 2019

Static Linking
• library code is built into the executable
• distributed as .a (UNIX) or .lib (Windows)
• library is not needed to run the program
• → easy distribution – no external dependencies

Resource Use
• disk space is taken up by many copies of the same code
• so is RAMwhen programs are loaded (executed)



Module Integrity & Temporary Files 5/56 November 11, 2019

Static Linking: Vulnerability Management
• each application ships with its own copy of the code
• what if a problem is found in the library?
• each application needs to be updated separately



Module Integrity & Temporary Files 6/56 November 11, 2019

Detour: How a Linker Works
• programs need addresses of things
∘ global variables
∘ procedures

• the compiler often does not know the address
• object files (.o) contain relocations
• the linker replaces symbols (names) with addresses



Module Integrity & Temporary Files 7/56 November 11, 2019

Detour: Copy onWrite
• multiple running programs share text
• this is because fork() does not copy everything
• saves a lot of RAMwhenmany copies of a program run
• implemented using a memory management unit
• works on a page-by-page (4K on x86) basis



Module Integrity & Temporary Files 8/56 November 11, 2019

Dynamic Linking
• allows a single library to be shared by many programs
• stored in .so (UNIX) or .dll files (Windows)
• UNIX: ld.so implements runtime linking
• part of the linking process done at execution time



Module Integrity & Temporary Files 9/56 November 11, 2019

Dynamic Linker
• loads all the pieces into memory
• performs relocation in memory
• hands off execution to the program

• this is actually naive and inefficient
• in practice
∘ position-independent code
∘ lazy binding



Module Integrity & Temporary Files 10/56 November 11, 2019

Position-Dependent Code
• normal code must be loaded at a fixed address
∘ e.g. absolute jump and call instructions
∘ direct references to global data

• runtime linker can rewrite those addresses
∘ takes too much time
∘ we lose sharing



Module Integrity & Temporary Files 11/56 November 11, 2019

Position-Independent Code
• we want to confine relocations to a small area
∘ this is the global offset table (GOT)
∘ holds both data and code relocations

• compilers can emit position-independent code
∘ use relative addresses when possible
∘ use address tables for indirection (GOT, PLT)



Module Integrity & Temporary Files 12/56 November 11, 2019

Lazy Binding
• do not relocate at load time
• replace inter-library calls with stubs
• the stub asks the linker to relocate
• the linker rewrites the stub with a jump
• unused parts of the code are never relocated



Module Integrity & Temporary Files 13/56 November 11, 2019

Library Preloading
• the runtime linker can load additional libraries
∘ via LD_PRELOAD on UNIX
∘ AppInit_DLLs onWindows
∘ DYLD_INSERT_LIBRARIES on OS X

• those extra libraries can override functionality
∘ useful for hooking into library calls
∘ but also compromises the integrity of the application



Module Integrity & Temporary Files 14/56 November 11, 2019

Plugins
• often implemented using shared libraries
• not linked into the application
• explicitly loaded at runtime
∘ using dlopen (UNIX) or LoadLibrary (Windows)
∘ based on the filename

• used via function pointers obtained by name
∘ dlsym or GetProcAddress



Module Integrity & Temporary Files 15/56 November 11, 2019

Search Path Attacks
• the system needs to find shared libraries to load
• it is usually possible to extend or override this path
∘ LD_LIBRARY_PATH on UNIX, PATH onWindows
∘ current directory is also searched onWindows

• only a problem in special circumstances
∘ the library is missing in system locations
∘ loading based on the SearchPath API onWindows



Module Integrity & Temporary Files 16/56 November 11, 2019

Library Injection
• arrange for your library to be loaded
∘ either via preloading
∘ or use the same name as a system library
∘ and place it where it’s found

• hard to do unless the library is missing on the system
• may be easier with plugins



Module Integrity & Temporary Files 17/56 November 11, 2019

Interposing Calls
• assume your library has been loaded
• the code in the library runswith privileges of the process
• your implementation of the API can do anything
∘ log and exfiltrate arguments and return values
∘ modify either of those things
∘ completely hijack the application

• you can also dlopen the correct library
∘ and forward calls to the original



Module Integrity & Temporary Files 18/56 November 11, 2019

Implications
• always make sure you are loading the correct library
• libraries have to be trusted by the application
• malicious library can do anything the process can do
∘ e.g. by using global constructors or DllMain
∘ those get to run before the main app even starts

• it can also turn the app into a trojan and steal secrets



Module Integrity & Temporary Files 19/56 November 11, 2019

Use Secure Paths
• the default paths are quite secure
• do not try to outsmart the system
∘ e.g. by looking up the library yourself
∘ especially bad is using SearchPath onWindows
∘ do not use LoadLibrary to checkWindows version

• you can explicitly remove the working directory
∘ only an issue onWindows use SetDllDirectory("")



Module Integrity & Temporary Files 20/56 November 11, 2019

Side-by-Side with Checksums (Windows)
• the application ships its own copies of DLLs
• designed to avoid “DLL hell”
• lists DLL checksums→ avoids injection
• problem: partially defeats code sharing
• problem: vulnerability management again



Module Integrity & Temporary Files 21/56 November 11, 2019

Part 2: Signatures and Trust



Module Integrity & Temporary Files 22/56 November 11, 2019

Signatures: Why?
• executable code is very powerful
• often downloaded from the internet
∘ a man in the middle is a possibility
∘ they could tamper with the application code
∘ instant arbitrary code execution / compromise

• it is very important to establish authenticity



Module Integrity & Temporary Files 23/56 November 11, 2019

Signatures: Hash Functions
• standard cryptographic hash functions (SHA-1 &c.)
• easy to compute for the package you have
• possibly hard to obtain the expected value
∘ maybe fetch using HTTPS
∘ but web servers are easy to compromise
∘ better if you can get it from multiple sources

• usually needs manual verification
∘ users are often lazy and generally unreliable
∘ almost as bad as no signature at all



Module Integrity & Temporary Files 24/56 November 11, 2019

Signatures: Keyed Hashes
• Message Authentication Code (HMAC &c.)
• needs a shared secret
• not suitable for standard distribution models
• could be used in per-customer distribution
• also possibly for subsequent updates



Module Integrity & Temporary Files 25/56 November 11, 2019

Signatures: Asymmetric Crypto
• this is the standard approach
• problem: PKI / trust management
• reduces one problem to another problem
∘ software distribution to key distribution
∘ but keys are smaller
∘ and once obtained, can be used for many packages

• initial keys can be distributed as hardcopies
∘ e.g. on read-only installation media
∘ or pre-installed on the computer with the OS



Module Integrity & Temporary Files 26/56 November 11, 2019

Code Signing: Commercial Examples
• Secure Boot
• Java certificates (includes Android)
• Microsoft Authenticode
• Adobe Air certificates
• Microsoft Office and VBA certs
• Apple Developer Program



Module Integrity & Temporary Files 27/56 November 11, 2019

Example: MS Authenticode
• based on RSA 2048 and SHA-1
• covers Active-X, plugins, executables
• software vendors need to obtain an X.509 certificate
∘ also known as Code Signing Digital ID
∘ many different CAs issue those

• the signature is embedded in the application
• when downloaded, the system checks the signature
∘ any mismatches are reported but may be overridden
∘ kernel code (drivers) are refused



Module Integrity & Temporary Files 28/56 November 11, 2019

Microsoft WHQL
• Windows Hardware Quality Labs
• stricter requirements than generic Authenticode
• testing logs must be submitted to MS
• however: no code review is done by MS
∘ WHQL does not imply the drivers are secure
∘ it does imply a certain level of quality

• allows distribution throughWindows Update



Module Integrity & Temporary Files 29/56 November 11, 2019

Code Signing: Open Source
• OpenBSD binary distribution & packages
• FreeBSD and NetBSD likewise
• binary Linux distributions
∘ Fedora, Debian, Ubuntu, RHEL, CentOS
∘ almost every package manager

• source code is also often signed



Module Integrity & Temporary Files 30/56 November 11, 2019

Trust
• signed ≠ secure ≠ trustworthy
• you need to trust the vendor
∘ possibly backed by a legal contract
∘ but usually not for off-the-shelf software

• even honest vendors make mistakes
∘ vulnerabilities are widespread

• reviewing source code is the only reliable option



Module Integrity & Temporary Files 31/56 November 11, 2019

Open Source: Collaborative Trust
• many people look at different bits
• if you find something bad, you speak up
• assume it is OK if everyone is silent
• seems to be working well in practice



Module Integrity & Temporary Files 32/56 November 11, 2019

Open Source: Which Source?
• how to ensure everyone is looking at the same source?
∘ source in git or similar
∘ signed source distribution tarballs

• rate of change: can the readers keep up?



Module Integrity & Temporary Files 33/56 November 11, 2019

Reproducible Builds
• how to check the binary came from given source?
• rebuilding may change the checksum of the result
• essential for collaborative trust for binary distributions
• <https://reproducible-builds.org>

• alternative: build everything yourself



Module Integrity & Temporary Files 34/56 November 11, 2019

Security
• assume we trust the vendor
• when are signatures verified?
∘ do we need to decompress the package first?
∘ maybe even unpack the content

• trust OK only after the signature is verified
∘ the header may be malicious if signature is bad



Module Integrity & Temporary Files 35/56 November 11, 2019

Part 3: Temporary Files



Module Integrity & Temporary Files 36/56 November 11, 2019

Why Temporary Files?
• data too large to fit in memory
• transferring data to other programs
• named pipes and UNIX domain sockets
• usually not persistent



Module Integrity & Temporary Files 37/56 November 11, 2019

Creation in C / C++: ISO C
• FILE *tmpfile()

∘ created in the default system location
∘ deleted on close / program exit
∘ unique file name (or no file name at all)
∘ opened for reading and writing

• tmpnam() and tempnam()

∘ do not use those functions
∘ only for compatibility with very old programs



Module Integrity & Temporary Files 38/56 November 11, 2019

Creation in C / C++: Windows
• tmpnam_s() from secure C library
∘ not actually secure
∘ never use this function with fopen

• tmpfile_s()

∘ like tmpfile but different calling convention
∘ neither is very useful onWindows (needs admin)



Module Integrity & Temporary Files 39/56 November 11, 2019

Creation in C / C++: Windows
• use CREATE_NEW in CreateFile()

• also specify FILE_FLAG_DELETE_ON_CLOSE

• possibly also FILE_ATTRIBUTE_TEMPORARY

• you can get the filename by using tmpnam_s

• try with a new name if CreateFile fails



Module Integrity & Temporary Files 40/56 November 11, 2019

Creation in C / C++: POSIX
• always use mkdtemp and mkstemp

• both are secure against race attacks
• mkostemp on newer systems
∘ allows O_SYNC and O_CLOEXEC to be specified

• unlink() the file to get erase-on-exit



Module Integrity & Temporary Files 41/56 November 11, 2019

Creation in Java
• File tmp = File.createTempFile

• do not leave garbage around: tmp.deleteOnExit()
• about as secure as mkstemp() in C
• needs at least Java 7



Module Integrity & Temporary Files 42/56 November 11, 2019

Creation in Python
• import tempfile

∘ then help(tempfile) or check online
• how to tell if the API is good?
∘ read the documentation
∘ does it mention security? race conditions?
∘ is it deprecated? is there a warning?



Module Integrity & Temporary Files 43/56 November 11, 2019

Temporary File Checklist (1)
• do not use them if not necessary
• never store secrets in temporary files
• do not use standard C functions
∘ tmpnam, mktemp, tempname are bad
∘ tmpfile is sometimes OK on UNIX



Module Integrity & Temporary Files 44/56 November 11, 2019

Temporary File Checklist (2)
• use platform APIs to prevent races
∘ mkstemp, mkdtemp
∘ openwith O_CREAT and O_EXCL

∘ CreateFilewith appropriate flags
• ensure proper permissions
∘ set a restrictive ACL when calling CreateFile

∘ already taken care of with mkstemp



Module Integrity & Temporary Files 45/56 November 11, 2019

Part 4: DRM and Code Obfuscation



Module Integrity & Temporary Files 46/56 November 11, 2019

What is DRM?
• Digital Rights Management
• essentially just copy protection
• as old as commercial software
• usually not very successful



Module Integrity & Temporary Files 47/56 November 11, 2019

Naive DRM
• embed a secret key in the official viewer
• encrypt all content with the secret key
• distribute the encrypted content
• only the official viewer can play it

• but the key is easy to recover



Module Integrity & Temporary Files 48/56 November 11, 2019

DRM is Hard
• the attacker has complete control over execution
• can use debuggers, analysers, fuzzers, etc.
• embedded keys are easy to spot (high entropy)
• obfuscation can help, but only a little
• once the key is compromised, so is all the content



Module Integrity & Temporary Files 49/56 November 11, 2019

White-Box Cryptography
• all of the black-box assumptions
∘ mainly chosen plaintext attacks

• the attacker can also look at execution
∘ even perturb data while the algorithm runs
∘ can see the entire memory
∘ including any key material

• hard but (maybe) not impossible



Module Integrity & Temporary Files 50/56 November 11, 2019

• 2002: White-Box Cryptography, AES Implementation
∘ initial proposal by Chow et al.
∘ based on encrypted networks, broken in 2004

• 2006: White Box Cryptography: A New Attempt
∘ Bringer et al., added perturbations
∘ broken in 2010

• 2009: A Secure Implementation of White-Box AES
∘ different approach by Xiao et al., broken in 2012

• 2011: Protecting White-Box AES with Dual Ciphers
∘ broken in 2013 by CRoCS



Module Integrity & Temporary Files 51/56 November 11, 2019

Summary
• unless you do DRM, do not put secrets in binaries
• offload sensitive computations
∘ smart cards, hardware security modules

• white-box cryptography is hard
∘ we don’t even know if it’s actually possible
∘ long history of failed attempts



Module Integrity & Temporary Files 52/56 November 11, 2019

Part 5: Homomorphic Cryptosystems



Module Integrity & Temporary Files 53/56 November 11, 2019

Why Homomorphic Crypto?
• inverse problem to DRM
• private data in the public cloud
∘ reminder: cloud = someone else’s computer
∘ “someone else” has full control over execution

• how to do useful things without decrypting?



Module Integrity & Temporary Files 54/56 November 11, 2019

Homomorphism?
• 𝑓(𝑒(𝑥), 𝑒(𝑦)) = 𝑒(𝑓(𝑥, 𝑦))

∘ 𝑒 is the encryption function
∘ 𝑓 is some useful operation

• example: 𝑓 is multiplication, 𝑒 is RSA
∘ 𝑥𝑘 ⋅ 𝑦𝑘mod𝑚 = (𝑥 ⋅ 𝑦)𝑘mod𝑚

∘ does not work for addition
• RSA is only partially homomorphic



Module Integrity & Temporary Files 55/56 November 11, 2019

Fully Homomorphic Encryption
• allows arbitrary computation
• needs unlimited addition and multiplication
∘ the rest can be built from those

• first plausible system: Gentry’s Cryptosystem
∘ proposed in 2009
∘ extremely slow: 30 minutes per 1 bit operation



Module Integrity & Temporary Files 56/56 November 11, 2019

Second Generation Systems
• based on the learning with errors problem
∘ need to reconstruct a linear function
∘ from a finite number of noisy samples

• AES-128 circuit as a benchmark
∘ about 36 hours per block initially
∘ down to 4 minutes by 2014

• amenable to SIMD-like evaluation
∘ brings down AES-128 to 2s per block
∘ by processing 120 blocks at once


